

Application Note

Interfacing LCD Modules to
the Z8 MCU

AN003201-Z8X0500
ZILOG WORLDWIDE HEADQUARTERS ¥ 910 E. HAMILTON AVENUE ¥ CAMPBELL, CA 95008
TELEPHONE: 408.558.8500 ¥ FAX: 408.558.8300 ¥ WWW.ZILOG.COM

Application Note

Interfacing LCD Modules to the Z8 MCU

This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
910 E. Hamilton Avenue
Campbell, CA 95008
Telephone: 408.558.8500
Fax: 408.558.8300
www.ZiLOG.com

Windows is a registered trademark of Microsoft Corporation.

Information Integrity

The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated in the
document was either written by an authorized ZiLOG employee or licensed consultant. Permission
to use these codes in any form, besides the intended application, must be approved through a
license agreement between both parties. ZiLOG will not be responsible for any code(s) used
beyond the intended application. Contact the local ZiLOG Sales Office to obtain necessary license
agreements.

Document Disclaimer

© 2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be
superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY
DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR
INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except
with the express written approval ZiLOG, use of information, devices, or technology as critical
components of life support systems is not authorized. No licenses or other rights are conveyed,
implicitly or otherwise, by this document under any intellectual property rights.
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

AN003201-Z8X0500

iii

Table of Contents

General Overview . 1

Discussion . 1
LCD Module Basics . 1
Z8 Microcontroller . 7
Connecting the LCD Module . 7
Serial Interface . 8
Firmware . 8
Operational Results . 13

Summary . 14

Technical Support . 14
Assembling the Application Code . 14
Source Code . 15

Test Procedure . 26
Equipment Used . 26
General Test Setup and Execution . 27
Test Results . 27

References . 28

Appendix . 28

Acknowledgements

Project Lead Engineer

John D. Conder

Application and Support Engineer

John D. Conder

System and Code Development

John D. Conder

Application Note

Interfacing LCD Modules to the Z8 MCU

1

Interfacing LCD Modules to the Z8 MCU
There is an increasing demand to interface Liquid Crystal Display (LCD) modules
to low-end microcontrollers. Unfortunately, little information is offered to address
real-world applications and to help the design engineer understand how to make
LCD modules work.

General Overview
This Application Note provides a detailed example of creating a simple serial inter-
face to an LCD module, using a Z8 microcontroller. The application allows text
messages typed on a computer keyboard to be directly displayed on the LCD
module when the circuit is connected to the computer serial port. The messages
are up to 16 characters long, and are terminated by the Enter key. If more than
16 characters are entered, complete lines of 16 characters are displayed until the
Enter key terminates the message. The serial interface has the following configu-
ration:

¥ 4800 baud

¥ 8 data bits

¥ 1 start bit, 1 stop bit

¥ No parity

This Application Note utilizes the Z86E08 microcontroller and the Hyundai Elec-
tronics Industries (HEI) HC16102 LCD module. However, the code is applicable to
any processor in the Z8 family. Also, because the HC16102 module is based on
the Hitachi HD44780 controller, the code is applicable to any other modules which
utilize this device to control the LCD.

Discussion

LCD Module Basics

Figure 1 contains a block diagram of the HC16102 module. The HC16102 module
contains a 1-line by 16-character display, a Hitachi HD44780 display controller,
and an LED backlight. The HD44780 divides the 16 characters into two lines of
eight characters each, even though all characters appear physically on the same
line. The controller has an on-board character generator in ROM capable of dis-
playing 192 ASCII characters, along with eight user-programmable characters. All
characters are displayed in a 5x7 font. The module is also capable of configuring
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

2

the data bus for either an 8-bit or a 4-bit interface. This Application Note utilizes
the 8-bit option. Table 1 indicates the moduleÕs pin configuration.

Figure 1. LCD Module Block Diagram

Table 1. HC16102 Pin Configuration

Pin Symbol Signal Description

1 VSS GND

2 VDD Power Supply

3 VO LCD Driver Supply Voltage

4 RS Register Select: 0 = Instruction, 1 = Data

5 R/W Read/Write: 0 = MPU to LCM, 1 = LCM to MPU

6 E Enable: (active high)

7 to 14 DB0 to DB7 Data Bus

15 A Anode of LED Backlight

16 K Cathode of LED Backlight

LCD PANELHD44780

40SEG

COM8

 COM88

Back Light

DB7:0

E

R/W

RS

Vo

Vdd

Vss

A

K

AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

3

The module is configured and controlled by the microcontroller via the instruction
set listed in the HC16102 Instruction Set in Table 2. (Table 2 uses a number of
abbreviations that are defined at the bottom of each page of the table.) Each
instruction has a maximum execution time. Upon issuing an instruction, the micro-
controller waits for at least the maximum execution time before issuing another
instruction. Most execution times are at least 40 µsec.

The process of writing an instruction to the module is very straightforward. Essen-
tially, the RS, R/W, and DB7:0 signals are set to the proper levels and then the E
signal is pulsed. On the falling edge of the E signal, the instruction is accepted
and processed by the HD44780. The minimum pulse width for the E signal is 230
ns with a minimum cycle time of 500 ns.

Table 2. HC16102 Instruction Set

Instruction
Code

Description
Execution
Time

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Clear
Display

0 0 0 0 0 0 0 0 0 1 Clears entire display
and sets DD RAM
address 0 in address
counter.

1.64ms

Return
Home

0 0 0 0 0 0 0 0 1 x Sets DD RAM address 0
in address counter. Also
returns display from
being shifted to original
position. DD RAM
contents remain
unchanged.

1.64ms

Notes:
I/D: 1 = Increment, 0 = Decrement
S: 1 = Accompanies display shift
S/C: 1 = Display Shift, 0 = Cursor move
R/L: 1 = Shift to the right, 0 = Shift to the left
DL: 1 = 8-bit interface, 0 = 4-bit interface
N: 1 = 2 lines, 0 = 1 line
F: 1 = 5x10 dot array, 0 = 5x7 dot array
BF: 1 = Busy, 0 = Instructions acceptable
x: DonÕt care
ACG: CG RAM address
ADD: DD RAM address (corresponds to cursor address)
AC: Address counter used for both DD and CG RAM
DD RAM: Display data RAM
CG RAM: Character generator RAM
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

4

Entry Mode
Set

0 0 0 0 0 0 0 1 I/D S Sets cursor move
direction and specifies
shift of display. These
operations are
performed during data
write and read.

