
Copyright ©2011 Zilog®, Inc. All rights reserved.
www.zilog.com

UM007518-1211

User Manual

eZ80® CPU

Zilog Real-Time Kernel

http://www.zilog.com

ii

Zilog Real-Time Kernel: eZ80® CPU
User Manual
This publication is subject to replacement by a later edition. To determine whether a later edition exists or
to request copies of publications, visit www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A criti-
cal component is any component in a life support device or system whose failure to perform can be reason-
ably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES or TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES or TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, eZ80 and ZNEO are trademarks or registered trademarks
of Zilog, Inc. All other product or service names are the property of their respective owners.

Warning:
 UM007518-1211

http://www.zilog.com

Zilog Real-Time Kernel: eZ80® CPU
User Manual

iii
Revision History

Each instance in the Revision History table below reflects a change to this document from
its previous version. For more details, click the appropriate links in the table.

Date
Revision
Level Description Page

Dec
2011

18 Removed version reference. vii

Aug
2010

17 Globally updated for the RZK v2.3.0 release. All

Nov
2008

16 Updated the WLAN Configuration section and Table 5. 10

Sep
2008

15 Updated for the RZK v2.2.0 release; updated the RZK Board Support Pack-
age and In-Depth Questions About Using RZK sections, Figure 1 and
Table 10. Added the WLAN Configuration and USB Configuration sections.

viii, 6, 10,
13, 14, 22

Jul
2007

14 Globally updated for style. All

Jul
2007

13 Globally updated for the RZK v2.1.0 release. All

Jun
2007

12 Updated for style. Removed RZK Characteristics Appendix. Updated Data
Persistence Configuration and Table 10. Removed RZK Using the IAR Tool-
set description, Directory Structure for RZK, API Functions section, Creat-
ing and Running an RZK Project, Executing RZK Sample Programs
sections.

All
UM007518-1211 Revision History

iv

Zilog Real-Time Kernel: eZ80® CPU
User Manual
Revision History UM007518-1211

Zilog Real-Time Kernel: eZ80® CPU
User Manual

v

Table of Contents

Revision History. .iii

Introduction . vii
About This Manual . vii
Intended Audience . vii
Manual Organization .viii
Abbreviations/Acronyms .viii
Manual Conventions .viii
Safeguards . ix

RZK Overview . 1
Features of RZK . 1
RZK Objects . 1
Limitations . 3
Developing Software Components . 3

Getting Started . 4
Using RZK . 4

RZK Board Support Package . 6
BSP Use Case Model . 6
Board Support Package Configuration . 7
UART Configuration . 7
EMAC Configuration . 9
WLAN Configuration . 10
RTC Configuration . 11
SPI Configuration . 11
I2C Configuration . 12
Flash Drivers . 12
USB Configuration . 13

RZK Configuration. 14
Data Persistence Configuration . 16

Appendix A. Frequently Asked Questions . 21
General Questions about RZK . 21
In-Depth Questions About Using RZK . 22

Customer Support. 29
UM007518-1211 Table of Contents

vi

Zilog Real-Time Kernel: eZ80® CPU
User Manual
Table of Contents UM007518-1211

Zilog Real-Time Kernel: eZ80® CPU
User Manual

vii
Introduction

This User Manual describes the Zilog Real-Time Kernel (RZK) software for application
development on Zilog’s eZ80 CPU-based microprocessors and microcontrollers. The cur-
rent RZK release supports the eZ80 and eZ80Acclaim! product lines, which include the
eZ80F91, eZ80F92 and eZ80F93 microcontrollers and the eZ80L92 microprocessor.

About This Manual

Zilog recommends that you read and understand the complete manual before using the
product. This manual is designed to be used as an user guide for important data.

Intended Audience

This document is written for Zilog customers having exposure to RTOS and writing real-
time application code and whom are also experienced at working with microprocessors/
microcontrollers and writing assembly code or compilers.

In addition to this manual, consider reading the documentation listed in Table 1.

Table 1. Related Documentation

Document Title
Document
Number

Zilog Real-Time Kernel Product Brief PB0155

Zilog Real-Time Kernel Quick Start Guide QS0048

Zilog Real-Time Kernel Reference Manual RM0006

eZ80 CPU User Manual UM0077

eZ80Acclaim! Quick Start Guide QS0020

eZ80F91 Product Specification PS0192

eZ80F91 Development Kit User Manual UM0142

eZ80F92/eZ80F93 Flash MCU Product Specification PS0153

eZ80F92/eZ80F93 Ethernet Module Product Specification PS0186

eZ80F92/eZ80F93 Module Product Specification PS0189

eZ80F92/eZ80F93 Development Kit User Manual UM0139

eZ80L92 Product Specification PS0130

eZ80L92 Development Kit User Manual UM0129

eZ80190 Product Specification PS0066

Zilog Developer Studio II – eZ80Acclaim! User Manual UM0144
UM007518-1211 Introduction

viii

Zilog Real-Time Kernel: eZ80® CPU
User Manual
Manual Organization

This document is organized into the following four chapters and an appendix:

RZK Overview

This chapter provides an overview of RZK, its features and objects.

Getting Started

This chapter provides the procedural steps for using RZK.

RZK Board Support Package

This chapter introduces the RZK board support package (BSP), which provides drivers for
EMAC, UART, I2C, SPI, USB, WLAN and RTC devices.

RZK Configuration

This chapter provides details about the RZK configurable parameters.

A Frequently Asked Questions

This Appendix provides the frequently asked questions and answers on RZK.

Abbreviations/Acronyms

Table 2 lists the RZK related abbreviations/acronyms, used in this document.

Manual Conventions

The following convention is adopted to provide clarity and ease of use:

Table 2. RZK-Related Abbreviations/Acronyms

ADC Analog-to-Digital Converter

IJT Interrupt Jump Table

IPC Inter Process Communication

IVT Interrupt Vector Table

BSP Board Support Package

RZK Zilog Real-Time Kernel

DDF Device Driver Framework

ESD Electro Static Discharge

ZTP Zilog TCP/IP

ZDS Zilog Developer Studio

EEPROM Electrically Erasable Programmable Read Only Memory
Introduction UM007518-1211

Zilog Real-Time Kernel: eZ80® CPU
User Manual

ix
Use of X.Y.Z and A.B.C

Throughout this document, X.Y.Z refers to the currently released version of RZK and
A.B.C refers to the currently released version of ZDS II for eZ80Acclaim!.

Use of <tool>

Throughout this document, <tool> refers to ZDS II.

Courier New Typeface

Code lines and fragments, functions and various executable items are distinguished from
general text by appearing in the Courier New typeface.

