

Application Note

A DC MOTOR CONTROLLER
USING A ZILOG MCU
AN006001-Z8X0400 ©2000 ZILOG, INC. 1

A DC Motor Controller Using A ZiLOG MCU

TABLE OF CONTENTS

Abstract ... 3
General Overview ... 3

Discussion ... 4
Theory of Operation ... 4
Software Description .. 6
Remote Control ... 7

Results of Operation ... 7

Summary ... 7
Reaffirmation of Results ... 7

Technical Support .. 8
Source Code(s) .. 8
Flow Chart ... 16

Technical Drawings .. 19
Test Procedure .. 19
General Test Setup and Execution .. 19

References ... 20

Appendix ... 21
Schematics .. 21

Notes ... 22
Information Integrity .. 22
Document Disclaimer ... 22

Acknowledgments

Project Lead Engineer
Jim Gersbacher

Application and Support Engineer
Bob Bongiorno, Mark Thissen

System and Code Development
Jim Gersbacher
AN006001-Z8X0400 ©2000 ZILOG, INC. 2

A DC Motor Controller Using A ZiLOG MCU

ABSTRACT

General Overview

Introduction
Many applications, such as printers, ATM machines, robotics, CD players, disk
drivers, fans, and toys require DC motor control. Additionally, the demand for
smaller packaging and higher reliability creates a demand for more integrated
motor driver solutions. In the past, a DC motor controller was comprised of a
microcontroller (MCU) supported by many discrete components. Presently,
advanced IC technology reduces the drive electronics to just two chips: an MCU and
an integrated motor driver. This Application Note references the ZiLOG
Z86E0408PSC and the National Semiconductor LMD18200 to produce the low-part-
count DC motor driver.

Motor Control Basics
Several DC motor design topologies exist; however, the most widely-used method
is the H-bridge configuration. The H-bridge method employs four Bipolar Junction
Transistors (BJT) or four Metal–Oxide Silicon Field Effect Transistors (MOSFET)
devices configured in an H pattern (Figure 1). To drive the motor in the forward
direction, current flows through Q1 and Q4, while Q2 and Q3 are turned off (path 1
in Figure 1). Drive the motor in the reverse direction, with Q2 and Q3 turned on and
Q1 and Q4 turned off (path 2 in Figure 1). The LMD18200 allows operating
frequencies up to 1KHz, with no external components. For faster operating
frequencies (up to 500KHz), use an external 10-nF capacitor across the bootstrap
pins. The average current of the H-bridge controls motor speed. The Z8 creates a
Pulse-Width Modulated (PWM) signal, which is used to control the MOSFETs.
Varying the duty cycle of the output, by changing the register value of the counter in
the Z8, changes the average DC voltage, which is used to drive the power MOSFETs.
The necessary steering logic is incorporated inside the LMD18200. The PWM does
not require an external low-pass filter, unlike conventional designs which require an
external low-pass filter circuit to produce a constant DC voltage.

Because the voltage drop across the collector and emitter can reach more than 1V
during saturation, high heat dissipation is encountered using BJT devices.
MOSFETs, which are intrinsically characterized by low drain-to-source turn-on
resistance, orRDS, are better suited for motor driven applications. Typically, power
MOSFETs require a gate voltage of least 8V to turn on, which is a problem when
using an MCU whose outputs swing from 0V–5V. Special logic MOSFETs are
developed that exhibit gate turn-on voltages of 5V. The 5V gate turn-on works well
for the lower legs of the H-bridge motor drive, but what about the upper legs? The
upper legs of the bridge circuit require a higher gate voltage, due to the fact that the
motor’s winding resistance raises the MOSFETs source reference above the ground
potential. A separate DC-to-DC converter chip can be used to overcome the higher
voltage turn-on; however, the extra converter adds more cost and complexity to the
design. The LMD18200 solves the higher voltage turn-on problem with its built-in
DC-to-DC converter.
AN006001-Z8X0400 ©2000 ZILOG, INC. 3

A DC Motor Controller Using A ZiLOG MCU

DISCUSSION

Theory of Operation

Hardware Description
The heart of the motor controller is the ZiLOG Z86E0408PSC, an 18-pin, one-time
programmable (OTP) MCU. The Z86E04 features 1KB of ROM, 128 Bytes of RAM, 14
I/O lines, two timers/counters, and two on-board comparators. A block diagram of
the chip is illustrated in Figure 2. An 8-MHz crystal clocks the Z8 MCU, but designs
using an RC, LC or ceramic resonator are possible, depending upon the requirement
for precision timing. The National Semiconductor LMD 18200 controls the motor.
The LMD 18200 is a 3A H-bridge driver IC with direction and braking logic; in
addition, the device features current and temperature-sensing output drivers. The
block diagram for the LMD 18200 is illustrated in Figure 3.

