

Z86C91

CMOS Z8® ROMLESS MICROCONTROLLER

GENERAL DESCRIPTION

The Z86C91 microcontroller (MCU) introduces a new level of sophistication to single-chip architecture. The Z86C91 is a ROMless Z8 single-chip microcontroller family with 236 bytes of RAM.

The MCU is packaged in a 40-pin DIP, 44-pin PLCC, or a 44-pin LQFP, and is manufactured in CMOS technology. The Z86C91 is a ROMless part and offers the use of external memory which enables this Z8 microcontroller to be used where code flexibility is required.

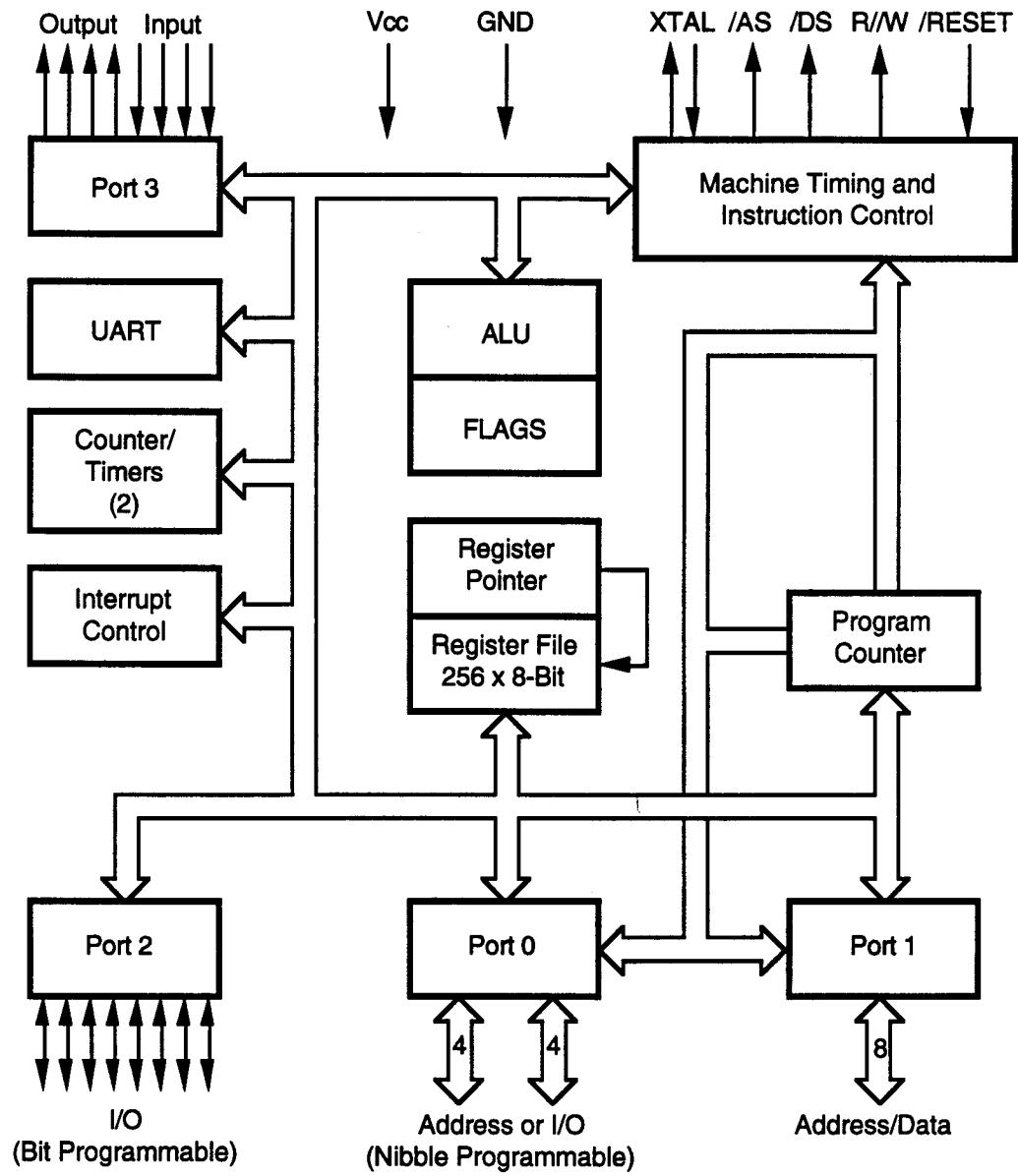
Zilog's CMOS microcontroller offers fast execution, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, and easy hardware/software system expansion along with low cost and low power consumption.