Safeguards

Always use a grounding strap to prevent damage resulting from electrostatic discharge
(ESD) to avoid permanent damage to the eZ80 Development Platform.
UM007518-1211 Safeguards

x

Zilog Real-Time Kernel: eZ80® CPU
User Manual
Introduction UM007518-1211

Zilog Real-Time Kernel: eZ80® CPU
User Manual

1

RZK Overview

The Zilog Real-Time Kernel (RZK) is a real-time, preemptive multitasking kernel
designed for time-critical embedded applications. It is currently available with Zilog’s
eZ80 family of microprocessors and microcontrollers. The majority of the RZK code is
written in ANSI C and supplied as a C library module. During compilation, you can link
real-time applications with the RZK library. The resulting object is downloaded to the tar-
get platform or placed in ROM. RZK is designed to be used as a C library.

Features of RZK

The features of RZK include:

• Compact code

• Rapid context switching between threads

• Quick interrupt response

• Preemptive, priority-based and multitasking scheduler

• Timing support for delays, time-outs and periodic events

• Time-slicing option with adjustable time slices

• Priority inheritance facility

• Highly scalable and configurable options

• Minimal footprint

• Device Driver Framework (DDF) and Board Support Package (BSP)

RZK Objects

RZK modules are referred to as objects and are used for real-time application development
as provided below:

• Threads

• Message queues

• Event groups

• Semaphores

• Timers

• Memory as Partitions/Regions
UM007518-1211 RZK Overview

2

Zilog Real-Time Kernel: eZ80® CPU
User Manual
• Interrupts

• Device driver framework

• Board support package

Table 1 provides a brief description of the RZK objects.

Table 1. Description of RZK Objects

RZK Objects Description

Thread A thread is the basic object of RZK. RZK enables a particular thread to exe-
cute among all other threads, based on its priority and readiness to execute.

Message Queue Two or more threads can use a message queue to communicate with each
other asynchronously. The length of each message is a variable, provided the
size is within the maximum message size given at the time of creation. Mes-
sage contents are user-defined. By default, messages are added to the end of
queue. An option is provided to insert the message at the head of the queue.

Event Group Event is an optional object of RZK. Events can be grouped and operated upon
logically. An event object allows a single thread to wait on one or more exter-
nal event, using a single event API.

Semaphore Semaphore is an optional object of RZK. Semaphore is the only object, which
requires priority inheritance protocol and is tightly coupled with scheduling
methods. As the semaphore uses a mutual-exclusion mechanism, it is not
directed to a specific thread.

Timer A Timer is an optional object of RZK. Timer objects invoke user-supplied func-
tions that are to be processed at set periodic intervals.

Memory as Partitions/
Regions

Memory is an optional object of RZK. However, it is required for dynamic
memory allocation by other objects (for example, message queues). Unused
system memory is organized into two categories:
• Partitions: fixed size memory blocks
• Regions: variable size memory blocks

Interrupts An interrupt is a signal from a device attached to a computer or from a pro-
gram within the computer that causes the main program that operates the
computer (the operating system) to stop and service the interrupt.

Device driver framework The device driver framework is a common set of APIs to access any device
that is present in the global device table.

Board support package The board support package consists of drivers for the EMAC, UART, SPI, RTC
and I2C peripheral blocks of the eZ80 CPU.
RZK Overview UM007518-1211

Zilog Real-Time Kernel: eZ80® CPU
User Manual

3

For more information about RZK objects, refer to the Zilog Real-Time Kernel Reference
Manual (RM0006).

Limitations

The RZK_X.Y.Z_Lib_<tool> release has the following limitations:

• The nested interrupt handling for the same type of interrupt is not possible

• Kernel-aware debug facility is not available

Developing Software Components

You can build your applications to run on RZK, which must be configured according to
the target platform; configuration details are provided in the RZK Configuration section
on page 14.

The RZK release also contains sample applications that can be downloaded directly onto
target platforms.

Configuration changes may be required according to your choice of target platform.

Note:

Note:
UM007518-1211 Limitations

http://www.zilog.com/docs/software/rm0006.pdf
http://www.zilog.com/docs/software/rm0006.pdf

4

Zilog Real-Time Kernel: eZ80® CPU
User Manual
Getting Started

RZK is automatically installed when the ZDSII_eZ80Acclaim!_A.B.C file is installed.
You can find that RZK is installed under

<ZDSII installed directory>Program files\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib

For information about system requirements for the target and host computer, refer to the
Zilog Real-Time Kernel Quick Start Guide (QS0048), which is available free for down-
load from the zilog.com website. These requirements must be met before proceeding to
write or build applications based on RZK.

Using RZK

RZK is designed to be used as a C library. The RZK objects referenced in the application
software are extracted from the RZK library and combined with the application objects to
produce a target-downloadable image. This image can be downloaded to the target system
RAM or placed into ROM, EEPROM or Flash.

Observe the following procedure to use RZK in the ZDS II environment:

1. Include the following header files in the application in the sequence provided below:

a. ZSysgen.h.
b. ZTypes.h.

c. Header files such as ZThread.h, Zmemory.h and other application header files
related to the objects used in the application.

2. Add your application code (creating the resources/threads, etc.) between the
RZK_KernelInit() and RZK_KernelStart() function calls in the main() func-
tion shown below. The main() function runs at the highest priority.

int main(int argc, void *argv[])
{

RZK_KernelInit();
// Your application threads/resources creation
// code here//

RZK_KernelStart();
}

 For information about the main(), RZK_KernelInit() and RZK_KernelStart()
functions, refer to the Zilog Real-Time Kernel Reference Manual (RM0006).

Note:
Getting Started UM007518-1211

http://www.zilog.com/docs/software/rm0006.pdf
http://www.zilog.com/docs/software/qs0048.pdf

Zilog Real-Time Kernel: eZ80® CPU
User Manual

5

3. Compile and/or assemble all of the application software with the default settings pro-
vided in the project settings.

4. Link all of the necessary files including object files to the RZK library and any other
development tool libraries.

5. To run the application, download the complete application program image onto the
target system.

Details about the macros that must be defined for adding or removing files using RZK are
described in the RZK Configuration chapter on page 14.

Note:
UM007518-1211 Using RZK

6

Zilog Real-Time Kernel: eZ80® CPU
User Manual
RZK Board Support Package

The RZK Board Support Package (BSP) provides drivers for EMAC, WLAN, UART, I2C,
SPI, USB and RTC devices. These drivers, with the exception of the USB driver, use the
RZK Device Driver Framework (DDF) that provides a common interface for gaining
access to various devices. The RZK BSP also provides drivers for different Flash devices
that do not use the DDF. These drivers are simple APIs for read/write/erase operations in
the Flash memory. The RZK BSP includes the following features:

• A DDF to provide a common interface to gain access to many different devices

• Reentrancy handled within the driver

• Drivers offer minimum interrupt latency

• Configurable

BSP Use Case Model

Figure 1 displays the RZK BSP use case model.

Figure 1. RZK BSP Use Case Model
RZK Board Support Package UM007518-1211

Zilog Real-Time Kernel: eZ80® CPU
User Manual

7

RZK provides a very simple and generic device driver model that can be used to develop
drivers for different types of devices; RZK BSP is based on this device driver model.