Figure 1. H-Pattern Motor Driver Configuration

V

Q1
MOSFET

Q3
MOSFET

Q2
MOSFET

Q4
MOSFET

DC Motor
AN006001-Z8X0400 ©2000 ZILOG, INC. 4

A DC Motor Controller Using A ZiLOG MCU

Figure 2. Z86E04 Block Diagram

Figure 3. LMD18200 Functional Diagram

Input V GND

Input/Output Input/Output

Port 0Port 2

Interrupt
Control

2 Analog
Comparators

2 Timers
ALU

Register
Pointer

Registers
128 x 8

Flags ROM 1K x 8

Program
Counter

Port 3
Machine Timing
& Inst. Control

WDT, POR

CC

Thermal Flag
Output

Output 1 Output 2Bootstrap 1 Bootstrap 2

Ground

Current
Sense

V

9 6 10 11

8

7

3Direction
4Brake
5PWM

2

SS

Input
Logic

Under-
Voltage
Lockout

Current
Sense

Thermal
Sensing
AN006001-Z8X0400 ©2000 ZILOG, INC. 5

A DC Motor Controller Using A ZiLOG MCU

Output pins P00, P01, and P02 of the MCU provide the direction, brake and PWM
signals to the LMD18200 (refer to the Z86E04 schematic diagram in the Appendix). A
resistor from Pin 8 of the LMD18200 to ground provides the current-sensing circuit
utilized by the Z8’s comparator. The current output from the current-sensing pin is
typically 377mA/A. If the motor is rated at 1A, a resistor value is chosen so that the
voltage developed across the resistor does not exceed 3.3V, the reference pin for the
comparators, P33, is biased at 3.3 V through a voltage divider. The resister value
works out to be 3.3V/377mA = 8.8KΩ. For the circuit in this Application Note, the
motor is rated at 12 V @ 1.6A. The resistor value works out to be:

3.3V/(377mA x 1.6A) = 5.5K Ω

Any significant load on the motor increases the motor current, thereby increasing
the voltage across the current-sensing resistor. If the voltage across the sensing
resistor exceeds 3.3V, a comparator interrupt is generated, and the BRAKE line to
the LMD18200 is activated, stopping the motor. When the load condition of the
motor is removed, pressing the START/STOP push-button reactivates the motor. The
temperature flag, Pin 9 of the LMD18200, is connected to P31 of the Z8, the other
comparator. The temperature pin is an open-collector output, so the circuit includes
a 10-KΩ pull-up resistor. When the junction temperature of the LMD18200 exceeds
145ºC, the temperature pin goes Low, causing the Z8 to interrupt to the temperature
interrupt handler routine.

There are three push-button switches and one single-pole, double-throw (SPDT)
switch. The push-button switches are the START/STOP, DECREASE and INCREASE
push-buttons. By holding down either of the INCREASE or DECREASE push-buttons,
one can increase or decrease the motor speed to a rate in the limit range of 28% to
90%. The SPDT switch determines the FORWARD or REVERSE direction. The
switches are connected to P20–P23. LEDs are associated with each of the switches.
The STOP LED is red and is connected to P26. The FORWARD LED is yellow and is
connected to P25. The REVERSE LED is green and is connected to P24. The
debounce time for the switches is managed in the interrupt service routine (ISR).
The switches must be held down for at least two passes into the ISR.