The Z86C91 architecture is characterized by Zilog's 8-bit microcontroller core. The device offers a flexible I/O scheme, an efficient register and address space structure, multiplexed capabilities between address/data, I/O, and a number of ancillary features that are useful in many industrial and advanced scientific applications.

For applications which demand powerful I/O capabilities, the Z86C91 offers 24 pins dedicated to input and output. These lines are grouped into four ports. Each port consists of eight lines, and is configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

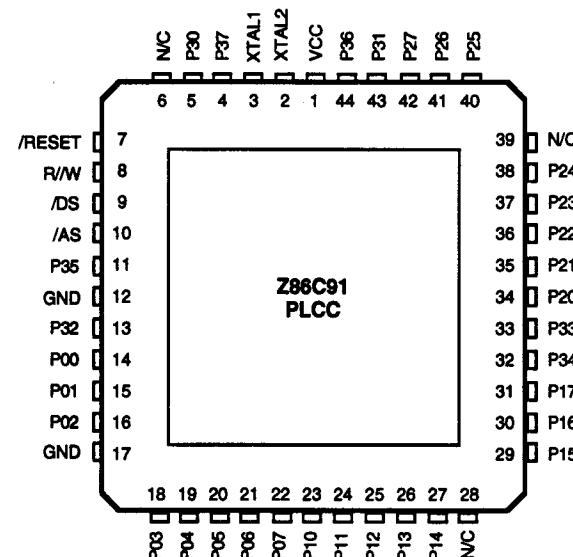
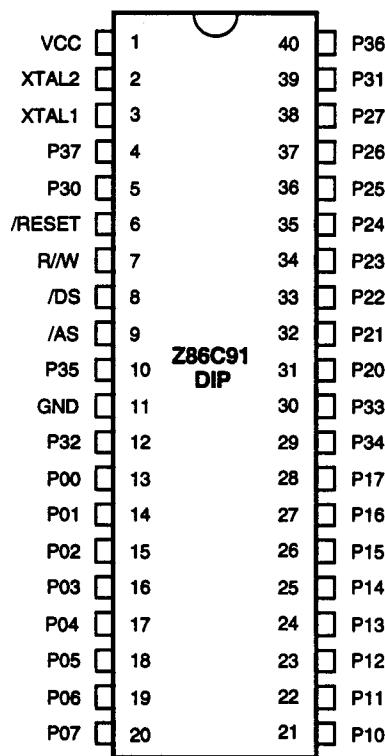
There are three basic address spaces available to support this wide range of configuration: Program Memory, Data Memory, and 236 general-purpose registers.

To unburden the program from coping with the real-time problems such as counting/timing and serial data communication, the Z86C91 offers two on-chip counter/timers with a large number of user selectable modes, and a universal asynchronous receiver/transmitter (Functional Block).

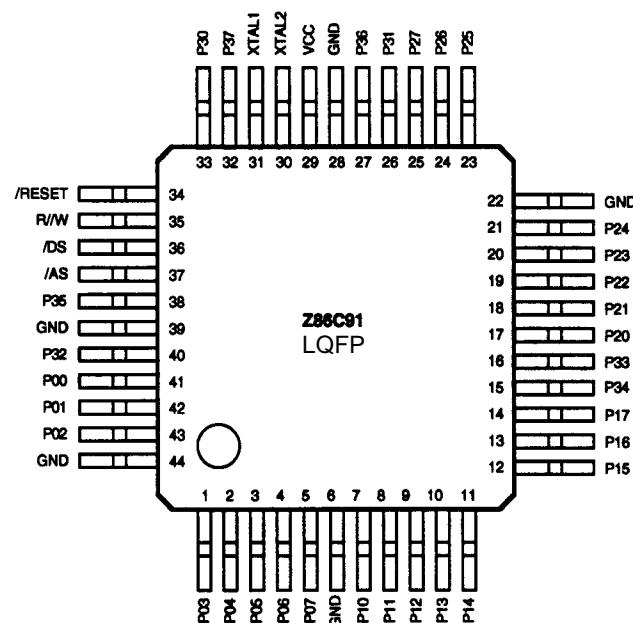

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g., B/W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:



Connection	Circuit	Device
Power Ground	V_{cc} GND	V_{dd} V_{ss}

BLOCK DIAGRAM


Functional Block Diagram

PIN DESCRIPTION

44-Pin PLCC Pin Assignments

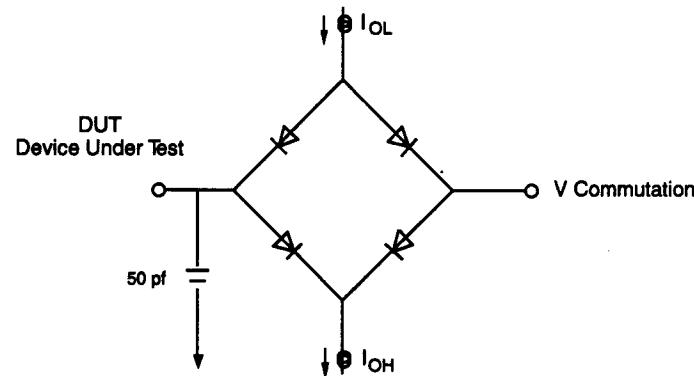
40-Pin DIP Pin Assignments

44-Pin LQFP pin Assignments

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
V_{CC}	Supply Voltage*	-0.3	+7.0	V
T_{STG}	Storage Temp	-65	+150	°C
T_A	Oper Ambient Temp		†	°C

Notes:


* Voltages on all pins with respect to GND.

† See Ordering Information

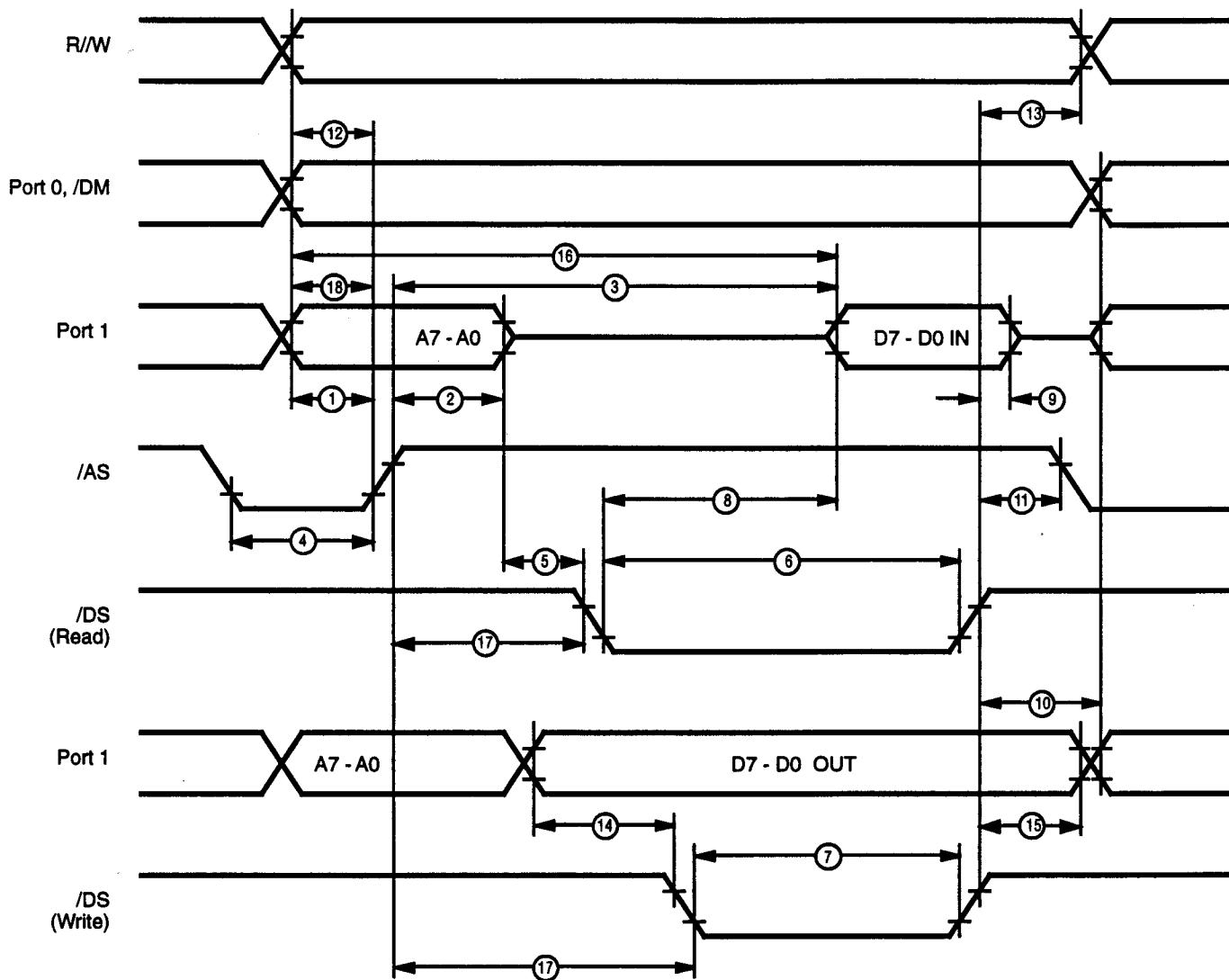
Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (Figure 18).