40µs

Display On/
Off

0 0 0 0 0 0 1 D C B Sets On/Off of entire
display (D), cursor On/
Off (C), and blinking of
cursor position
character (B).

40µs

Cursor or
Display Shift

0 0 0 0 0 1 S/C R/L x x Moves cursor & shifts
display without
changing DD RAM
contents.

40µs

Function Set 0 0 0 0 1 DL N F x x Sets interface data
length (DL), number of
display lines (N), and
character font (F).

40µs

Set CG RAM
Address

0 0 0 1 ACG Sets CG RAM address.
CG RAM data is sent
and received after this
setting.

40µs

Table 2. HC16102 Instruction Set (Continued)

Instruction
Code

Description
Execution
Time

Notes:
I/D: 1 = Increment, 0 = Decrement
S: 1 = Accompanies display shift
S/C: 1 = Display Shift, 0 = Cursor move
R/L: 1 = Shift to the right, 0 = Shift to the left
DL: 1 = 8-bit interface, 0 = 4-bit interface
N: 1 = 2 lines, 0 = 1 line
F: 1 = 5x10 dot array, 0 = 5x7 dot array
BF: 1 = Busy, 0 = Instructions acceptable
x: DonÕt care
ACG: CG RAM address
ADD: DD RAM address (corresponds to cursor address)
AC: Address counter used for both DD and CG RAM
DD RAM: Display data RAM
CG RAM: Character generator RAM
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

5

Message data must be initialized before it is written to the module. Initialization is
done either internally by the moduleÕs reset circuit or externally by instructions
from the microcontroller. For the moduleÕs internal reset circuit to successfully
complete initialization, the Vdd signal must transition smoothly to 4.5V within 0.1
milliseconds and 10.0 milliseconds. If this condition is not guaranteed, the module
must be initialized by the microcontroller. For this Application Note, the initializa-
tion is performed externally by the microcontroller. The flowchart in Figure 2 illus-

Set DD RAM
Address

0 0 1 ADD Sets DD RAM address.
DD RAM data is sent
and received after this
setting.

40µs

Read Busy
Flag

0 1 BF AC Reads busy flag (BF)
indicating internal
operation is being
performed and reads
address counter
contents (AC).

0µs

Write Data to
CG or DD
RAM

1 0 DATA Writes data into DD
RAM or CG RAM.

40µs

Read Data
from CG or
DD RAM

1 1 DATA Reads data from DD
RAM or CG RAM.

40µs

Table 2. HC16102 Instruction Set (Continued)

Instruction
Code

Description
Execution
Time

Notes:
I/D: 1 = Increment, 0 = Decrement
S: 1 = Accompanies display shift
S/C: 1 = Display Shift, 0 = Cursor move
R/L: 1 = Shift to the right, 0 = Shift to the left
DL: 1 = 8-bit interface, 0 = 4-bit interface
N: 1 = 2 lines, 0 = 1 line
F: 1 = 5x10 dot array, 0 = 5x7 dot array
BF: 1 = Busy, 0 = Instructions acceptable
x: DonÕt care
ACG: CG RAM address
ADD: DD RAM address (corresponds to cursor address)
AC: Address counter used for both DD and CG RAM
DD RAM: Display data RAM
CG RAM: Character generator RAM
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

6

trates the initialization sequence. Note that the sequence is for 8-bit mode. A
slightly different sequence exists for 4-bit mode. However, the 4-bit mode
sequence is beyond the scope of this application and therefore not included in this
Application Note.

Figure 2. LCD Module Initialization Sequence

Power On

Wait 15ms or more after Vdd
reaches 4.5V

RS = 0
R/W = 0

DB7:0 = 0011xxxx

Wait 4.1ms or more

RS = 0
R/W = 0

DB7:0 = 0011xxxx

Wait 100us or more

RS = 0
R/W = 0

DB7:0 = 0011xxxx

RS = 0
R/W = 0

DB7:0 = 000001(I/D)S

RS = 0
R/W = 0

DB7:0 = 00000001

RS = 0
R/W = 0

DB7:0 = 00001000

RS = 0
R/W = 0

DB7:0 = 0011NFxx

Init Complete

Issue "Function Set"
instruction 3 times to
insure proper setup

Issue "real" config:
 1) Function Set
 2) Display Off
 3) Display Clear
 4) Entry Mode
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

7

Z8 Microcontroller

The microcontroller selected for this application is the Z86E08. It provides a mini-
mal configuration for the application. As such, there are very few resources
remaining for interfacing to other circuitry. For applications that require additional
connections, other Z8 microcontrollers, such as the 28-pin Z86E3x series or the
40-pin Z86E4x series may be substituted with minimal impact to the firmware.

The Z86E08 is an 18-pin device with 14 available I/O pins. The I/O pins are
arranged into two 3-bit ports (Port 0 and Port 3) and one 8-bit port (Port 2). Port 0
(P02ÐP00) is a dedicated output port. Por t2 (P27 Ð P20) is a bidirectional port
with each pin independently configurable as input or output. Port 3 (P33 Ð P31) is
a dedicated input port.

The Z86E08 is capable of operating at a crystal frequency of up to 12 MHz. 8 MHz
was chosen for this application because it simplifies the system timing. Other fre-
quencies may be selected. However, other frequencies require a reevaluation of
the serial interface timing as well as the timing of the firmware delay loops that are
used in the LCD Module interface.

Connecting the LCD Module

The Appendix contains the schematic for this application. As illustrated in the
schematic, the LCD Module data bus, DB7:0, is connected directly to Port2 of the
Z8 microcontroller. Port2 was chosen because it is the only bidirectional port
available on the Z86E08. It is also the only 8-bit wide port available. For other Z8
applications, other ports may be used The LCD Module control signals, E, R/W,
and RS, are connected to Port0 of the Z8 because they are strictly module inputs.
These signals could be connected to any Port0 pin. The required connection is
used because the E signal is toggled most frequently. Therefore, it is assigned to
the least significant Port0 pin, P00.