Software Description
The software for the motor controller is a state machine. There are three states
produced by the motor controller code. The three states are STOPPED, STARTUP
and RUNNING. The initial PWM is set for a 50% duty cycle. The initial state is the
STOPPED state, as indicated by the red LED. The motor may be started by
momentarily pressing the STOP/START push-button. The motor spins until it
reaches the speed set by the PWM value in a clockwise or counter-clockwise
direction, as set by the direction bit. Timer T1 controls the High time of the PWM.
Timer T1 is configured to stop when reaching the zero count. When the terminal
count is reached, an interrupt occurs, and in the ISR, it sets port pin P02 Low.
Pressing the INCREASE push-button increases the duty cycle of the PWM;
conversely, pressing the DECREASE push-button decreases the duty cycle of the
PWM. The maximum limits for this application are 90% and 28%, respectively, due
to no change in the DC motor speed on the high end, and stopping on the low end.
AN006001-Z8X0400 ©2000 ZILOG, INC. 6

A DC Motor Controller Using A ZiLOG MCU

Pressing the STOP/START button toggles the BRAKE output to the LMD18200, and
either brakes or enables the motor, depending on the current state.

In the STOPPED state, the Z8 sets the BRAKE bit to put the motor in the STOP
condition; in addition, the STOP LED illuminates. The BRAKE condition effectively
shorts the motor via the associated direction drivers.

Caution: Changing the direction of a DC motor while it is running can cause a very large
surge of current. Therefore, the STOPPED state is the only time at which the motor
is allowed to change direction.

The STARTUP state allows the motor to begin movement and to run for a duration
prior to activating the overcurrent ISR or the PWM low ISR. This time delay allows
the motor to reach its normal operating condition. When the time delay is complete,
the overcurrent, overtemperature and timer T1 ISR are all enabled. The state is
changed to the RUNNING state.

In the RUNNING state, timer T1 is continually restarted, and the PWM signal
operates normally. Timer T0 causes the PWM to go High, and timer T1 causes the
PWM to go Low. By modifying the time value of T1, the High time of the PWM is
modified. Timer T1 time is changed by the increase and decrease push-buttons.

The initialization routine sets up the hardware ports, the timers and the interrupts
necessary for proper motor controller operation. The I/O ports P20–P23 are arranged
as inputs. Port pins P24–P27 are arranged as push-pull outputs. Port pins P00–P02
are configured for outputs. The BRAKE bit is set and the STOP LED is illuminated.
The PWM is set up for a 50% duty cycle. The interrupts are set so that T0 is the only
interrupt available.

Remote Control
Instead of push-button switches to control the functions and speed of the motor, an
I2C or asynchronous communications protocol can be added for remote control.

RESULTS OF OPERATION

Completing the schematic layout as shown in the Appendix and programming the
Z86E04 with the system software allows the system to run with no errors. A 12VDC
bidirectional motor is controlled from a minimal speed to a maximum speed, in
both the forward and reverse directions. All of the LEDs illuminate at the appropriate
time, and the overcurrent routine tests correctly.

SUMMARY

Reaffirmation of Results
By controlling the PWM output, the H-pattern motor controller can control the speed
of a DC motor. By controlling the direction pin, the direction of the motor can be
controlled. Finally, a safety measure is added that stops the motor when an
overcurrent condition occurs. All operations are controlled by the ZiLOG MCU.
AN006001-Z8X0400 ©2000 ZILOG, INC. 7

A DC Motor Controller Using A ZiLOG MCU

TECHNICAL SUPPORT

Source Code(s)