Test Load Diagram

DC CHARACTERISTICS


Sym	Parameter	TA = 0°C to +70°C		TA = -40°C to +105°C		Typical at 25°C	Units	Conditions
		Min	Max	Min	Max			
	Max Input Voltage		7		7		V	$I_{IN} < 250 \mu A$
V _{CH}	Clock Input High Voltage	3.8	V _{CC}	3.8	V _{CC}		V	Driven by External Clock Generator
V _{CL}	Clock Input Low Voltage	-0.3	0.8	-0.3	0.8		V	Driven by External Clock Generator
V _{IH}	Input High Voltage	2	V _{CC}	2.0	V _{CC}		V	
V _{IL}	Input Low Voltage	-0.3	0.8	-0.3	0.8		V	
V _{OH}	Output High Voltage	2.4		2.4			V	$I_{OH} = -2.0 \text{ mA}$
V _{OH}	Output High Voltage	V _{CC} -100 mV		V _{CC} -100 mV			V	$I_{OH} = -100 \mu A$
V _{OL}	Output Low Voltage		0.4		0.4		V	$I_{OL} = +2.0 \text{ mA}$
V _{RH}	Reset Input High Voltage	3.8	V _{CC}	3.8	V _{CC}		V	
V _{RL}	Reset Input Low Voltage	-0.3	0.8	-0.3	0.8		V	
I _{IL}	Input Leakage	-2	2	-2	2		μA	$V_{IN} = 0V, V_{CC}$
I _{OL}	Output Leakage	-2	2	-2	2		μA	$V_{IN} = 0V, V_{CC}$
I _{IR}	Reset Input Current	-180		-180			μA	$V_{RL} = 0V$
I _{CC}	Supply Current	30		30	20		mA	@ 12 MHz [1]
		40		40	24		mA	@ 16 MHz [1]
		50		50			mA	@ 20 MHz [1]
I _{CC1}	Standby Current	6.5		6.5	4		mA	HALT mode $V_{IN} = 0V, V_{CC} @ 12 \text{ MHz}$ [1]
		7		7	4.5		mA	HALT mode $V_{IN} = 0V, V_{CC} @ 16 \text{ MHz}$ [1]
		8.5		8.5			mA	HALT mode $V_{IN} = 0V, V_{CC} @ 20 \text{ MHz}$ [1]
I _{CC2}	Standby Current	10		20	1		μA	STOP mode $V_{IN} = 0V, V_{CC}$ [1]
I _{ALL}	Auto Latch Low Current	-16	16	-16	16	5	μA	

Note:

[1] All inputs driven to either 0V or V_{CC}, outputs floating.