The RZK device driver model contains a hardware abstraction layer called the DDF,
which provides a common interface to gain access to various devices. DDF accesses these
devices using the global device table. The driver functions are connected to this device
table. Each device is identified by its handle, which is the pointer to the device entry in the
device table usrDevBlk.

The RZK DDF provides APIs that perform operations on any of the drivers present in the
BSP. These APIs are briefly described in Table 2.

For details about DDF APIs, refer to the Zilog Real-Time Kernel Reference Manual
(RM0006).

Board Support Package Configuration

This section discusses the available RZK BSP configurations.

UART Configuration

The configurable parameters for the UART driver are located in the uart_conf.c source
file that accompanies the RZK release in the following path:

<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Conf

To change any of the UART parameters, you must include this file in the project and set
the appropriate values, as defined in Table 3.

Table 2. RZK Device Driver Framework APIs

DDF API Description

RZKDevAttach Attaches the device for communication

RZKDevDetach Detaches the device from communication

RZKDevOpen Opens the device for communication

RZKDevRead Reads from the device

RZKDevWrite Writes to the device

RZKDevIOCTL Performs I/O control operations

RZKDevClose Closes the device for communication

Note:
UM007518-1211 Board Support Package Configuration

http://www.zilog.com/docs/software/rm0006.pdf
http://www.zilog.com/docs/software/rm0006.pdf

8

Zilog Real-Time Kernel: eZ80® CPU
User Manual
Table 3. Configurable UART Drivers

Variable/Macro Default Value Description/Valid Values

UART0_THD_STACK_SIZEH 1024 UART0 Interrupt thread stack size.

UART0_TASK_PRIOH 6 UART0 Interrupt thread priority.

UART1_THD_STACK_SIZEH 2048 UART1 Interrupt thread stack size.

UART1_TASK_PRIOH 6 UART1 Interrupt thread priority.

serparams — Array of structure serialparam that con-
tains values that the UART device is to
be initialized with. The valid serparams
values below describe the structure
members.

serparams baud 2400/9600/19200/38400/
57600/115200

Sets the baud rate to any of the default
values.

serparams data bits 7/8 Sets the data bits to any of the default
values.

serparams stop bits 1/2 Sets the stop bits to any of the default
values.

serparams parity PAREVEN/ PARODD/
PARNONE

Sets the parity to any of the default val-
ues.

serparams settings Can contain combinational values with logical OR (|) operation, as
described below:

SERSET_DTR_ON This Flag directs the serial driver to
assert the data terminal ready (DTR)
signal when the corresponding serial
device (UART) is open.

SERSET_RTSCTS This Flag directs the UART driver to use
the ready to send (RTS)/clear to send
(CTS) flow control over the serial link.

SERSET_DTRDSR This Flag is currently not used by the
UART driver.

SERSET_XONXOFF This Flag is currently not used by the
UART driver.

SERSET_ONLCR This Flag directs UART driver to convert
each outgoing new-line character (for
example, \n) to a new line + carriage
return (for example, \r\n). This setting
is required by some terminal emulators
to ensure that the console output is dis-
played correctly. This Flag must not be
used with PPP.
RZK Board Support Package UM007518-1211

Zilog Real-Time Kernel: eZ80® CPU
User Manual

9

Example

To configure UART for a 57600 bps baud rate, 8 data bits, 1 stop bit and no parity, and to
specify the use of the SERSET_ONLCR and SERSET_IGNHUP flags, the following code line
must be entered in the serparams array:

{57600, 8, 1, PARNONE, SERSET_ONLCR | SERSET_IGNHUP}

EMAC Configuration

The configurable parameters for the EMAC driver are located in the emac_conf.c
source file that accompanies the RZK release in the following path:

<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Conf

To change any of the EMAC parameters, include this file in the project and set the appro-
priate values, as defined in Table 4.

serparams settings (cont’d) SERSET_SYNC This Flag directs UART driver to use a
synchronous I/O routine to transfer data
over the serial port. Synchronous I/O
operations require UART driver to poll
for the underlying UART hardware
instead of using interrupts. This polling
instance is not efficient and usually
results in many lost characters. Zilog
does not recommend the use of this
Flag setting.

SERSET_IGNHUP If the serial driver detects the loss of a
valid Carrier Detect signal, the driver
assumes that the physical link is dis-
connected by the remote end of the
serial connection. As a result, UART
driver automatically closes the underly-
ing serial device and terminates all of
the PPP or serial communications. If
this Flag is included in the serparams
structure, then UART driver ignores the
loss of the valid Carrier Detect signal.

Table 3. Configurable UART Drivers (Continued)

Variable/Macro Default Value Description/Valid Values
UM007518-1211 EMAC Configuration

10

Zilog Real-Time Kernel: eZ80® CPU
User Manual
PHY Initialization

The F91PhyInit.c file contains the phyInit() initialization routine for the PHY. This
phyInit() routine currently configures the AMD Am89C874 PHY device featured on
the eZ80F91 Module and the MICREL KS8721 PHY device featured on the eZ80F91
Mini-Module. You can modify the phyInit() routine to initialize other PHY devices.

WLAN Configuration

The configurable parameters for the WLAN driver are located in the wlan_conf.c file
which is available in the following path:

<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Conf

For a description of the available WLAN drivers, see Table 5. If these parameters are set
to 0/NULL (as in the default case), the user must call the scan and join commands to
connect to a particular AP. Otherwise, the values provided in these parameters are consid-
ered to connect to the specified AP without user interaction.

Table 4. Configurable EMAC Drivers

Variable/Macro Default Value Description/Valid Values

f91_mac_addr {
0x00, 0x90, 0x23, 0x73,
0x50, 0x49
};

The default MAC address must be initialized in
this array. You must change this value according
to your application setup. If more than one sys-
tem has the same MAC address and if DHCP is
enabled in ZTP, the same IP address is
assigned to all of the systems with the same
MAC address.

F91_emac_config (valid for
eZ80F91 module only)

{
 1568, F91_AUTO,
 BUF32
};

A structure that contains values with which the
EMAC device is to be initialized. Below are valid
values for different structure members:
F91_emac_config txBufSize = 0-1568
F91_emac_config mode = F91_10_HD,
F91_10_FD, F91_100_HD, F91_100_FD or
F91_AUTO
F91_emac_config bufSize = 32

EMAC_THD_STACK_SIZE
H

4096 EMAC interrupt thread’s stack size.

EMAC_TASK_PRIOH 6 EMAC interrupt thread’s priority.*

Note: * Do not change this value without the knowledge of the whole system. The behavior of the system is indetermi-
nate if the default value is changed.
RZK Board Support Package UM007518-1211

Zilog Real-Time Kernel: eZ80® CPU
User Manual

11
RTC Configuration

The configurable parameters for the RTC driver are located in the Rtc_conf.c source
file that accompanies the RZK release in the following path:

<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Conf

To change any of the RTC parameters, include this file in the project and set the appropri-
ate values, as defined in Table 6.