**
**
** Application: Motor Controller
** Date: August 07, 1999
** Created by: J. D. Gersbacher for Motor Controller Application Note
** Description:The motor controller code is developed to control a
** LMD18200 National Semiconductor part, which in turn controls the operation
** of a DC motor. Through three control lines and two feedback lines the
** MCU and motor controller can increase, decrease and stop a motor. The
** stopping of the motor can occur through normal operation or through two
** real time interrupts. The two real-time interrupts become active
** if an overcurrent condition or on an overtemperature condition exist.
** The two interrupt service routines handle the error condition exactly the
** same. Both immediately stop the motor and change the condition of the software
** to the STOPPED state.
** The overall flow of the software is based on an interrupt from timer 0.
** The main loop does not execute in this example code; the software merely waits
** for the time-out of Timer 0. Timer 0 interval between interrupts is
** 500 microseconds. Timer 0's ISR is a three condition state machine. The
** three states associated with the ISR are: STOPPED, STARTUP and RUNNING.
** In the STOPPED state, the system checks for a change in direction, then
** store the direction. Storing of the direction occurs whether the
** direction changes. When the direction is determined, the STOPPED STATE
** checks for push-button activity. If any of the push-buttons are active, the
** appropriate routine is run. When the push-button routine is completed, the ISR
** exits using the IRET command. There are three push-buttons increase, decrease
** and start/stop. The start/stop bush button is a toggle button. When the motor
** is in the STOPPED condition, as it is at reset, the pressing of the start/stop
** button initiates the debounce time. When the debounce routine is complete,
** and the start/stop button is still active, the motor starts, the brake pin is
** released, and the pulse width modulation pin (PWM) is set High. The ISR condition is
** changed to the STARTUP state. During the STARTUP state there is a time delay, used
** to get the motor started. The system exits again, using the IRET. When the
** time delay expires, Timer 1 interrupt is enabled, and Timer 1 is started, and the
** ISR condition is changed to the RUNNING state.
** In the RUNNING state, the motor is running at 50% of its maximum speed, provided the
** increase or decrease button had not been pushed. The increase and decrease buttons
** change the speed of the motor. By holding one of the push-buttons down, the
** motor speeds up or slows down, depending on which button is pushed. In the
** sample_ISR routine, the change of speed is accomplished by modifying the Timer 1's
** count value. Timer 1 interrupts when the count value reaches zero. In Timer 1's
** ISR, the PWM signal is brought Low. Timer 1's count value decreases until the
** minimum value, defined in motorhead.h, is reached. Timer 1's count value
** increases until the maximum value, defined in motorhead.h, is reached.
** The third switch is the direction switch. Associated with the direction switch, are
** three LED's. Stop LED, clockwise direction LED and counter-clockwise direction LED.
** When the motor is in the STOPPED state, the Red LED is lit. As described above, the
** STOPPED state is the only time the direction switch is active. When the motor is in
AN006001-Z8X0400 ©2000 ZILOG, INC. 8

A DC Motor Controller Using A ZiLOG MCU

** any other state other than the STOPPED state, the Red LED is turned off and the
** appropriate When Timer 1 exits out of initialization, the time is set for 250
** microseconds.direction LED is lit.
**
** The linker settings must be set accordingly:
** To setup the linker options correctly in ZDS version 2.12:
** PROJECT → SETTINGS → LINKER
** RANGES → NEW
** then add (it takes 3 entries to enter all information below)
** regfile 0010h to 001fh
** regfile_Motor 0020h to 002fh
** regfile_sample_ISR 0030h to 003fh

subtitle “Motor Controller”
.include “motorhead.inc”

globals

;*************** Interrupt Vectors ************************************
vector irq0=overtemperature_ISR
vector irq1=IRQ1
vector irq2=overcurrent_ISR
vector irq3=IRQ3
vector irq4=sample_ISR
vector irq5=pwmlow_ISR

;************** Global Variables *************************************
segment regfile set in linker to start at %10
public State_Reg, PWM_Reg, Key_temp_reg

State_Regds %1

define regfile_Motor, space=RFILE
segment regfile_Motor ; set in linker to start at %20

PWM_Reg ds %1
Key_temp_regds %1

subtitle “Global Functions”
.page
;************** Global Functions ************************************

extern overtemperature_ISR,overcurrent_ISR,sample_ISR,pwmlow_ISR
extern delay_reg
segment code
subtitle “Main Control”
.page
;************** Main Control ************************************
AN006001-Z8X0400 ©2000 ZILOG, INC. 9

A DC Motor Controller Using A ZiLOG MCU

IRQ1:
IRQ3:
main:

subtitle “Initialization”
Newpage
.page
;************* Initialization ************************************
srp #Working_Regs
ld P0, #motor_stop ;A High on the Brake pin and PWM stops the mtr
ld P01M, #%04 ;P00-P02 outputs controlling

;Direction,Brake,PWM respectively
ld P3M, #%03 ;push-pull outputs port 0&2,analog inputs port 3
ld P2, #(%ff^stopped_LED) ;Stop the motor and show it.
ld P2M, #%0f ;Four input switches, 3 output LED's, 1 unused