The module provides two pins for the LED backlight, pin 15 for the anode (A) and
pin 16 for the cathode (K). The anode is connected to VCC by a 10-Ohm resistor,
R2, and the cathode is connected to Gnd via a push-button switch, SW1. The
LED has a forward voltage of approximately 4.1 V and a forward current of 110
mA. The resistor is provided to limit the current to the 110mA requirement when
the button is pressed.

Contrast for the LCD is controlled by the voltage applied at pin 3, VO, of the LCD
Module. The contrast is adjusted by connecting the wiper leg of potentiometer R3
to VO and connecting the other legs to VCC and Gnd. A 10-k½ potentiometer is
used in this application, but any value from 10K to 20K is acceptable.
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

8

Serial Interface

The serial interface for this application functions only to receive data from a host
source. Therefore, the serial port connection is limited to the receive data pin
(DB9 connector pin 3) and the Gnd pin (DB9 connector pin 5). Traditionally, an
RS-232 buffer device is used to isolate the processor from the receive pin of the
connector. However, for this application, the buffer device is eliminated and a sim-
ple analog circuit replaces it. This circuit consists of two diodes, D1 and D2, and
resistor R1. Diode D1 limits the voltage on the processor pin to approximately
0.7V above VCC, while diode D2 limits the voltage to approximately 0.7V below
Gnd. This limitation protects the processor pin from the damaging voltages
present when connected to an RS-232 driver. Resistor R1 limits the current into or
out of the circuit to just a few milliamps, thereby protecting the diodes and proces-
sor pin from potential damage due to excessive current.

One of the key differences in this serial interface is that it requires the processor to
invert the sense of the serial data transitions. This inversion is traditionally per-
formed by the RS-232 buffer, which has been eliminated. From the processorÕs
point of view, the start bit is logic level 1 instead of the traditional level 0, all the
data is inverted, and the stop bit is logic level 0.

Firmware

The majority of the functions for this application reside in the Z8 firmware. This
firmware consists of three major routines: a main processing loop, a serial input
routine, and a display write routine. Figure 3 contains a high-level flowchart for the
main processing loop.
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

9

Figure 3. Main Processing Loop Flowchart

Power On

Initialize Z8 ports and registers
Initialize LCD module

Write ">Ready" to the display

Overrun
flag set?

Reconfigure Timers and Interrupts
Reset the message buffer pointer

Yes

No

Character
received?

Frame
error?

Abort current message
Write ">Frame Error!!!" to display

Yes

Yes

Is it 10hex
("CR")?

Is it 13hex
("LF")?

Is it the 17th
character?

No

No

Yes

No

Add 17th character to message buffer
Clear the Overrun flag

No

Fill missing characters with " "
Write the message to the displayYes

Set the Overrun flag

Add character to the message buffer

Yes

No
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

10
The basic operation of the main processing loop is as follows. On power-up, the
Z8 performs an initialization sequence and then enters into a main loop waiting for
an indication that a new character has been received via the serial routine. When
a new character is received, the character is examined to determine the next
action. If the character is 10h (ASCII carriage return), the message is considered
terminated. The message buffer is padded with as many spaces as required to
complete the 16-character message and the message is written to the LCD Mod-
ule. The Z8 reenters the main loop waiting for new characters. The 13h character
(ASCII line feed) is ignored completely because it is part of the message termina-
tion. If any other character is received, it is written to the message buffer and the
buffer pointers are incremented. If the number of characters exceeds 16, without
receiving character 10h, the message buffer is automatically written to the LCD
Module and message buffering is restarted.

Figure 4 contains the high-level flowchart for the serial input routine. Because the
Z86E08 doesnÕt contain a UART, a firmware routine provides the receive portion
of the UART function. Essentially, the firmware routine detects the rising edge of
the start bit, samples it again in the middle to validate it, and then repetitively sam-
ples at bit-time intervals to obtain the data and stop bits.
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

11

Figure 4. Serial Input Routine Flowchart

IRQ3

Wait for 1/2 a bit time (104us)
Resample the P31 data pin

Still logic 1?

Yes

P31 = "0"?

Mask off IRQ3 & enable IRQ4 (T0)
Clear the serial word buffer

Initialize bit counter

Return

No

Halt

IRQ4

20
8

u
s

No

Bit count = 0?

Decrement bit counter

Data bit = 1, rotate into word buffer Data bit = 0, rotate into word buffer
No

Halt

IRQ4

Yes

20
8

u
s

Yes

P31 = "0"?Stop bit OK - set char available flag No stop bit - set frame error flagYes No

Disable T0, re-enable IRQ3 only
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

12
By connecting the receive data signal to P31 of the Z86E08, the rising edge of the
start bit is used to generate an interrupt, IRQ3, to the processor whenever a start
bit occurs. The bit-time delay is created by configuring the internal T0 timer for a
time delay of 208 µs. This operation results in an effective baud rate of 4808.
When the start bit is detected and validated, the IRQ3 interrupt is masked off and
the T0 interrupt, IRQ4, is enabled. The processor is halted between data bits, and
resumes processing when the IRQ4 interrupt occurs. If the start bit validation fails,
the IRQ3 interrupt is considered to be noise and is ignored. If the stop bit is not
present, a frame error is declared by setting the frame error flag. If the word is
completed successfully, a flag is set to denote that a new character is available.

Figure 5 contains the high level flowchart for the write display routine. This routine
expects a 16-character ASCII message to be in the message buffer. The routine
performs 16 consecutive writes to the LCD Module, beginning with the first word
in the buffer and writing the next sequential word on each pass. Because the
HD44780 LCD controller is configured as two 8-character lines, the 16 character
write is broken into two passes of eight characters each. Between the two passes,
the display controller must be instructed to switch from line 1 to line 2.
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

13

Operational Results

This application is designed to connect to a regulated +5V power supply. The sup-
ply regulation must be within +/- 0.5V, which is the operational limit of the LCD
module. Connection to any other power source requires additional circuitry to pro-
vide this level of supply voltage and regulation.

When power is applied to the unit, it responds by displaying >Ready on the LCD
Module. This display is an indication that the unit is ready to receive messages.