SPI Configuration

The configurable parameters for the SPI driver are located in the spi_conf.c source file
that accompanies the RZK release in the following path:

<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Conf

To change any of the SPI parameters, include this file in the project and set the appropriate
values, as defined in Table 7.

Table 5. Configurable WLAN Drivers

Variable/Macro Default Value Description/Valid Values

g_Ssid {0,""} The first parameter of g_Ssid is the length of the SSID
and second is the SSID string.
For example {4,"ABCD"}.

wepKey[WEP_KEYLEN] 0 The encryption key for WEP.

wepKeyLen 0 The encryption key length.

Note: The Zdots SBC WLAN solution supports NO-Encryption, WEP-128-bit and 64-bit encryptions. The WEP128-bit
encryption needs a 13 byte encryption key and WEP 64-bit requires 5 byte encryption key.

Table 6. Configurable RTC Drivers

Variable/Macro Default Value Description/Valid Values

RTC_TASK_PRIOH 10 Priority of the RTC interrupt thread.

RTC_THD_STACK_SIZEH 1024 Stack size of RTC interrupt thread.

Table 7. Configurable SPI Drivers

Variable/Macro Default Value Description/Valid Values

SPI_TASK_PRIOH 10 Priority of the SPI interrupt thread.

SPI_THD_STACK_SIZEH 1024 Stack size of SPI interrupt thread.
UM007518-1211 RTC Configuration

12

Zilog Real-Time Kernel: eZ80® CPU
User Manual
I2C Configuration

The configurable parameters for the I2C driver are located in the i2c_conf.c source file
that accompanies the RZK release in the following path:

<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Conf

To change any of the I2C parameters, include this file in the project and set the appropriate
values, as defined in Table 8.

Flash Drivers

Flash drivers are implemented as simple APIs that do not operate within the constructs of
the DDF. To access these functions directly, include the device header files in the applica-
tion.

Table 8. Configurable I2C Drivers

Variable/Macro Default Value Description/Valid Values

I2C_TASK_STACK_SIZEH 1024 Stack size of the I2C interrupt thread.

I2C_RX_MAX_BUFF_SIZEH 100 Size of the Rx circular queue.

I2C_TASK_PRIORITYH 6 Priority of the I2C Interrupt thread.

i2cConfigParams {0xB0,
0x00,0x58,
I2C_MASTER,
RZK_FALSE,
0x00,2}

i2cConfigParams currSlaveAddr The slave address with which the master communi-
cates, for example, 0xA0.

i2cConfigParams selfAddr The address of eZ80 when acting as a slave.

i2cConfigParams speed The speed of the I2C bus, for example, 0x58.

i2cConfigParams mode I2C_MASTER/I2C_SLAVE;
determines whether eZ80 will act as a master or
slave.

i2cConfigParams useSubAddr RZK_TRUE/RZK_FALSE; determines whether to use
subaddresses for the slave device.

i2cConfigParams subAddr subaddress value for the slave; used only if the use-
SubAddr Flag is set to RZK_TRUE.

i2cConfigParams addrLen Length of subaddress; the number of subaddress
bytes sent to the slave are based on this value.
RZK Board Support Package UM007518-1211

Zilog Real-Time Kernel: eZ80® CPU
User Manual

13
The format of this header file is XXXXX_Driver.h, in which XXXXX represents the
MT28F008, AM29LV160, AT49BV162 or IntFlash drivers that are located in the follow-
ing path:

<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Inc

USB Configuration

The configurable parameters for the USB driver are located in the EZ80D12_conf.c file.
This source file is located in the following path:

<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Conf

To change any USB device configuration parameters, include this file in the project and
set the appropriate values, as defined in Table 9. For more information about USB Specifi-
cation, refer to www.usb.org.

Table 9. Configurable USB Driver Parameters

Variable/Macro Default Value Description/Valid Values

EZ80D12_TASK_PRIO 16 Priority of USB thread.

EZ80D12_THD_STACK_SIZE 2048 Stack size of the USB interrupt thread.

g_remoteWakeUp 0x02 Remote wakeup is enabled and can wake up
the host during suspend.

G_powerStat 0x01 Decides if the device is Self powered or Bus
powered.

g_testMode EZ80D12_SET_ZERO Test mode allows the device to exhibit vari-
ous conditions.

gst_DevDescrip — Standard Device Descriptor.

gst_CompositDescrip — Composite Descriptor, which consists of Con-
figuration Descriptor + Interface Descriptor +
End Point Descriptor (EP2in + EP2Out).
UM007518-1211 USB Configuration

http://www.usb.org

14

Zilog Real-Time Kernel: eZ80® CPU
User Manual
RZK Configuration

This chapter describes the different RZK configurations that can be applied by the real-
time application and lists the dependent libraries and files that must be added to the project
workspace after a new application project workspace is created. Table 10 lists the macros
to be defined and the files that must be added to the project workspace, for these different
RZK configurations.

Table 10. Macros and Files in Different RZK Configurations

Source Configuration File Macro Library File RZK Configuration

RZK_Conf.c
uart_conf.c (if UART settings
are different from default set-
tings)
eZ80eval.c (for printf through
UART0 port)
eZ80Hw_Conf_ZDS.c
get_heap.s

RAM_MAP — For use with RAM project
workspaces*

EVB_F91_MINI — Configured to work with
eZ80F91 Mini Module*

_EZ80XXX RZKeZ80XXX.lib
BSPeZ80XXX.lib

Library files across platforms

RZKDBG, RZKPI RZKDebugPI.lib DEBUG-PI (Debug with Pri-
ority Inheritance support)

RZKPI RZKNDebugPI.lib NO_DEBUG-PI (No Debug
with Priority Inheritance sup-
port)

RZKNDebugNPI.lib NO_DEBUG-NO_PI (No
Debug with No Priority Inher-
itance support)

RZKDBG RZKDebugNPI.lib DEBUG-NO_PI (Debug with
No Priority Inheritance sup-
port)

Note: *Used in addition to the RZK configuration macros, libraries or configuration files.
RZK Configuration UM007518-1211

Zilog Real-Time Kernel: eZ80® CPU
User Manual

15
RZK_Conf.c
eZ80Hw_Conf_ZDS.c
get_heap.c
uart_conf.c (if UART settings
were different from default set-
tings)
eZ80eval.c (for printfs through
UART0 port)

RZKDBG, RZKPI RZKDebugPI.lib
RZKeZ80XXX.lib
BSPeZ80XXX.lib

DEBUG-PI
(Debug with Priority
Inheritance support)

RZKPI RZKNDebugPI.lib
RZKeZ80XXX.lib
BSPeZ80XXX.lib

NO_DEBUG-PI (No Debug
with Priority
Inheritance support)

RZKNDebugNPI.lib
RZKeZ80XXX.lib
BSPeZ80XXX.lib

NO_DEBUG-NO_PI (No
Debug with No Priority Inher-
itance
support)

RZKDBG RZKDebugNPI.lib
RZKeZ80XXX.lib
BSPeZ80XXX.lib

DEBUG-NO_PI
(Debug with No Priority
Inheritance support)

ZFS_Conf.c RZKFS RZKFS.lib Zilog File System.*

NOFS.lib Zilog File System stub file;
used when file system foot-
print is not required but
some components in the
system call Zilog File System
APIs.*

eZ80Hw_Conf_ZDS.c Modify
RZK_HW_Init()
for optimized and
custom hardware
initialization.