 ;P20 Direction, P21–P23 Increase, Decrease,
;Stop respectively

ld SPl,#%80 ;Maximize the stack

ld PRE0,#%09 ;Restart at end of count, Must set up the
;period for 2000hz

ld T0,#tmr0_value ;i=pxtxv where t is 8MHz/2/4 = 1MHz= 1µs
;where p is the prescaler with a value of 2
;where v is the interval count value of 250
;clock is 8HMz/2/4 = 1MHz → 1µs
;Must do the period or 500µs →
;500µs=250xpx1µs

ld IMR,#T0E ;setup for timer 0 to start the sampling.
;Now setup the High time, 50% default value

ld PWM_Reg,#PWM_Half_value ;Time should be 250µs → 250xpx1µs
ld PRE1,#%0A ;PWM pulse width of 50% and single pass
ld T1,PWM_Reg

ld IPR,#18 ;Priority: overcurrent err>overtemperature
;err>T0 end

ld TMR,#%03 ;load and go for T0. When motor must run,
;T0 starts T1

ld Key_temp_reg,#%FF ;no keys are stored
ld State_Reg,#stopped_state
ld delay_reg,#%3 ;allow motor current and speed to reach steady

;state

subtitle “Main routine”
.page
;************* Main ***
ei

main_loop: ;Wait for interrupts.

jr main_loop

;***

**
** Application:Motor Controller
AN006001-Z8X0400 ©2000 ZILOG, INC. 10

A DC Motor Controller Using A ZiLOG MCU

** Date: August 07, 1999
** Created by: J. D. Gersbacher for Motor Controller Application Note
** Description:Sample ISR is the “main” portion of the software. It
** handles three items, direction test, state operation and
** push-button check. The motor operation is based on a state machine.
** There are three states in the state machine: STOPPED,
** STARTUP and RUNNING. In the STOPPED state the motor is off, brake is set
** and the STOPPED LED is lit. All other LEDs are off. The
** STOPPED state is the only state the direction switch is active.
** The start/stop push-button transitions to the STARTUP state.
** In the STARTUP state, after the debounce count, a delay is inserted, and
** the STOPPED LED is de-energized and the appropriate direction light is lit.
** The delay is to allow the motor time to build up speed and dissipate
** its start up current. When STEADY state is reached, T1 is activated
** and the state changes to RUNNING. In the RUNNING state T1 is restarted
** every time through the ISR.
** In all states, the push-buttons are checked for activity. The increase and
** decrease buttons affect the PWM timer register. The next time the
** timer is loaded is when the new count takes effect.
**

subtitle “Sample Interrupt Service Routine Values”
.page
.include “motorhead.inc”
.include “sampleISR.inc”

public bounce_reg,count_reg,key_cnt_reg,make_reg,delay_reg,temp_1_reg,temp2_reg
extern State_Reg, PWM_Reg, Key_temp_reg
segment regfile_sample_ISR;set in the Linker to start at %30.

bounce_reg ds %1
count_reg ds %1
key_cnt_reg ds %1
make_reg ds %1
delay_reg ds %1
temp_1_reg ds %1
temp2_reg ds %1

subtitle “Global Functions”
.page
;************** Global Functions ************************************
segment code

public sample_ISR
subtitle “Motor Control”
.page

sample_ISR:
push RP
ld RP,#Working_ISRRs ;working registers 30–3f
cp State_Reg,#stopped_state
jr ne,test_startup_state_label

; Know the motor is stopped; therefore, check for a change in direction.
tm P2,#dir_switch
AN006001-Z8X0400 ©2000 ZILOG, INC. 11

A DC Motor Controller Using A ZiLOG MCU

jr z,ccw_direction_label
or P0,#forward_direction
ld temp2_reg, #(%ff^forward_LED) ;Store the forward LED for use later.

;The register, temp2_reg, does not
;change, even if there is another
;routine, if the other routine
;uses a different set of working
;registers. The changing of the working
;registers is necessary for proper
;operation of this routine.

jr continue_label
ccw_direction_label:

and P0, #reverse_direction
ld temp2_reg,#(%ff^reverse_LED)
jr continue_label

test_startup_state_label:
cp State_Reg,#startup_state
jr ne,continue_label
ld temp_1_reg,P0 ;Start the motor.
or temp_1_reg,#%04
ld P0,temp_1_reg
dec delay_reg ;Leave the system running until current

reaches
jr nz,continue_label ;normal operating level.
ld IMR,#(T0E+OTE+OCE+T1E) ;Start the PWM and allow overcurrent

ISR.
ld State_Reg,#running_state

continue_label:
cp State_Reg,#running_state
jr ne,keyscan_label
ld temp_1_reg,P0 ;keep the systems PWM running
or temp_1_reg,#%04 ;with PWM High and T1 timer starting.
ld P0,temp_1_reg
nop
nop
ld TMR,#%0E ;Enable T0, T1, load T1 for counting.