Figure 5. Display Write Routine Flowchart

Start

Reset LCM for line 1 input
Initialize character pointer

Force RS control line to "1"
Initialize loop counter to 8

Place character on data bus
Toggle E control line to "1"

then back to "0"

Wait for instruction to be processed
Increment the character pointer

Decrement the loop counter

Loop
counter = 0?

No

Force RS control line to "0"
Reset LCM for line 2 input

Initialize line 2 character pointer

Yes

Force RS control line to "1"
Initialize loop counter to 8

Place character on data bus
Toggle E control line to "1"

then back to "0"

Wait for instruction to be processed
Increment the character pointer

Decrement the loop counter

Loop
counter = 0?

No

Yes

Force RS control line to "0"

Return
AN003201-Z8X0500

Application Note

Interfacing LCD Modules to the Z8 MCU

14

The unit displays any message it receives. Note that the LCD module uses the
character space greater than 07Fh as Asian characters and other symbols. Mes-
sages containing these codes produce interesting results. Consult the data sheet
for the HC16102 or the HD44780 for a complete listing of the character map.

Operating the unit without connection to a serial port can sometimes display the
>Frame Error!!! message. This message displays because noise is coupled
into the unconnected data line. Depending on the amount of noise and its inten-
sity, the display may appear to flash the message. An optional capacitor, C3, is
included (see Appendix schematic) to prevent the noise from creating false mes-
sage starts. C3 has no other purpose and the capacitor can be eliminated from
designs that are not required to function while disconnected from the host.

Summary
This application provides an effective and reusable demonstration of applying the
basic LCD Module instructions to control an LCD display. A simple serial interface
is demonstrated for sending messages to the display. Because the LCD Module
utilizes a common Hitachi HD44780 controller, the firmware has wide applicability.

The application code readily fits into the 2-KB program space of the Z86E08,
using only 510 bytes. There is a large amount of space available for creating spe-
cial effects or adding precoded messages. Also, if additional I/O pins are required,
the code readily transfers to higher pin-count microcontrollers in the Z8 family.

Technical Support

Assembling the Application Code

Any Z8 assembler may be used, but the ZiLOG Developer Studio (ZDS) is recom-
mended. This integrated suite of software tools allows for program file handling,
editing, real-time emulation and debugging when used with the appropriate emu-
lator. Future versions of ZDS incorporate a C-Compiler, simulator and trace buffer.
See ZiLOGÕs web-page at www.zilog.com for news and free downloads of ZDS.

Place the.ASM file and.INC file in their own sub-directory. Invoke ZDS and select
a new project from the file menu. Under Target Selection , select Family .
Under Master Select , select Z8 . Under Project Target , select Z86E08.
Select the appropriate emulator type to be used. Browse to fill in the project name
by clicking on the ... key. Select the sub-directory containing the.ASM and.INC
files, name the project, (the extension is added for you), click Save and the first
ZDS screen reappears with the project name, path, and file extension filled in. If
everything is acceptable, click OK.
AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

15
Click on the Project tab and select Add to Project . Then select Files .
Double click on the LCM_Interface.asm file. This file and the.INC file are now
displayed in the project window. Click on the Build tab and select Build . The
Output window displays the assembly results. The standard assembler and
linker settings produce listing and hex files, along with the ZDS files, in the same
sub-directory. Save the project and files by clicking on the File tab and selecting
these options. The ZDS Project File is included, and when the ZDS is installed,
allows you to skip the above steps for program assembly.

Program the OTP by selecting the OTP option with the hex code installed. Never
install the OTP until access to it is required, either for blank checking, verification,
or programming. Insert a blank Z86E08 into the OTP socket and click on the pro-
gram OTP selection. Differences exist between earlier GUIs and the ZDS, so take
the time to read and understand the operation of the SW in use. Pad unused
memory locations with FFh before programming. If padding is not consistently
done, differences occur in the check sum.

Source Code

This application uses the following source files:

¥ LCM_Interface.asm

¥ RegDef.inc

Instead of displaying each file separately, they are shown exactly in the order and
location they are <.included> in the main source, LCM_Interface.asm . This is
similar to the way the output listing file (LCM_Interface.lst) is generated.

**
* Module Name: Z8 based Serial Interface to a LCD Module
* Copyright: ZiLOG Inc.
* Date: 09/24/99
* Created by: John D. Conder
* Modified by:
*
* Description: This module contains the code for using the
* Z86E08 microcontroller to create a 4800 baud RS232
* serial interface to a Hyundai HC16102 LCD module.
*
* The module has a 16-character by 1-line display
* format. The controller will display a 0 to 16
* character message received via the serial port.
* Messages are terminated by the "Enter" key (ASCII
* code sequence 13hex, 10hex). The display is not
* updated until either the "Enter" is received or
* 16 characters are received. The serial interface
* is fixed at 8 data bits, no parity, 1 start bit
* and 1 stop bit.
*
*

AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

16
**
//
//
**
* Include section
**

; Include the register and constant definitions
include "RegDef.inc"

;==
;= TITLE: RegDef.inc
=
;= DATE: September 24 1999
=
;= PURPOSE: Register and constant definitions for the=
;= LCD Module interface app note
=
;=
=
;= FILE TYPE: .included header file
=
;=
=
;= ASSEMBLER: ZiLOG ZDS/ZMASM
=
;= PROGRAMMER: John Conder
=
;==

; BIT DEFINITIONS

; Port 0
; pins na----------na 13 12 11 Function Polarity I/O
; bits [7 6 5 4 3 2 1 0]
; | | |_ LCM Enable hi-true O
; | |____ LCM R/W bipolar O
; |_______ LCM Reg Sel bipolar O

P0_E_Hi .equ 00000001b ; LCM E control bit = 1
PO_RW_Hi .equ 00000010b ; LCM RW control bit = 1
P0_RS_Hi .equ 00000100b ; LCM RS control bit = 1

P0_Init .equ 00000000b ; Reg 000 - Port0 Data Init

; Port 1
; pins na-------------------na (Port 1 nonexistant on Z86E08)
; bits [7 6 5 4 3 2 1 0]
;
P01M_Init .equ 00000100b ; Reg 0F8 - Port0&1 Mode Init
; xxxxxx00b ; P00-P03 Mode=Outputs
; xxxxx1xxb ; 1=Reserved
; 00000xxxb ; 0=Reserved
AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