AC CHARACTERISTICS

External I/O or Memory Read/Write Timing Diagram

External I/O or Memory Read/Write Timing

AC CHARACTERISTICS

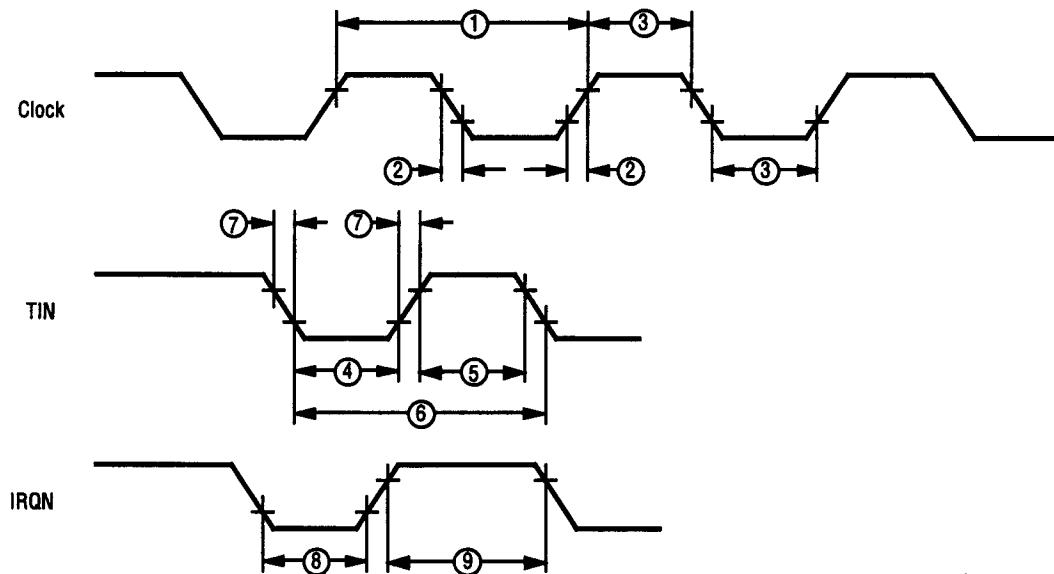
External I/O or Memory Read or Write Timing Table

No	Sym	Parameter	$T_A = 0^\circ\text{C} \text{ to } +70^\circ\text{C}$						$T_A = -40^\circ\text{C} \text{ to } +105^\circ\text{C}$					
			12 MHz		16 MHz		20 MHz		12 MHz		16 MHz		20 MHz	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
1	TdA(AS)	Address Valid to /AS Rise Delay	35	25	20	35	25	20	35	25	20	30	ns	[2,3]
2	TdAS(A)	/AS Rise to Address Float Delay	45	35	25	45	35	25	45	35	25	30	ns	[2,3]
3	TdAS(DR)	/AS Rise to Read Data Req'd Valid		250	180	150	250	180	150	250	180	150	ns	[1,2,3]
4	TwAS	/AS Low Width	55	40	30	55	40	30	55	40	30	30	ns	[2,3]
5	TdAZ(DS)	Address Float to /DS Fall	0	0	0	0	0	0	0	0	0	0	ns	
6	TwDSR	/DS (Read) Low Width	185	135	105	185	135	105	185	135	105	105	ns	[1,2,3]
7	TwDSW	/DS (Write) Low Width	110	80	65	110	80	65	110	80	65	65	ns	[1,2,3]
8	TdDSR(DR)	/DS Fall to Read Data Req'd Valid		130	75	55	130	75	55	130	75	55	ns	[1,2,3]
9	ThDR(DS)	Read Data to /DS Rise Hold Time	0	0	0	0	0	0	0	0	0	0	ns	[2,3]
10	TdDS(A)	/DS Rise to Address Active Delay	65	50	40	65	50	40	65	50	40	40	ns	[2,3]
11	TdDS(AS)	/DS Rise to /AS Fall Delay	45	35	25	45	35	25	45	35	25	25	ns	[2,3]
12	TdR/W(AS)	R/W Valid to /AS Rise Delay	30	25	20	33	25	20	33	25	20	20	ns	[2,3]
13	TdDS(R/W)	/DS Rise to R/W Not Valid	50	35	25	50	35	25	50	35	25	25	ns	[2,3]
14	TdDW(DSW)	Write Data Valid to /DS Fall (Write) Delay	35	25	20	35	25	20	35	25	20	20	ns	[2,3]
15	TdDS(DW)	/DS Rise to Write Data Not Valid Delay	55	35	25	55	35	25	55	35	25	25	ns	[2,3]
16	TdA(DR)	Address Valid to Read Data Req'd Valid		310	230	180	310	230	180	310	230	180	ns	[1,2,3]
17	TdAS(DS)	/AS Rise to /DS Fall Delay	65	45	35	65	45	35	65	45	35	35	ns	[2,3]
18	TdDM(AS)	/DM Valid to /AS Rise Delay	50	30	20	50	30	20	50	30	20	20	ns	[2,3]