;T0 is always counting, so keep the
;same time for T0.

;***
 subtitle “Key Scan Operation”
 .page
keyscan_label:

clr key_cnt_reg
ld temp_1_reg,P2
and temp_1_reg,#switches
cp temp_1_reg,#%0E ;check for any activity on push-buttons.
jp eq,make_exit_label
or temp_1_reg,#%F1 ;find out which one.
rr temp_1_reg
ld count_reg,#%03

keyloop_label:
inc key_cnt_reg
rrc temp_1_reg
jp c,NotThisKey_label
AN006001-Z8X0400 ©2000 ZILOG, INC. 12

A DC Motor Controller Using A ZiLOG MCU

cp Key_temp_reg,key_cnt_reg ;first time delay for debounce
jr ne,store_key_label
inc bounce_reg
cp bounce_reg,#bounce_count
jr ult,store_key_label

;****** Increase check
cp key_cnt_reg,#increase
jr ne,try_decrease_label
inc PWM_Reg
cp PWM_Reg,#maximum
jr ult,do_load_label
ld PWM_Reg,#maximum

do_load_label:
ld T1,PWM_Reg
jr make_exit_label

try_decrease_label:
cp key_cnt_reg,#decrease
jr ne,try_brake_label
dec PWM_Reg
cp PWM_Reg,#minimum
jr ugt,do_load_label
ld PWM_Reg,#minimum
jr do_load_label

store_key_label:
ld Key_temp_reg,key_cnt_reg
clr key_cnt_reg
jr exit_label

NotThisKey_label:
djnz r1,keyloop_label

try_brake_label:
cp key_cnt_reg,#start_stop
jr ne,make_exit_label
cp make_reg,#%ff
jr eq,normal_exit_label
xor P0,#brake_bit
ld make_reg,#%ff
tcm P0,#brake_bit
jr z,test_dir_label
ld P2,temp2_reg
ld State_Reg,#startup_state
jr normal_exit_label

test_dir_label:
ld State_Reg,#stopped_state
ld IMR,#T0E
ld delay_reg,#%3
ld P2,#(%ff^stopped_LED)
jr normal_exit_label

make_exit_label:
clr make_reg

normal_exit_label
clr bounce_reg
ld Key_temp_reg,#%FF
clr count_reg

exit_label:
AN006001-Z8X0400 ©2000 ZILOG, INC. 13

A DC Motor Controller Using A ZiLOG MCU

pop RP
iret

 .end

**
**
** Application:Motor Controller
** Date: August 07, 1999
** Created by: J. D. Gersbacher for Motor Controller Application Note
** Description:When the motor is running, The sample ISR causes the
** PWM cycle to go High. T1 ISR causes the PWM signal to go Low.
**
** _________ ______
** PWM: | |XXX|_____________|
** sample T1
** ISR

subtitle “T1 Interrupt Service Routine Values”
.page

;************** Low PWM routine **********************************
subtitle “Global Functions”
.page
;************** Global Functions ************************************

public pwmlow_ISR
segment code

;************** ISR Routine *************************************
pwmlow_ISR:

and P0,#%FB ;1111_1011 which clears the PWM bit
iret

**
**
** Application:Motor Controller
** Date: August 07, 1999
** Created by: J. D. Gersbacher for Motor Controller Application Note
** Description:When an error condition exist, either the overcurrent or
** the overtemperature, the motor must stop. Stopping
** the motor allows the error condition to correct itself,
** and the system continues normally, from a stop state.
** The most recent Timer 1 value is the starting value for the PWM.
**

subtitle “ERROR Interrupt Service Routine Values”
.page
.include “motorhead.inc”

;************** Over current routine **********************************
extern State_Reg

subtitle “Global Functions”
AN006001-Z8X0400 ©2000 ZILOG, INC. 14

A DC Motor Controller Using A ZiLOG MCU

.page
;************** Global Functions ************************************

public overtemperature_ISR,overcurrent_ISR
segment code

;************** ISR Routines *************************************
overtemperature_ISR:
overcurrent_ISR:

ld P0, #motor_stop ;A High on the Brake pin and PWM stops the mtr
ld State_Reg, stopped_state
ld P2, #(%ff^stopped_LED) ;Stop the motor and show it.
ld IMR,#tmr0_irq

iret

;**
;**
;**FILE: sampleISR.inc
;**DATE: August 7, 1999
;**Author: J. D. Gersbacher
;**Description:
;**

define regfile_sample_ISR, space=RFILE

;**
;**
;**FILE: Motorhead.inc
;**DATE: August 7, 1999
;**Author: J. D. Gersbacher
;**Description:Motorhead.inc contains the variables used in the Motor Controller
;** Application Note.