17
; Port 2
; pins 4 3 2 1 18 17 16 15 Function Polarity I/O
; bits [7 6 5 4 3 2 1 0]
; | | | | | | | |_ DB0 bipolar I/O
; | | | | | | |____ DB1 bipolar I/O
; | | | | | |_______ DB2 bipolar I/O
; | | | | |__________ DB3 bipolar I/O
; | | | |_____________ DB4 bipolar I/O
; | | |________________ DB5 bipolar I/O
; | |___________________ DB6 bipolar I/O
; |______________________ DB7 bipolar I/O

P2_Init .equ 00000000b ; Reg 002 - Port2 Data Init
P2_LCM8bits .equ 00111000b ; LCM 8bit function set
P2_DOnNoC .equ 00001100b ; LCM display on, no cursor
P2_AIncNoS .equ 00000110b ; LCM addr incr, no shift
P2_DspClr .equ 00000001b ; LCM display clear
P2_CurHome .equ 00000010b ; LCM cursor home
P2_CGRam .equ 01000000b ; LCM set CG Ram
P2_DDRam1 .equ 10000000b ; LCM DD Ram line 1
P2_DDRam2 .equ 11000000b ; LCM DD Ram line 2

P2M_Init .equ 11111111b ; Reg 0F6 - Port2 Mode Init
P2M_Read .equ 11111111b ; Input data from LCM
P2M_Write .equ 00000000b ; Output data to LCM

; Port 3
; pins na-------na 10 9 8 na Function Polarity I/O
; bits [7 6 5 4 3 2 1 0]
; | | |____ Unused
; | |_______ Serial Input bipolar I
; |__________ Unused

P3_RxBit .equ 00000100b ; Serial Input data bit

P3_Init .equ 00000000b ; Reg 003 - Port3 Data Init
P3M_Init .equ 00000001b ; Reg 0F7 - Port3 Mode
; xxxxxxx1b ; 1=Port2 as Push-Pull
; xxxxxx0xb ; 0=P33-P31 as Digital Mode
; 000000xxb ; 0=Reserved

; Timer definitions
;
TMR_Init .equ 00000000b ; Reg 0F1 - Timer Mode
; xxxxxxx0 ; 1=Load T0
; xxxxxx0x ; 1=Enable T0 Count
; xxxxx0xx ; 1=Load T1
; xxxx0xxx ; 1=Enable T1 Count
; xx00xxxx ; 00=Tin Mode: external clock
; 00xxxxxx ; 00=Reserved
TMR_RxEnab .equ 00000011b ; Enable Serial Receive

; Timer0 (serial input)
;
T0_Init .equ 208 ; Reg 0F4 - 208uS (4808bps)
AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

18
PRE0_Init .equ 00000101b ; Reg 0F5 - T0 Prescaler
; xxxxxxx1 ; 1=Modulo n
; xxxxxx0x ; 0=Reserved
; 000001xx ; Modulo value (1us @ 8MHz)

; Timer1 (unused)
T1_Init .equ 208 ; Reg 0F2 - 208uS (4808bps)
PRE1_Init .equ 00000111b ; Reg 0F3 - T1 Prescaler
; xxxxxxx1 ; 1=Modulo-n
; xxxxxx1x ; 1=Internal Clock Source
; 000001xx ; Modulo value (1us @ 8MHz)

; Interrupt definitions
;
IPR_Init .equ 00100011b ; Reg 0F9 - Interrupt Priority
; xxx00xx1 ; Group priority C>A>B
; xxxxxx1x ; Group C 1=IRQ4>IRQ1
; xxxxx0xx ; Group B 0=IRQ2>IRQ0
; xx1xxxxx ; Group A 1=IRQ3>IRQ5
; 00xxxxxx ; Reserved-Must be 0

IMR_Init .equ 00000000b ; Reg 0FB - Interrupt Mask
; xx000000 ; 0=IRQ5-IRQ0 disabled
; x0xxxxxx ; 0=Reserved-Must be 0
; 0xxxxxxx ; 0=Global Interrupt disable
IMR_RxEnab .equ 00001000b ; Enable IRQ3(P32) for serial detect
IMR_RxLoop .equ 00010000b ; Enable IRQ4(T0) for serial loop

IRQ_Init .equ 00000000b ; Reg 0FA - Interrupt Request
; xx000000 ; 0=Clear request bits 5-0
; 00xxxxxx ; Reserved - Must be 0
IRQ_T0bit .equ 00010000b ; TO interrupt bit

; System Definitions
;
RegBot .equ 004h ; Bottom register
RegTop .equ 07Fh ; Top register
StackTop .equ RegTop+1 ; Top of Stack

AppRP .equ 010h ; System Register Pointer
MsgBufRP .equ 020h ; Message Buffer Pointer

Wt1MCnst .equ 01Fh ; WaitLoop1 msbyte count constant
Wt1LCnst .equ 0FFh ; WaitLoop1 lsbyte count constant
Wt2Const .equ 01Fh ; WaitLoop2 count constant

; System Flags
;
RxWrdAvail .equ 00000001b ; Serial input word available
RxFrameErr .equ 00000010b ; Serial input frame error
RxOverrun .equ 00000100b ; Display line greater than 16
AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

19
**
* Global variables
**

DEFINE REGDATA, SPACE=RFILE

; RAM MAP
SEGMENT REGDATA

;
; Register Bank0

DS 16 ; Bank0 Space

; Register Bank1 - AppRP (010-01Fhex)
FlagReg DS 1 ; R0 - System Flag register
RxBitNum DS 1 ; R1 - Current bit
RxChrNum DS 1 ; R2 - Current character
RxWrdBuf DS 1 ; R3 - Serial Word Buffer

Unused DS 7 ; R4-R10

IRQ3Gnrl DS 1 ; R11 - Interrupt general reg
General0 DS 1 ; R12 - Main general reg0
General1 DS 1 ; R13 - Main general reg1
General2 DS 1 ; R14 - Main general reg2
General3 DS 1 ; R15 - Main general reg3