— Optimized and custom hard-
ware initialization; provides a
RZK_HW_Init() function
that is called from within
RZK_KernelInit(), which
initializes the hardware
required by RZK. You can
initialize custom devices with
this function.

uart_conf.c — — Different UART configura-
tions other than the default
configuration.*

rtc_conf.c — — Different RTC configuration
other than the default config-
uration.*

Table 10. Macros and Files in Different RZK Configurations (Continued)

Source Configuration File Macro Library File RZK Configuration

Note: *Used in addition to the RZK configuration macros, libraries or configuration files.
UM007518-1211 RZK Configuration

16

Zilog Real-Time Kernel: eZ80® CPU
User Manual
Each of the source configuration files listed in Table 10 must be included in the following
path:

<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Conf

All macros must be defined in the Preprocessor Definitions field of each requisite source
configuration file. If a library file is listed, it must be included in the project workspace.

Data Persistence Configuration

Data persistence is defined as the ability of memory to retain data when power is removed
from a system. The type of memory to be used for this purpose is labeled nonvolatile
memory. RZK provides data persistence functions with user-defined values. These func-
tions include a number of required variables, including variables for the EMAC address,
IP address, IP gateway, netmask and DHCP status (enabled or disabled) to effectively set
and allow the restoration of settings made prior to power-down or reboot.

When considering environments where power failures or reboots can occur, RZK data per-
sistence functions, such as the SetDataPersistence and GetDataPersistence
APIs, are advantageous. The DATA_PER_CFG_t structure defines the nonvolatile memory
device driver routines that are called by these two APIs. However, you must modify the
structure DATA_PER_CFG_t present in the following path:

emac_conf.c — — EMAC configuration.*

— NOEMAC.obj EMAC driver stub file: used
when an EMAC footprint is
not required. However, some
components in the system
will call EMAC driver APIs.*

wlan_conf.c ZDOT_WLAN BSPZDOTS.lib To configure WLAN parame-
ters other than default.

I2C_Conf.c — — Different I2C configuration
other than default configura-
tion.*

Spi_Conf.c — — Different SPI configuration
other than default configura-
tion.*

DataPer_Conf.c g_data_per_cfg
(variable)

— Data persistence configura-
tion.*

Table 10. Macros and Files in Different RZK Configurations (Continued)

Source Configuration File Macro Library File RZK Configuration

Note: *Used in addition to the RZK configuration macros, libraries or configuration files.
RZK Configuration UM007518-1211

Zilog Real-Time Kernel: eZ80® CPU
User Manual

17
<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Conf

The DATA_PER_CFG_t structure is defined below.

typedef struct
{

void * p_start_addr ;
/* start address of the location where data must be stored */
UINT32 ul_size ;
/* size of the erasable block */
DEV_INIT pfn_dev_init ;
DEV_READ pfn_dev_read ;
DEV_WRITE pfn_dev_write ;
DEV_ERASE pfn_dev_erase ;
DEV_CLOSE pfn_dev_close ;

} DATA_PER_CFG_t, *PDATA_PER_CFG_t ;

The location and type of nonvolatile memory in which values are stored can be configured
whether this memory is present in internal or external Flash. Table 11 specifies the loca-
tion in which these values are stored for the different platforms and configurations in the
eZ80Acclaim! product line.

In addition to any standard linker directives, RZK provides a number of additional linker
directives settings for eZ80Acclaim! target processors, including settings that establish
data persistence within memory. These settings can be made in ZDS II by navigating to
Input Additional Directives within the Linker. Observe the following procedure to estab-
lish data persistence settings for project workspaces.

1. In the Compiler tab, under Code Generation for all targets, deselect the One seg-
ment per module checkbox.

Table 11. Data Storage Location of Values Related to Data Persistence

Platform eZ80F91 eZ80F92 eZ80F93 eZ80L92

RAM External Flash at
address 0x104000

External Flash at
address 0x104000

External Flash at
address 0x104000

External Flash at
address 0x104000

FLASH Internal Flash (infor-
mation page) at
address 0x0

Internal Flash (infor-
mation page) at
address 0x0

Internal Flash (infor-
mation page) at
address 0x0

External Flash at
address 0x02000

COPY TO RAM Internal Flash (infor-
mation page) at
address 0x0

Internal Flash (infor-
mation page) at
address 0x0

Internal Flash (infor-
mation page) at
address 0x0

External Flash at
address 0x02000
UM007518-1211 Data Persistence Configuration

18

Zilog Real-Time Kernel: eZ80® CPU
User Manual
2. In the Linker tab, navigate to Input → Additional Directives (for all targets except
the eZ80190 device) and add the following linker directives:

CHANGE per_api_TEXT is RAM
CHANGE _driver_TEXT is RAM
CHANGE per_api_TEXT is DATA
CHANGE _driver_TEXT is DATA

3. If the chosen configuration is a COPY_TO_RAM configuration, add the following state-
ment in the linker settings within the Linker → Input → Additional Directives navi-
gation:

CHANGE TEXT is RAM

4. For the eZ80L92 target, if the chosen configuration is FLASH or COPY_TO_RAM, add
the following address range in the linker settings within the panel within the Linker
→ Address Spaces → RAM navigation:

0–3FFF,6000–FFFFF

Table 12 describes the configurable parameters that are defined according to the kinds of
libraries required:

Table 12. Default Debug Priority Inheritance Values for the RZK_Conf.c File

RZK Macro Default Value Description

MAX_THREADSH 30 (minimum
value = 2)

Specifies the maximum threads that RZK can
create at a time. This macro’s value = 2 + the
maximum number of system threads required to
be created. One thread control block (TCB) is
used for the kernel idle thread and one for the
RZK timer.

RZK_TIME_SLICEH 20 Specifies the default time slice for round-robin
mode at a time. This macro must contain a
value greater than 0 (zero).

RZK_SYSTIMERSTACK_SIZEH 2048 This macro must be defined to provide stack
size for RZK’s system thread.

MAX_MESSAGEQSH 28 Specifies the maximum number of message
queues that can be created at a time. If the sys-
tem does not require message queues, then this
macro is set to 0 (zero).

MAX_EVENTGROUPSH 20 Specifies the maximum number of event groups
that can be created at a time. If the system does
not require event groups, then this macro is set
to 0 (zero).