title “Z8 Motor Controller Application Note”

define regfile, space=RFILE

Working_Regs.equ%20
Working_ISRRs.equ%30 ;working Interrupt Status Routine Registers
bounce_count.equ%ff

increase.equ %01
decrease.equ %02
start_stop.equ %03
dir_switch.equ %01
switches.equ %0E

minimum .equ %13
maximum .equ %D5
brake_bit .equ %02
forward_direction .equ %01
reverse_direction .equ %FE
AN006001-Z8X0400 ©2000 ZILOG, INC. 15

A DC Motor Controller Using A ZiLOG MCU
stopped_LED .equ %40
reverse_LED .equ %20
forward_LED .equ %10
stopped_state .equ %00
startup_state .equ %01
running_state .equ %02
motor_stop .equ %07

PWM_Half_value .equ %80
tmr0_value .equ 250
tmr0_irq .equ %04
OCE .equ %04 ;OverCurrent Enable
OTE .equ %08 ;OverTemperature Enable, falling edge
T0E .equ %10 ;Timer 0 Enable
T1E .equ %20 ;Timer 1 Enable

Flow Chart

Figure 4. Main Routine

Initialization
1. Set PWM for 50%
2. Set Brake bit
3. Turn on STOP LED
4. Load and enables timers
5. Setup and enable interrupts

Main
1. Loop
2. Wait for interrupts
AN006001-Z8X0400 ©2000 ZILOG, INC. 16

A DC Motor Controller Using A ZiLOG MCU
Figure 5. T0 Interrupt: Other Button Routine

Other Buttons

Yes

No

No

Yes

No

Yes

Yes

No

Exit

Decrease Button?

Brake Button?

1. Toggle Brake Bit
2. Toggle Stop LED

1. Decrement PWM
2. Load T1 with PWM
 count

Debounce
Count

reached?

Save Button
Status

PWM at Min?
AN006001-Z8X0400 ©2000 ZILOG, INC. 17

A DC Motor Controller Using A ZiLOG MCU
Figure 6. T0 Interrupt

Yes

No

Other buttons

Exit

Save button
statusIncrease button?

No

No

Debounce count
reached?

PWM at max?

Any buttons
pressed?

T0 Interrupt

1. Set P02 High
2. Reload and
 enable controls

1. Increment PWM
 count
2. Load T1

No

Yes No

Yes
AN006001-Z8X0400 ©2000 ZILOG, INC. 18

A DC Motor Controller Using A ZiLOG MCU
TECHNICAL DRAWINGS

Test Procedure

Equipment Used

• Z86CCP01ZEM—ZiLOG emulator or equivalent

• ZDS version 2.12 or later—ZiLOG assembler, linker, debug environment

• Tektronix 2230 digital storage oscilloscope

• PC running Windows 95

General Test Setup and Execution
1. Follow the ZiLOG Developer Studio (ZDS) setup procedures for installation

onto the PC. Follow the Z86CCP01ZEM connection directions for proper
operation.

2. When ZDS is running and the emulators are operating, assemble and link the
code for debug operation. Use the default settings for assembly and linking. In
addition to the default settings, use the toolbar icon for Project → Settings →
Linker. Select the Ranges category.

Enter:
a. regfile address 0010h–001Fh

b. regfile_Motor address 0020h–002Fh

c. regfile_sample_ISR address 0030h–003Fh

3. Use an oscilloscope to ensure the proper operation of the PWM, stop bits and
the LED output pins.

Figure 7. Error Routine

Interrupt Return

Over Temperature
Over Current

Interrupt Routine

Set Brake Bit
AN006001-Z8X0400 ©2000 ZILOG, INC. 19

A DC Motor Controller Using A ZiLOG MCU
4. When the signals are verified, connect the emulator to the system board. Run
the software and verify that the LEDs illuminate, the push-buttons control the
motor, and the motor rotates in the forward and reverse directions.