; Register Bank2 - SerialRP (020-02F hex)
DS 16 ; Message Buffer space

; END RAM MAP

**
* Global function declarations
**

; none

**
* Interrupt Vectors
**

SEGMENT code

 vector reset = Main
 vector irq0 = IRQ0

vector irq1 = IRQ1
vector irq2 = IRQ2

 vector irq3 = IRQ3
vector irq4 = TMR0

 vector irq5 = TMR1

**
* Z8 based Serial Interface to a LCD Module
*

AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

20
* This is the main section of the program. It is essentially a
* loop that cycles each time a complete message is received. The
* message is considered complete when the "CR" + "LF" characters are
* received. If the message exceeds 16 characters, the characters
* are displayed in lines of 16 characters with each new line over-
* writing the previous one. The receipt of individual characters is
* denoted by activation of the character available flag.
*
**

Main:
di ; Disable interrupts

; Init Ports
ld P2M,#P2M_Init ; Init Port2 Mode
ld P2,#P2_Init ; Init Port2 Data
ld P3M,#P3M_Init ; Init Port3 Mode
ld P3,#P3_Init ; Init Port3 Data

 ld P01M,#P01M_Init ; Init Port0&1 Mode
ld P0,#P0_Init ; Init Port0 Data

; Init Timer subsystem
ld T0,#T0_Init ; Init T0
ld PRE0,#PRE0_Init ; Init PRE0
ld T1,#T1_Init ; Init T1
ld PRE1,#PRE1_Init ; Init PRE1
ld TMR,#TMR_Init ; Init TMR

; Init Interrupt subsystem
ld IPR,#IPR_Init ; Init Interrupt Priority
ld IMR,#IMR_Init ; Init Interrupt Mask
ld IRQ,#IRQ_Init ; Clear any IRQ prior to ei
ld RP,#AppRP ; Initialize the register pointer

; Clear Register Banks for debug clarity
ld RegBot,#RegBot+1 ;

ClrRam: ;
clr @RegBot ;
inc RegBot ;
cp RegBot,#RegTop+1 ;
jr ule,ClrRam ;

ld SPL,#StackTop ; Initialize the stack pointer
ld P2M,#P2M_Write ; Port2 Mode = output
call LCM_Wait1 ; Wait for LCM to stabilize

 call LCM_Init ; Initialize the LCD Module
ld R12,#>MsgInit ; Create a message pointer
ld R13,#<MsgInit ;
call MsgBufLoad ; Load the message buffer

 call DisplayMsg ; Write message to the LCD module
Msg_Loop:
; Reconfigure to recieve new input string and wait for characters

di
 ld TMR,#TMR_Init ; Disable Timers

ld IMR,#IMR_RxEnab ; Enable IRQ3 start bit detect
ld IRQ,#IRQ_Init ; Clear all pending interrupts
ld R2,#MsgBufRP ; Initialize buffer location
AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

21
 tm R0,#RxOverrun ; Check for overrun situation
jr z,ClrBuffer ; If no overrun, clear the buffer
ld @R2,R3 ; Save the overrun character
inc R2 ; Move character pointer
and R0,#~RxOverrun ; Clear the Over-run flag

ClrBuffer:
clr R3 ; Clear the word buffer
ei

Chr_Wait:
tm R0,#RxWrdAvail ; Valid character received?
jr nz,Rcvd_Char ; If so, jump
tm R0,#RxFrameErr ; Frame error received?
jr z,Chr_Wait ; If not, jump & continue waiting

; Frame error detected - abort the input string - display error message
di
ld TMR,#TMR_Init ; Disable Timers
ld IMR,#IMR_Init ; Mask off all interrupts
ld IRQ,#IRQ_Init ; Clear any pending interrupts
ld R12,#>MsgFrErr ; Create a message pointer
ld R13,#<MsgFrErr ;
call MsgBufLoad ; Load the message buffer

 call DisplayMsg ; Write message to the LCD module
and R0,#~RxFrameErr ; Clear the frame error flag
jr Msg_Loop ; Return to main message loop

Rcvd_Char:
; Complete character's been recieved - check for end message or
; buffer overflow - otherwise, save char & continue looking for more.

cp R3,#'\r' ; End of message: "CR"?
jr eq,EndOfMsg ; If so, jump to display it
cp R3,#'\n' ; else, "LF" character?
jr eq,IgnoreLF ; If so, jump to ignore it
cp R2,#MsgBufRP+10h ; else, check for overrun
jr uge,MsgOvrRun ; If overrun, jump to display

 ld @R2,R3 ; else, save the character
inc R2 ; Move character pointer
and R0,#~RxWrdAvail ; Clear the char available flag
jr Chr_Wait ; Return to wait for more

IgnoreLF:
; End of input message - ignore the line feed character

and R0,#~RxWrdAvail ; Clear char available flag
jr Chr_Wait ; Return to wait for more

MsgOvrRun:
; More than 16 characters have been recieved - display partial message

or R0,#RxOverrun ; Set the Over-run flag

EndOfMsg:
; End of input message - blank fill empty buffer space, if any, and
; write the message to the LCD module.

di
and R0,#~RxWrdAvail ; Clear char available flag
AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

22
ld TMR,#TMR_Init ; Disable Timers
ld IMR,#IMR_Init ; Mask all interrupts
ld IRQ,#IRQ_Init ; Clear any pending interrupts

BlankFill:
cp R2,#MsgBufRP+10h ; Check for end of buffer
jr uge,MsgBufFull ; If at end, jump
ld @R2,#' ' ; else, save a ' ' character
inc R2 ; Move character pointer
jr BlankFill ; jump to continue filling