Note: *Refer to the Zilog Real-Time Kernel Reference Manual (RM0006) and its appendix about Interrupt Handling to
configure the RZK timer.
RZK Configuration UM007518-1211

http://www.zilog.com/docs/software/rm0006.pdf

Zilog Real-Time Kernel: eZ80® CPU
User Manual

19
MAX_SEMAPHORESH 20 Specifies the maximum number of semaphores
that can be created at a time. If the system does
not require semaphores, then this macro is set
to 0 (zero).

MAX_TIMERSH 20 Specifies the maximum number of software tim-
ers that can be created at a time. If the system
does not require software timers, then this
macro is set to 0 (zero).

MAX_PARTITIONSH 20 Specifies the maximum number of memory par-
titions that can be created at a time. If the sys-
tem does not require partitions, then this macro
is set to 0 (zero).

MAX_REGIONSH 20 Specifies the maximum number of regions that
can be created at a time. If the system does not
require regions, then this macro is set to 0
(zero).

MAX_REGIONS_TABH 250 Specifies the maximum number of allocations
that can be made within the regions at any given
time.

RZK_MAX_DCBH 25 Specifies the maximum number of entries that
can be made in the device control block.

RZK_DEVICE_DRIVERH 1 Defined if RZK drivers are used.

RZK_STACK_SIZEH 2048 Specifies the size of stack required for kernel’s
idle thread.

RZK_SYSTIMERSTACK_SIZEH 2048 Specifies the size of stack required for the RZK
timer thread.

RZK_SYSTICKS_INSECH 100 Specifies the number of ticks per second for the
system.*

RZK_DEVTICKS_PERSYSTICKH 1 Specifies the number of device ticks per system
tick.*

SYSTEM_CLOCKH 48000000L Specifies the processor’s clock speed.*

HWTIMER_TO_USE 0 Specifies the hardware timer to be used as the
source for the RZK system; valid values range
from 0–3.

Table 12. Default Debug Priority Inheritance Values for the RZK_Conf.c File (Continued)

RZK Macro Default Value Description

Note: *Refer to the Zilog Real-Time Kernel Reference Manual (RM0006) and its appendix about Interrupt Handling to
configure the RZK timer.
UM007518-1211 Data Persistence Configuration

http://www.zilog.com/docs/software/rm0006.pdf

20

Zilog Real-Time Kernel: eZ80® CPU
User Manual
Table 13 lists the four different configurations of RZK libraries.

The real-time application can therefore be used first with the RZK DebugPI configuration
to remove any errors during testing of the system. If the application is error-free, it is pref-
erable to use the RZK NDebugNPI or RZK NDebugPI configuration, based on your appli-
cation requirements. By using RZK NDebugNPI, you can save memory.

RZK_MAX_CWD_PATH_LEN 128 Specifies the maximum length of the current
working directory path in bytes; valid only if
RZKFS is defined.

RZK_CWD_PATH “EXTF:/” Specifies the current working directory for the
threads that are created in the main() function;
valid only if RZKFS is defined.

Table 13. Four Configurations of RZK Libraries

RZK Library Description

RZKDebugPI Debug and Priority Inheritance protocol enabled.

RZKDebugNPI Debug enabled but Priority Inheritance protocol disabled.

RZKNDebugNPI Debug and Priority Inheritance protocol disabled.

RZKNDebugPI Debug disabled but Priority Inheritance protocol enabled.

Table 12. Default Debug Priority Inheritance Values for the RZK_Conf.c File (Continued)

RZK Macro Default Value Description

Note: *Refer to the Zilog Real-Time Kernel Reference Manual (RM0006) and its appendix about Interrupt Handling to
configure the RZK timer.
RZK Configuration UM007518-1211

http://www.zilog.com/docs/software/rm0006.pdf

Zilog Real-Time Kernel: eZ80® CPU
User Manual

21
Appendix A. Frequently Asked
Questions

This chapter presents answers to many commonly-asked questions about the Zilog Real-
Time Kernel.

General Questions about RZK

Q: What is RZK?

A: RZK is Zilog’s real-time, priority-based, preemptive and multitasking kernel designed
for time-critical embedded applications. It can currently be used with Zilog's eZ80 family
of microprocessors, for which it is specifically optimized. The response time of RZK is
quick when compared with other commercially-available operating systems.

Q: Why should I use RZK?

A: You can use RZK as your kernel, especially if you already have eZ80 processors.
RZK is a reliable kernel and has many protocol stacks implemented on it. Next, the modu-
lar design concepts of RZK allows you to tailor it to meet your product requirements.
Moreover, RZK provides all of the standard benefits of an RTOS with very low memory
and processing overhead. Therefore, it is quite affordable to use with 8-bit processors as
they relate to product and development costs and resource overhead for most present-day
implementations.

The modular structure of RZK makes it convenient to tailor it to customer needs. How is
RZK released and what are the benefits, if any, of the way it is packaged? What are the
benefits of using the RZK libraries?

The modular design of RZK breaks up the software into a number of objects. RZK is
released as set of libraries, with each RZK object forming a library. When you develop
your application using RZK, you include all of the RZK libraries; however, the APIs that
you use determines which libraries are linked to your application. This mechanism
reduces your memory footprint. Moreover, the application can be accommodated where
memory requirements are lower.

Q: What are the features of RZK?

A: RZK provides extensive coverage of easy-to-use APIs. It also provides low interrupt
latency, allows nested interrupts and supports interrupt threads. Thread switching time is
kept to a minimum by exploiting the Zilog microprocessor and microcontroller architec-
ture.
UM007518-1211 General Questions about RZK

22

Zilog Real-Time Kernel: eZ80® CPU
User Manual
Q: What are the sizes of the RZK components?

A: The sizes of RZK components are very small compared to other RTOS’.

Q: How many target platforms are supported by RZK?

A: Currently, RZK supports the eZ80Acclaim! series of microcontrollers, which includes
the eZ80F91, eZ80F92 and eZ80F93 devices and the eZ80 product line, which includes
the eZ80L92 device.

RZK also supports all variants of Zilog’s eZ80 family of microprocessors and microcon-
trollers, with the exception of the eZ80190 processor.

Q: How much does RZK cost?

A: Feel free to contact us via our Customer Service page to obtain RZK pricing details.
The price depends upon packaging options.

Q: What kind of applications can I build with RZK?

A: You can use RZK to build a variety of applications, especially those that require
extreme levels of reliability and serviceability. RZK can be used in all types of embedded
applications because of its quick response to external events.

Some of the applications that can use RZK are wireless protocols, such as IrDA and the
telecommunications protocols, such as ISDN and TCP/IP.

In-Depth Questions About Using RZK

Q: Can I use RZK for designing real-time systems?

A: Yes. RZK is designed for real-time systems that require less interrupt latency and fast
context switching time with less memory requirements. Also, timings for each of the APIs
are available for designing real-time applications.