5. Place a brake point in the overtemperature_ISR. On the unit under test (UUT),
momentarily place a ground level at the temperature input, P31, Pin 8. The
grounded pin should cause the emulator to stop at the break point. The
grounded pin represents LMD18200 operation during an overtemperature
condition. Remove the short, remove the break point, and reset the software.

6. To test the overcurrent condition, place a break point in the overcurrent_ISR
routine. Start the emulator running and start the motor. Increase the motor to
its maximum speed. Stop the motor. When the motor winds to a stop, grasp
the end of the motor shaft, and start the motor. The emulator should stop in
the overcurrent_ISR. Remove the load from the shaft, remove the breakpoint,
and reset the software.

7. Upon completion of the above checks, program a Z86E0408PSC, using the
Z86CCP01ZEM. To program the Z86E04 from the CCP emulator, remove the UUT
from the CCP emulator, and download the code into the CCP emulator. Place the
Z86E04 in the 18-pin ZIF socket. From the toolbar on the top of the ZDS
environment, select the OTP icon. Select the programming option icon, and
begin programming. When the part is programmed, put the new part into the
UUT, and repeat test steps 4–7. After the part is programmed, the steps that
require setting breakpoints no longer apply. Instead of looking for the breakpoint
to be reached, the motor stops operating, and the STOP LED illuminates.

Test Results
The motor controller controls a 12VDC motor. When power is applied, and the power
switch moved to the ON position, the motor controller places the motor into a
STOPPED condition and illuminates the RED LED. When the START/STOP button is
pushed, the motor applies a 50% duty cycle to the motor. As the INCREASE button is
pushed, the motor speeds up until a maximum speed is attained. The duty cycle is
570ms of 630ms. As the DECREASE button is pushed, the motor slows until a
minimum speed is reached. The duty cycle is 180ms of 630ms. For an
overtemperature condition, a short to ground on the P32 port pin causes the motor
to stop running, and the STOP LED to illuminate. For the OVERCURRENT condition,
placing a very large load on the shaft causes the motor to stop running and the
STOP LED to illuminate.

REFERENCES

1. Chuck McManis, A PIC-Based Motor Speed Controller, Circuit Cellar Ink, July 1995.

2. Jeff Bachiacchi, Creating the Smart-MD, Circuit Cellar Ink, September-October, 1995.

3. National Semiconductor, LMD18200 data sheet.

4. ZiLOG, ZiLOG Discrete Z8® Microcontroller Product Specifications Databooks,
DB97Z8X0200.

5. ZiLOG, ZiLOG Z8® Microcontroller User’s Manual, AP96DZ80500.
AN006001-Z8X0400 ©2000 ZILOG, INC. 20

A DC Motor Controller Using A ZiLOG MCU
APPENDIX

Schematics

Figure 8. Z86E04 Schematic Diagram
AN006001-Z8X0400 ©2000 ZILOG, INC. 21

A DC Motor Controller Using A ZiLOG MCU
NOTES

Information Integrity
The information contained within this document has been verified according to the
general principles of electrical and mechanical engineering. Any applicable source
code illustrated in the document was either written by an authorized ZiLOG
employee or licensed consultant. Permission to use these codes in any form besides
the intended application, must be approved through a license agreement between
both parties. ZiLOG will not be responsible for any code(s) used beyond the
intended application. Contact your local ZiLOG Sales Office to obtain necessary
license agreements.

Document Disclaimer
©2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning
the devices, applications, or technology described is intended to suggest possible
uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR
PROVIDES A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES,
OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT
ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN
ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. Except with the express written approval of ZiLOG, use of
information, devices, or technology as critical components of life support systems is
not authorized. No licenses are conveyed, implicitly or otherwise, by this document
under any intellectual property rights.
AN006001-Z8X0400 ©2000 ZILOG, INC. 22

	A DC Motor Controller Using a ZiLOG MCU
	Table of Contents
	Acknowledgments

	Abstract
	General Overview

	Discussion
	Theory of Operation
	Software Description
	Remote Control

	Results of Operation
	Summary
	Reaffirmation of Results

	Technical Support
	Source Code(s)
	Flow Chart

	Technical Drawings
	Test Procedure
	General Test Setup and Execution

	References
	Appendix
	Schematics

	Notes
	Information Integrity
	Document Disclaimer

