
Copyright ©2011 Zilog Inc. All rights reserved.
www.zilog.com

Zilog Real-Time Kernel

Reference Manual

RM000619-1211

eZ80® CPU

http://www.zilog.com
http://www.zilog.com

Zilog Real-Time Kernel
Reference Manual

ii
DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS PRIOR WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant
into the body, or (b) support or sustain life and whose failure to perform when properly
used in accordance with instructions for use provided in the labeling can be reasonably
expected to result in a significant injury to the user. A critical component is any
component in a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2011 Zilog Inc. All rights reserved. Information in this publication concerning the
devices, applications, or technology described is intended to suggest possible uses and
may be superseded. ZILOG, INC. DOES NOT ASSUME LIABILITY FOR OR
PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
D O E S N O T A S S U M E LI A B I L I T Y F O R I N T E L L EC T U A L PRO P E RT Y
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION,
DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The
information contained within this document has been verified according to the general
principles of electrical and mechanical engineering.

eZ80 and eZ80Acclaim! are registered trademarks of Zilog Inc. All other product or
service names are the property of their respective owners.

Warning:
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

iii
Revision History

Each instance in the following revision history table reflects a change to
this document from its previous version. For more details, refer to the cor-
responding pages or appropriate links provided in the table.

Date
Revision
Level Description Page

Dec
2011

19 Globally updated for the RZK v2.4.0 release. All

Aug
2010

18 Globally updated for the RZK v2.3.0 release. All

Nov
2008

17 Updated for the RZK v2.2.0 release; added the Board Sup-
port Package APIs, Wireless Local Area Network Driver,
Wireless Local Area Network APIs, Universal Serial Bus
Device APIs and Universal Serial Bus APIs sections;
updated the Application Development and EMAC Data
Structure sections.

xiv, 30,
42, 44,
295, 2,
333

Jul
2007

16 Updated for proper branding. All

Jul
2007

15 Globally updated for the RZK v2.1.0 release. All

Apr
2007

14 Updated the RZKSuspendInterruptThread, RZKResumeIn-
terruptThread, RZKCreateTimer, RZKDevRead,
RZKDevWrite and UARTControl sections; removed section
titled Application Initialization in the IAR Environment.

91, 92,
146, 213,
215, 254

Jul
2006

13 Globally updated for the RZK v2.0.0 release. All
RM000619-1211 Revision History

Zilog Real-Time Kernel
Reference Manual

iv
Table of Contents

Revision History . iii

Introduction . xiii
About This Manual . xiii
Intended Audience . xiii
Manual Organization . xiii
Related Documents .xv
Manual Conventions .xv
Safeguards . xvi

Zilog Real-Time Kernel. .1

Real-Time Response .1

Why RZK? .1

Application Development .2
Application Initialization in the ZDS II Environment2

RZK Architecture .6

Resource Queue Manager .6

Scheduler .7

Time Queue Manager .7

Threads .8
Static Creation .11
Thread-Switching Time .11
Preemption .11
Yield .11
Time Slicing .12
Autostart .12

Timers .12

Interprocess Communication Mechanisms 13
RM000619-1211 Table of Contents

Zilog Real-Time Kernel
Reference Manual

v

Message Queues .13
Semaphores .15
Event Groups .19

Memory Management .20

Interrupts .22
Application Interrupt Lockout .22

Device Driver Framework .23
Device Driver Table .24
How to Write a Device Driver Using DDF25
Sample Device Drivers That Use DDF27

RZK APIs .32

RZK API Summary .32
Kernel Startup .32
Thread Control .33
Thread Communication .33
Thread Synchronization .34
Software Timer .36
Memory Management .37
Interrupt Management .38
Device Driver Framework .39
Miscellaneous APIs .40

Board Support Package APIs. .42
Ethernet Media Access Control APIs .42
Wireless Local Area Network APIs .42
Universal Asynchronous Receiver/Transmitter APIs 43
Real-Time Clock APIs .43
Serial Peripheral Interface APIs .43
Inter-Integrated Circuit APIs .44
Universal Serial Bus Device APIs .44
Watchdog Timer APIs .44
Flash Device Driver APIs .44
RM000619-1211 Table of Contents

Zilog Real-Time Kernel
Reference Manual

vi
RZK APIs and Context Switching. .46

API Definitions .52

Standard Data Types .52

Include Files .53

API Definition Format .54

RZK API Quick Reference .56

Kernel Start-Up APIs .56
RZK_KernelInit .57
RZK_KernelStart .58

Thread Control APIs .59
RZKCreateThread .60
RZKCreateThreadEnhanced .66
RZKDeleteThread .71
RZKDeleteThreadEnhanced .74
RZKSuspendThread .77
RZKSetThreadPriority .80
RZKResumeThread .82
RZKYieldThread .84
RZKGetThreadParameters .86
RZKDisablePreemption .88
RZKEnablePreemption .89
RZKRestorePreemption .90
RZKSuspendInterruptThread .91
RZKResumeInterruptThread .92

Scheduler APIs .93
RZKGetSchedulerParameters .93

Message Queue APIs .94
RZKCreateQueue .95
RZKDeleteQueue .99
RZKSendToQueue .101
RM000619-1211 Table of Contents

Zilog Real-Time Kernel
Reference Manual

vii
RZKSendToQueueFront .104
RZKReceiveFromQueue .106
RZKPeekMessageQueue .110
RZKGetQueueParameters .113
RZKSendToQueueUnique .115

Semaphore APIs .117
RZKCreateSemaphore .118
RZKDeleteSemaphore .121
RZKAcquireSemaphore .123
RZKReleaseSemaphore .126
RZKGetSemaphoreParameters .128