Notes:

[1] When using extended memory timing add 2TpC.

[2] Timing numbers given are for minimum TpC.


[3] See clock cycle dependent characteristics table.

Standard Test Load

All timing references use 2.0V for a logic 1 and 0.8V for a logic 0.

AC CHARACTERISTICS

Additional Timing Diagram

Additional Timing

AC CHARACTERISTICS

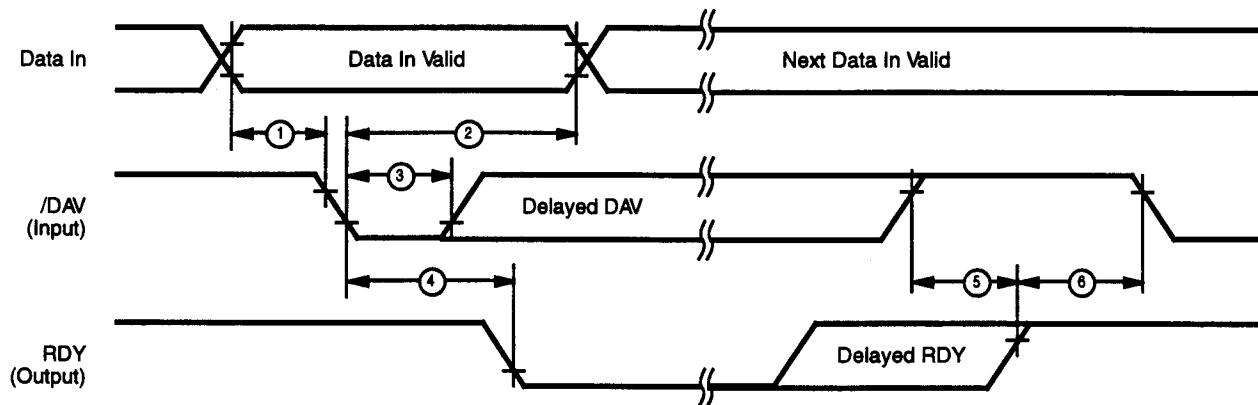
Additional Timing Table

No	Sym	Parameter	$T_A = 0^\circ\text{C} \text{ to } +70^\circ\text{C}$				$T_A = -40^\circ\text{C} \text{ to } +105^\circ\text{C}$				Notes	
			12 MHz	16 MHz	20 MHz	12 MHz	16 MHz	20 MHz	12 MHz	16 MHz		
1	TpC	Input Clock Period	83	1000	62.5	1000	50	1000	83	1000	62.5	1000
2	TrC, TfC	Clock Input Rise & Fall Times		15		10	10		15	10	10	ns [1]
3	TwC	Input Clock Width	35		25		15		35	25	15	ns [1]
4	TwTinL	Timer Input Low Width	75		75		75		75	75	75	ns [2]
5	TwTinH	Timer Input High Width	3TpC		3TpC		3TpC		3TpC	3TpC	3TpC	[2]
6	TpTin	Timer Input Period	8TpC		8TpC		8TpC		8TpC	8TpC	8TpC	[2]
7	TrTin, TfTin	Timer Input Rise & Fall Times	100		100		100		100	100	100	ns [2]
8A	TwIL	Interrupt Request Input Low Times	70		70		70		70	70	70	[2,4]
8B	TwIL	Interrupt Request Input Low Times	5TpC		5TpC		5TpC		5TpC	5TpC	5TpC	[2,5]
9	TwIH	Interrupt Request Input High Times	3TpC		3TpC		3TpC		3TpC	3TpC	3TpC	[2,3]