Q: What is the development process for RZK?

A: The ZDS II IDE that works with the eZ80 processor is used to create your project.
Your project uses the RZK libraries and generates a .hex image or a .lod file according
to your specific requirement. The .hex image is ready to be burned to EPROM or Flash
memory; the .lod file is ready to be downloaded to RAM. When you decide to debug the
program, it is downloaded to the target platform using the ZPAK II tools or USB smart
cables and the ZDS II IDE. This debugger operates similarly to its operation for local
debugging. RZK has built in debug features when in debug mode. After the final applica-
 UM007518-1211

http://zilog.com/index.php?option=com_product&task=customer_service&Itemid=85

Zilog Real-Time Kernel: eZ80® CPU
User Manual

23
tion is debugged and ready to be burned to ROM, the debug option in RZK can be unde-
fined.

Q: What’s the learning curve? How long will it take me to become productive with RZK?

A: You require only a few minutes. If you know how to use an IDE (such as Microsoft
Visual Studio) and are familiar with real-time operating system concepts and components,
all you have got to do is open the example projects shipped with RZK, compile and link
them. Then, download to the target platform to see the application running. Refer to the
Zilog Real-Time Kernel Quick Start Guide (QS0048), which is available free for
download on zilog.com and also provided in the documentation set for RZK in the
following path:

<ZDSII installed directory>\Program Files\Zilog\
ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Docs

Q: I want to develop ROMable and self-booting programs for an embedded system using
an eZ80 device and RZK. What software do I need?

A: An IDE tool such as ZDS II, RZK and a Flash Loader application (ZDS II features an
integrated Flash Loader utility) are required to boot from Flash and not from RAM. Gen-
erate a .hex image of the application (you can use ready-made projects that are included
with the RZK release) and send it to the Flash Loader. The Flash Loader takes care of writ-
ing your code to the Flash memory.

Q: Are the stacks for each thread protected from overrun or underrun?

A: No, RZK does not provide stack protection. It is your responsibility to protect the
stack or allocate sufficient stack for the functioning of the threads.

Q: When I create a thread (using the API RZKCreateThread()) or a timer (using the
API RZKCreateTimer()) or any other object, it always returns a NULL with an error
code of 4, which is RZKERR_CB_UNAVAILABLE. What is the cause for this problem and
how can I get rid of it?

A: This type of problem occurs when it is not possible to allocate a control block for the
particular object you are trying to create. This issue occurs when you try to create more
objects than the maximum specified objects allowed in the RZK_Conf.c file. Increase the
appropriate object’s count to create the object that you require. For a more detailed expla-
nation, see the RZK Configuration chapter on page 14.
UM007518-1211 In-Depth Questions About Using RZK

http://www.zilog.com/docs/software/qs0048.pdf

24

Zilog Real-Time Kernel: eZ80® CPU
User Manual
Q: When I post a message to a higher-priority thread from an ISR, the context switch
does not occur immediately. Why is that?

A: RZK follows the priorities below, in descending order, for executing components:

ISRInterrupt ThreadUser Priority Threads

Execution is always transferred to the ISR, because it holds the highest priority. Thus, con-
text switching does not occur even when messages are posted to higher-priority threads
from an ISR that runs from the context of a lower-priority thread. Context switching
occurs only when all of the current pending interrupts are serviced.

Q: What happens when I specify zero wait time in calls such as RZKAcquireSema-
phore or RZKReceiveFromQueue?

A: When zero wait time is specified in these calls, they become non-blocking calls and
return immediately.

Q: Is RZKCreateSemaphore with zero initial count value supported by RZK?

A: Yes, this feature is supported by RZK.

Q: When an RZK thread is deleted does it also release all of the resources created during
its execution?

A: No. RZK does not release any of the resources created when that thread is deleted. But
you can achieve the same functionality by deleting the unwanted resources in the cleanup
functions, which will be executed during the thread deletion.

Q: Does RZK support the Priority Inheritance protocol?

A: Yes. RZK supports Priority Inheritance protocol. For more information about how to
choose the option, refer to the Zilog Real-Time Kernel Reference Manual (RM0006),
which is available free for download from zilog.com and also located in the following
path:

<ZDSII installed directory>\Program
Files\Zilog\ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Docs

Q: Does the Priority Inheritance protocol take care of both unbounded and bounded pri-
ority inversion?

A: Yes, it does. RZK supports priority inheritance for both unbounded and bounded pri-
ority inversion.
 UM007518-1211

http://www.zilog.com/docs/software/rm0006.pdf

Zilog Real-Time Kernel: eZ80® CPU
User Manual

25
Q: How much overhead is consumed by the Priority Inheritance protocol?

A: The Priority Inheritance protocol impacts the system only minimally. Typically, sys-
tem overhead involves changing a thread’s priority and scheduling.

Q: Can I write an application to be run from Flash and debug it through ZDS II?

A: Yes. You can write an application that runs from Flash. Observe the following proce-
dure to write the application:

1. Create a Flash-based project and add the application and required files to it.

2. Modify the settings as specified in this manual for Flash memory and generate a
.hex file to be downloaded to Flash memory by using the Flash Loader integrated
within ZDS II.

3. Select Projects → Settings → Linker and define the Category as Output.
Select IEEE 695 as the executable format and click OK. This setting is required
because the IEEE 695 format contains the debug information.

4. Build the application. Make sure that the Chip Select settings are mirrored as
described in this manual.

5. Connect to the target by selecting Build → Debug → Connect To Target.

6. Reset the eZ80 Development Platform by selecting Build → Debug → Reset.
Now you can debug your programs as usual.

Q: How do I work with interrupts in RZK?

A: Observe the following procedure for interrupt handling:

1. Install an interrupt handler for the appropriate interrupt using the RZKInstall-
InterruptHandler() routine and provide the interrupt handle and the interrupt
number.

2. Write a program such that the interrupt prolog first saves all registers and calls the
C ISR routine (if present) and then restores all registers in the order it is saved.
(You can accomplish this task by pushing the registers onto the stack and subse-
quently popping them from the stack in the order they were pushed.) For more
details, refer to the Zilog Developer Studio II – eZ80Acclaim! User Manual
(UM0144).

3. If RZK APIs are called in the C ISR routine then you are required to call RZKISR-
Prolog() and RZKISREpilog() functions before and after the ISR routine
respectively.
UM007518-1211 In-Depth Questions About Using RZK

http://www.zilog.com/docs/devtools/um0144.pdf
http://www.zilog.com/docs/devtools/um0144.pdf

26

Zilog Real-Time Kernel: eZ80® CPU
User Manual
Q: I have two devices, TIMER1 and UART1. I don't want to miss the Interrupts of either
device and want to handle both of them. How can I do it using RZK? Is it possible to get
nested interrupts in RZK? If so, what precautions do I need to take so that nothing goes
wrong?