MsgBufFull:
 call DisplayMsg ; Write message to the LCD module

jr Msg_Loop ; Return to wait for more

**
* Function Name: LCM_Init
*
* Returns: Nothing
* Entry values: Register Pointer set to AppRP
* Description: This routine prepares the LCD Module for message
* display.
* Notes: This routine has 2 entry points. The first one
* (LCM_Init) perform intialization and reset, the
* second one (LCM_Reset) performs reset only.
**
LCM_Init:

and P0,#~P0_RS_Hi ; Force RS control line low
ld P2,#P2_Init ; Zero the data bus
or P0,#P0_E_Hi ; Force E control line hi
and P0,#~P0_E_Hi ; Force E control line low
call LCM_Wait1 ; Wait for approx 20ms
ld P2,#P2_LCM8bits ; Function set instruction - 8bits
or P0,#P0_E_Hi ; Force E control line hi
and P0,#~P0_E_Hi ; Force E control line low
call LCM_Wait1 ; Wait for approx 20ms
or P0,#P0_E_Hi ; Force E control line hi
and P0,#~P0_E_Hi ; Force E control line low
call LCM_Wait1 ; Wait for approx 20ms
or P0,#P0_E_Hi ; Force E control line hi
and P0,#~P0_E_Hi ; Force E control line low
call LCM_Wait1 ; Wait for approx 20ms
ld P2,#P2_DOnNoC ; Turn on display - no cursor
or P0,#P0_E_Hi ; Force E control line hi
and P0,#~P0_E_Hi ; Force E control line low
call LCM_Wait1 ; Wait for approx 20ms
ld P2,#P2_AIncNoS ; Address increment, no shift
or P0,#P0_E_Hi ; Force E control line hi
and P0,#~P0_E_Hi ; Force E control line low
call LCM_Wait1 ; Wait for approx 20ms

LCM_Reset:
ld P2,#P2_DspClr ; Clear the display
or P0,#P0_E_Hi ; Force E control line hi
and P0,#~P0_E_Hi ; Force E control line low
call LCM_Wait1 ; Wait for approx 20ms
ld P2,#P2_CurHome ; Send the cursor home
or P0,#P0_E_Hi ; Force E control line hi
and P0,#~P0_E_Hi ; Force E control line low
AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

23
call LCM_Wait1 ; Wait for approx 20ms
ld P2,#P2_CGRam ; Set the CG Ram
or P0,#P0_E_Hi ; Force E control line hi
and P0,#~P0_E_Hi ; Force E control line low
call LCM_Wait2 ; Wait for approx 80us
ld P2,#P2_DDRam1 ; Set the DD Ram
or P0,#P0_E_Hi ; Force E control line hi
and P0,#~P0_E_Hi ; Force E control line low
call LCM_Wait2 ; Wait for approx 80us
ret

**
* Function Name: DisplayMsg
*
* Returns: Nothing
* Entry values: Register Pointer set to AppRP
* Description: This routine writes the contents of the message
* buffer into the LCD module for display.
* Notes:
**
DisplayMsg:

call LCM_Reset ; Reset LCM for line1
ld R13,#MsgBufRP ; Initialize line1 char pointer
call LCM_Write ; Write line1 data to the LCM
and P0,#~P0_RS_Hi ; Force RS control line to 0
ld P2,#P2_DDRam2 ; Load line2 starting address
or P0,#P0_E_Hi ; Force E control line to 1
and P0,#~P0_E_Hi ; Force E control line to 0
call LCM_Wait2 ; Wait for approx 80us
ld R13,#MsgBufRP+8 ; Initialize line2 char pointer
call LCM_Write ; Write line2 data to the LCM

 ret

**
* Function Name: LCM_Write
*
* Returns: Nothing
* Entry values: Register Pointer set to AppRP
* R13 loaded with addr of 1st character of the line
* Description: This routine loads the 8 characters of the display
* line into the module.
* Notes:
**
LCM_Write:

or P0,#P0_RS_Hi ; Force RS control line to 1
ld R12,#008h ; Initialize loop counter

LCM_WrLoop:
ld P2,@R13 ; Place character on data bus
or P0,#P0_E_Hi ; Force E control line to 1
and P0,#~P0_E_Hi ; Force E control line to 0
call LCM_Wait2 ; Wait for LCM processing
inc R13 ; Move the character pointer
djnz R12,LCM_WrLoop ; Check for end of loop
and P0,#~P0_RS_Hi ; Force RS control line to 0

 ret
AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

24
**
* Function Name: LCM_Wait1
*
* Returns: Nothing
* Entry values: None
* Description: This routine creates a delay of approximately 20ms
* Notes:
**
LCM_Wait1:

ld R14,#Wt1MCnst ; Initialize upper byte of count
Wait1_Lp2:

ld R15,#Wt1LCnst ; Initialize lower byte of count
Wait1_Lp1:

djnz R15,Wait1_Lp1 ; Decrement ls byte count till 0
djnz R14,Wait1_Lp2 ; Decrement ms byte count till 0
ret

**
* Function Name: LCM_Wait2
*
* Returns: Nothing
* Entry values: None
* Description: This routine creates a delay of approximately 80us
* Notes:
**
LCM_Wait2:

ld R14,#Wt2Const ; Initialize count value
Wait2_Lp:

djnz R14,Wait2_Lp ; Decrement count till 0
ret

**
* Function Name: MsgBufLoad
*
* Returns: Message buffer loaded with 16 character message
* Entry values: Register Pointer set to AppRP
* R12 contains msbyte of message start addr
* R13 contains lsbyte of message start addr
* Description: This routine loads the message buffer with an
* internally generated 16 byte message.
* Notes:
**
MsgBufLoad:

ld R2,#MsgBufRP ; Initialize Comm Buffer Location
ld R14,#010h ; Initialize loop counter

MsgBufLoop:
ldci @R2,@RR12 ; Load Character into buffer
djnz R14,MsgBufLoop ; Test for end of message
dec R2
ret

**
AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

25
* IRQ3 Interrupt Service
*
* This routine performs the RS232 input function @4800 baud
* Format: 8 bits data - LSB first,no parity, 1 start, 1 stop
* Note: All bits inverted since there's no inverting input buffer
*
* Procedure: Rising Start bit edge causes IRQ3 service.
* After a half bittime input is sampled again to validate
* the Start bit. Then IRQ5 is enabled and T0 is setup for bittime
* delay in continous mode.
*
**
IRQ3:
; Setup half bit-time and wait to validate start bit

ld R11,#024h ; Half bit-time =~ 104us
StrtBitWait:

djnz R11,StrtBitWait ; Wait for center of start bit
tm P3,#P3_RxBit ; Take Sample on P32: RX=0?
Jr nz,StrtValid ; If nonzero, Start bit is valid!
Iret ; else, ignore it