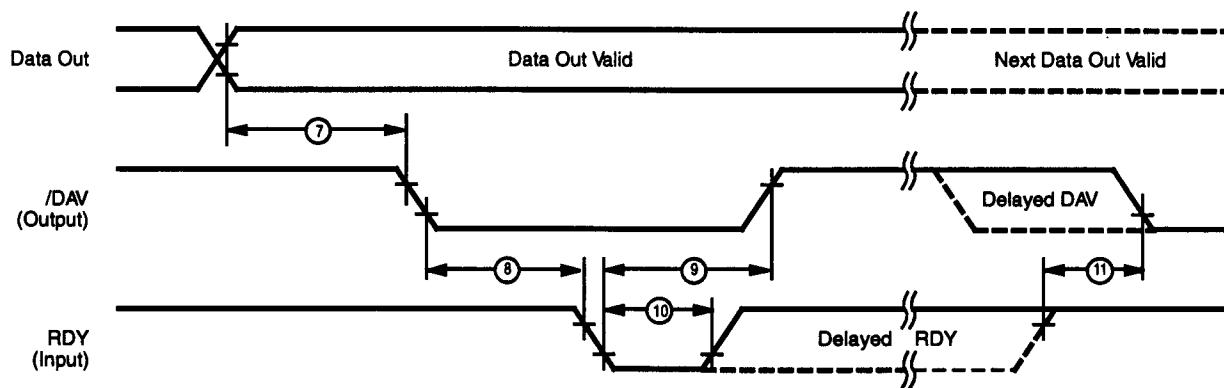
Notes:

[1] Clock timing references use 3.8V for a logic 1 and 0.8V for a logic 0.

[2] Timing references use 2.0V for a logic 1 and 0.8V for a logic 0.


[3] Interrupt references request through Port 3.

[4] Interrupt request through Port 3 (P33-P31).


[5] Interrupt request through Port 30.

AC CHARACTERISTICS

Handshake Timing Diagrams

Input Handshake Timing

Output Handshake Timing

AC CHARACTERISTICS

Handshake Timing Table

No	Sym	Parameter	$T_A = 0^\circ\text{C} \text{ to } +70^\circ\text{C}$ 12, 16, and 20 MHz		$T_A = -40^\circ\text{C} \text{ to } +105^\circ\text{C}$ 12, 16, and 20 MHz		Data Direction
			Min	Max	Min	Max	
1	TsDI(DAV)	Data In Setup Time	0		0		IN
2	ThDI(DAV)	Data In Hold Time	145		145		IN
3	TwDAV	Data Available Width	110		110		IN
4	TdDAVI(RDY)	DAV fall to RDY fall Delay		115		115	IN
5	TdDAVId(RDY)	DAV rise to RDY rise Delay		115		115	IN
6	TdRDYO(DAV)	RDY rise to DAV fall Delay	0		0		IN
7	TdDO(DAV)	Data Out to DAV fall Delay		TpC		TpC	OUT
8	TdDAV0(RDY)	DAV fall to RDY fall Delay	0		0		OUT
9	TdRDY0(DAV)	RDY fall to DAV rise Delay		115		115	OUT
10	TwRDY	RDY Width	110		110		OUT
11	TdRDY0d(DAV)	RDY rise to DAV fall Delay		115		115	OUT

Customer Support

For answers to technical questions about the product, documentation, or any other issues with Zilog's offerings, please visit Zilog's Knowledge Base at <http://www.zilog.com/kb>.

For any comments, detail technical questions, or reporting problems, please visit Zilog's Technical Support at <http://support.zilog.com>.