A: First, install the interrupt handler for both the devices and then initialize the devices.
RZK is designed to support nested interrupts for different devices. To include nested inter-
rupts, make sure you have enabled the interrupts after the RZKIsrProlog() API is called
in the ISR. Take the precaution to include enough time to service the interrupt and to exe-
cute the thread code. If an interrupt routine needs to be nested, it is usually because there
are bursts of interrupts that have to be handled. A large buffer for the incoming data and a
larger stack size is also required.

Q: I regularly get an Uninitialized Interrupt message. What does this message
mean and why do I get it?

A: The message Uninitialized Interrupt specifies that one of your interrupt han-
dlers has not been initialized using RZKInstallInterruptHandler() API. By default,
RZK installs a handler that prints the message Uninitialized Interrupt and exe-
cutes a HALT instruction.

Q: Why does the control not go to the highest priority thread, when I create it within the
main() API?

A: The main() function executes at the highest priority. It acts as a launch pad for the
application. The control is transferred to your application only after the main() function
is executed completely. Although, you have assigned the highest priority to the thread that
you have created, make sure to select the RZK_THREAD_AUTOSTART option for the opera-
tion mode of the thread. Otherwise, you must explicitly resume the thread by calling
RZKResumeThread() API.

Q: Do the binary semaphores, used for mutual exclusion, allow multiple locking by a
thread?

A: No. Binary semaphores are for mutual exclusion only and multiple locking by the
same thread is not allowed in RZK.

Q: Does RZK support callback functions, such as callouts in pSOS and hookups in
VxWorks?

A: Yes. However, the support is limited to the cleanup functions that are called when a
thread is deleted.
 UM007518-1211

Zilog Real-Time Kernel: eZ80® CPU
User Manual

27
Q: Can I change the blocking queue type from FIFO to priority or vice versa for mes-
sagequeues, semaphores or other RZK objects?

A: No. You cannot change the blocking queue type of a created object.

Q: What is the difference between the macros RZK_SYSTICKS_
INSECH and RZK_DEVTICKS_PERSYSTICKH? The granularity of the system is depen-
dent on which of these macros?

A: The RZK_SYSTICKS_INSECH represents system ticks per second, whereas
RZK_DEVTICKS_PERSYSTICKH represents the number of device ticks that are present in
one system tick. The granularity of the system depends upon the
RZK_SYSTICKS_INSECH value.

Q: What are Debug Priority Inheritance, Debug Non Priority Inheritance, Non Debug
Priority Inheritance and Non DebugNon Priority Inheritance? Why are they required?

A: These four sets of RZK libraries (four for each target platform) are categorized
according to the implementation of priority inheritance protocol. Debug Priority Inheri-
tance indicates that debugging and Priority Inheritance are enabled. The N in front of
either Debug or Priority Inheritance indicates that they are disabled.

For example, The real-time application may therefore be used first with the RZK
DebugPI configuration to remove any errors during testing of the system. If the applica-
tion is error-free, it is preferable to use the RZK NDebugNPI or RZK NDebugPI configu-
ration, based on the application requirements.

Q: I changed the RZK configuration from Debug Priority Inheritance to Non Debug Non
Priority Inheritance by including the Non Debug Non Priority Inheritance libraries in the
project and removing the Debug Priority Inheritance libraries from the project. Do I need
to change anything else?

A: No.

Q: What is the include order for RZK-related header files?

A: The include order for RZK-related header files is:

#include "ZTypes.h"
#include "ZSysgen.h"
"other required RZK header files"

ZSysgen.h and ZTypes.h can be in any order, but all other RZK header files must be
included after these two header files because all of the RZK header files use the macros
and definitions of the ZSysgen.h and ZTypes.h files.
UM007518-1211 In-Depth Questions About Using RZK

28

Zilog Real-Time Kernel: eZ80® CPU
User Manual
For details, refer to the Zilog Real-Time Kernel Reference Manual (RM0006), which is
available free for download from zilog.com and also located in the following path:

<ZDSII installed directory>\Program
Files\Zilog\ZDSII_eZ80Acclaim!_A.B.C\ZTP\ZTPX.Y.Z_Lib\RZK\Docs

Q: I have a different memory map on my custom hardware as compared to the develop-
ment board. What changes am I required to make to modify the RZK demo project to suit
my custom hardware in the ZDSII environment?

A: RZK uses the bootup files provided by ZDS II. This means that there are no separate
hardware configuration files required to configure the chip selects and the memory map.
So if your custom hardware features a different memory map as compared to the one pro-
vided in the demo programs for the development platform, then the following changes
must suit your custom hardware:

Modify the ROM and RAM address space to suit your memory map under Project →

Settings → Linker → Address Space → ROM and RAM address spaces.

Incorporate the corresponding changes to the Chip Selects, the Program Counter and
the Stack Pointer under Project → Settings → Debugger → Setup, Program Coun-
ter, Stack Pointer Long and the Chip Select Registers. Take special care while enabling/
disabling the internal Flash and internal SRAM.

The only change that may be required in the configuration files is for the wait states of the
internal flash. The following code string can be changed, depending on your requirements:

FLASH_CTRL = (FLASH_CTRL & ~FLASH_CTRL_7_WS) | FLASH_CTRL_3_WS;

This code string is available in the RZK_HW_Init() function, which is located in the
eZ80Hw_Conf_ZDS.c file.

Q: This FAQ contains many questions and answers, but I still have questions for which I
find no answers in this document. How can I get answers to my questions?

A: Zilog has a reputation for excellent customer service. Feel free to contact us via our
Customer Service page.
 UM007518-1211

http://zilog.com/index.php?option=com_product&task=customer_service&Itemid=85
http://www.zilog.com/docs/software/rm0006.pdf

Zilog Real-Time Kernel: eZ80® CPU
User Manual

29
Customer Support

To share comments, get your technical questions answered or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.

To learn more about this product, find additional documentation or to discover other facets
about Zilog product offerings, please visit the Zilog Knowledge Base at http://zilog.com/
kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.
UM007518-1211 Customer Support

http://support.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum
http://www.zilog.com

30

Zilog Real-Time Kernel: eZ80® CPU
User Manual
Customer Support UM007518-1211

	Zilog Real-Time Kernel User Manual
	Revision History
	Table of Contents
	Introduction
	About This Manual
	Intended Audience
	Manual Organization
	Abbreviations/Acronyms
	Manual Conventions
	Safeguards

	RZK Overview
	Features of RZK
	RZK Objects
	Limitations
	Developing Software Components

	Getting Started
	Using RZK

	RZK Board Support Package
	BSP Use Case Model
	Board Support Package Configuration
	UART Configuration
	EMAC Configuration
	WLAN Configuration
	RTC Configuration
	SPI Configuration
	I2C Configuration
	Flash Drivers
	USB Configuration

	RZK Configuration
	Data Persistence Configuration

	Appendix A. Frequently Asked Questions
	General Questions about RZK
	In-Depth Questions About Using RZK

	Customer Support