StrtValid:
ld TMR,#TMR_RxEnab ; Load & enable T0
ld IMR,#IMR_RxLoop ; Enable IRQ4 (T0) only
ei ; Reenable interrupts

clr R3 ; Clear the word buffer
ld R1,#008h ; Load the number of data bits

Rcv_Loop:
nop ; Clear pipeline
halt ; Wait to sample data
tm P3,#P3_RxBit ; RX=0?
jr z,Rcvd0 ; If zero, then jump
rcf ; else, reset carry (data=0)
jr Rcvd1 ;

Rcvd0:
scf ; Set carry (data=1)

Rcvd1:
rrc R3 ; Carry into MSB, LSB into carry
dec R1 ; Decrement bit counter
jr nz,Rcv_Loop ; If not 0, jump to continue loop
nop ; else, wait for stop bit
halt ;

tm P3,#P3_RxBit ; Test Stop Bit
jr z,FrameOK ; If stop bit=0 - OK, jump
or R0,#RxFrameErr ; else, set frame error flag
jr RxExit ;

FrameOK:
Or R0,#RxWrdAvail ; Set data available flag

RxExit:
di
ld IRQ,#IRQ_Init ; Clear interrupts
ld TMR,#TMR_Init ; Disable timers
ld IMR,#IMR_RxEnab ; Reenable IRQ3 only
iret
AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

26
**
* Timer 0 Interrupt Service
*
* This timer is used to create the bit time for the 4800 baud xfer.
* There is no processing involved.
*
**
TMR0:

iret

**
* Unused Interrupt Service
**

; Empty IRQ's defined earlier so that the processor will have a 16 bit
; address in memory to jump to and return from in the case of a stray
; or glich interrupt.

IRQ0:
IRQ1:
IRQ2:
TMR1:
 iret

**
* System messages
**

MsgBlank: .ASCII " " ; Blank display message
MsgInit: .ASCII ">Ready " ; Initialization message
MsgFrErr: .ASCII ">Frame Error!!! " ; Frame error message

**

; End of main program.

 End

Test Procedure

Equipment Used

Testing the application requires the following items:

¥ Target application board built according to the schematic in the Appendix

¥ 5V, 1A bench supply (for application power)
AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

27
¥ Windows 95/98/NT-based PC with ZDS 2.11 or higher installed

¥ Z86CCP01ZEM (CCP Emulator)

¥ Z86CCP00ZAC (Emulator Accessory Pack)

¥ 8V @ 0.8 A power supply (for emulator power)

A DOS or Windows terminal program, such as HyperTerminal, running on the
COM port of your choice, is also required to exercise the applicationsÕs RS-232
interface.

General Test Setup and Execution

Exercise the application by either burning an OTP (stand-alone) or running the
application from the emulator.

If using an emulator, at least two free serial ports are required on your PC. One is
for the emulator and the other for the applicationÕs RS-232 interface. Follow the
instructions for Assembling the Application Code as described in the previous sec-
tion.

To send messages to the application, configure the terminal program as follows:

¥ Direct connection to the com port where the application is connected

¥ 4800 baud, no parity, 8 data bits, 1 stop bit, and 1start bit

¥ No flow control

¥ Echo locally typed characters to the computer screen.

Test Results

When power is applied to the application, the application immediately responds
with the >Ready message. To read the display, it may be necessary to adjust the
LCD contrast by changing the setting of potentiometer R3. Also, press switch
SW1 to demonstrate the module backlight.

Using the terminal program, demonstrate the display of messages entered from
the keyboard. Note that the standard ASCII character set (7-bit) is supported.
Messages containing ASCII characters greater than 07Fh result in the display of
Asian or symbol characters. A message may contain from 0 to 16 characters and
is terminated by the Enter key. If more than 16 characters are entered as a mes-
sage, they display in sets of 16 characters until the Enter terminates the message.

Note: If the HyperTerminal program is used as the terminal software, be aware that
some versions contain a bug. If any character is pressed repeatedly, the third
occurrence and then every other occurrence of the character is corrupted. The
AN003201-Z8X0500

Application Note
Interfacing LCD Modules to the Z8 MCU

28
corruption is manifested as having the most significant bit of the character set to 1
(for example, 031h is corrupted into 0B1h). This value includes the Enter key.

References
1. Z8 Microcontroller UserÕs Manual, UM97Z8X0104, ZiLOG, Inc., 1997.

2. The Z8 Application Note HandbookDB97Z8X01, ZiLOG Corporation, 1996.

3. Serial Communications Using the Z8 CCP Software UART, AP96Z8X1300,
ZiLOG, Inc., 1997.

4. Interfacing LCDs to the Z8,AP96Z8X1400, ZiLOG, Inc., 1997.

5. The ZiLOG Macro Cross Assembler User Manual, UM003601, ZiLOG, Inc.,
1997.

6. Liquid Crystal Display, HC16102 Datasheet, Hyundai Electronic Industries
Co, Ltd.

Appendix

Figure 6. LCM Interface Schematic

+5V

+5V

+5V

+5V

D1
1N4148

U2

Z86E08

6
7

11
12
13

1
2
3
4

15
16
17
18

8
9

10

XTAL2
XTAL1/CE

P00/CLR
P01/CLK
P02/PGM

P24/D4
P25/D5
P26/D6
P27/D7

P20/D0
P21/D1
P22/D2
P23/D3

P31/OE
P32/EPM
P33/VPP

U1

HD16102

16
1

2

15

6

7
8
9

10
11
12
13
14

5
4

3

K
Vss

Vdd

A

E

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

R/W
RS

Vo

R2

10 Ohm

P1

CONNECTOR DB9

5
9
4
8
3
7
2
6
1

C1
22 pF

Y1

8 MHz

SW1
BackLight Switch

1
2

R3
10K Ohm

1
3

2

R1

1K Ohm

D2
1N4148

C2
22 pF

C3
.01uF

C4
.01uF

J1

Power Plugs

1
2

Optional

Red
Black

Contrast
Adjustment
AN003201-Z8X0500

	Interfacing LCD Modules to the Z8 MCU
	General Overview
	Discussion
	LCD Module Basics
	Z8 Microcontroller
	Connecting the LCD Module
	Serial Interface
	Firmware
	Operational Results

	Summary
	Technical Support
	Assembling the Application Code
	Source Code

	Test Procedure
	Equipment Used
	General Test Setup and Execution
	Test Results

	References
	Appendix