Event Group APIs .130
RZKCreateEventGroup .131
RZKDeleteEventGroup .133
RZKPostToEventGroup .135
RZKPendOnEventGroup .139
RZKGetEventGroupParameters .143

Software Timer APIs .145
RZKCreateTimer .146
RZKDeleteTimer .149
RZKEnableTimer .151
RZKDisableTimer .153
RZKGetTimerParameters .155
RZKGetTimerResolution .157

Clock APIs .158
RZKGetClock .159
RZKSetClock .161

Partition APIs .163
RZKCreatePartition .164
RZKDeletePartition .166
RZKAllocFixedSizeMemory .168
RM000619-1211 Table of Contents

Zilog Real-Time Kernel
Reference Manual

viii
RZKFreeFixedSizeMemory .170
RZKGetPartitionParameters .172

Region APIs .174
RZKCreateRegion .175
RZKDeleteRegion .178
RZKAllocSegment .180
RZKFreeSegment .183
RZKGetRegionParameters .185
RZKQueryMem .187
malloc .189
free .191

Interrupt APIs .193
RZKInstallInterruptHandler .194
RZKEnableInterrupts .196
RZKDisableInterrupts .198
RZKISRProlog .200
RZKISREpilog .202

Device Driver Framework APIs .204
RZKDevAttach .205
RZKDevDetach .207
RZKDevOpen .209
RZKDevClose .211
RZKDevRead .213
RZKDevWrite .215
RZKDevIOCTL .217
RZKDevGetc .219
RZKDevPutc .221

Ethernet Media Access Control APIs .223
AddEmac .224
EmacOpen .225
EmacClose .227
RM000619-1211 Table of Contents

Zilog Real-Time Kernel
Reference Manual

ix
EmacWrite .228
EmacRead .230
EmacControl .232

Wireless Local Area Network APIs .234
AddWlan .235
wlanOpen .236
wlanWrite .238
wlanRead .240
wlanClose .242

Universal Asynchronous Receiver/Transmitter APIs 243
AddUart0 .244
AddUart1 .245
UARTOpen .246
UARTClose .248
UARTWrite .250
UARTRead .252
UARTControl .254
UARTPeek .257
UARTGetc .259
UARTPutc .261

Real-Time Clock APIs .263
AddRtc .264
RTCRead .265
RTCControl .266

Serial Peripheral Interface APIs .270
AddSpi .271
SPI_Open .272
SPI_Close .274
SPI_Write .275
SPI_Read .277
SPI_IOCTL .279
RM000619-1211 Table of Contents

Zilog Real-Time Kernel
Reference Manual

x

Inter-Integrated Circuit APIs .282
AddI2c .283
I2COpen .284
I2CClose .286
I2CControl .287
I2CWrite .290
I2CRead .292
I2CPeek .294

Universal Serial Bus APIs .295
EZ80D12_init .296
EZ80D12_Connect () .297
EZ80D12_Disconnect () .298

Watchdog Timer APIs .299
wdt_init .300
wdt_reset .302

Flash Device Driver APIs .303
FLASHDEV_Init .305
FLASHDEV_Read .306
FLASHDEV_Write .307
FLASHDEV_Erase .308
FLASHDEV_Close .309

Miscellaneous APIs .310
RZKFormatError .311
RZKGetCurrentThread .312
RZKGetErrorNum .313
RZKGetThreadStatistics .315
RZKGetTimerStatistics .317
RZK_Reboot .319
RZKGetCwd .320
RZKSetCwd .322
RZKGetHandleByIndex .323
RM000619-1211 Table of Contents

Zilog Real-Time Kernel
Reference Manual

xi
RZKSystemTime .324
GetDataPersistence .325
SetDataPersistence .326
RZKSetFSData .327
RZKGetFSData .328
RZKThreadLockForDelete .329
RZKThreadUnLockForDelete .330
FreePktBuff .331

Appendix A. RZK Data Structures .332

RZK Data Types .332

EMAC Data Structure .333

UART Data Structure .334

RTC Data Structure .334

Data Persistence Data Structure .335

RZK Enumerators .335
RZK_EVENT_OPERATION_et .336
RZK_RECV_ATTRIB_et .337
RZK_ERROR_et .338

RZK Constants .339
RZK_OPERATIONMODE_t .340
RZK_STATE_t .341
RZK_EVENT_OPERATION_et .343

Additional RZK Macros .343
Semaphore Macro .344

RZK Objects .345
RZK_THREADPARAMS_t .346
RZK_SCHEDPARAMS_t .347
RZK_MESSAGEQPARAMS_t .348
RZK_SEMAPHOREPARAMS_t .349
RZK_EVENTGROUPPARAMS_t .350
RM000619-1211 Table of Contents

Zilog Real-Time Kernel
Reference Manual

xii
RZK_TIMERPARAMS_t .351
RZK_PARTITIONPARAMS_t .352
RZK_REGIONPARAMS_t .353
RZK_THREADSTATISTICS_t .354
RZK_TIMERSTATISTICS_t .355
RZK_CLOCKPARAMS_t .356

Appendix B. RZK Error Conditions .357

Appendix C. Interrupt Handling .359

Customer Support .363
RM000619-1211 Table of Contents

Zilog Real-Time Kernel
Reference Manual

xiii
Introduction

This Reference Manual describes the APIs associated with Zilog Real-
Time Kernel (RZK) software for Zilog’s eZ80® CPU-based microproces-
sors and microcontrollers. The current RZK release supports the eZ80L92
microprocessor and the eZ80Acclaim!® family of devices, which includes
the eZ80F91, eZ80F92 and eZ80F93 microcontrollers.

About This Manual

Zilog® recommends that you read and understand the chapters in this
manual before using the product. This manual is a reference guide for
RZK APIs.

Intended Audience

This document is written for Zilog customers who are familiar with real-
time operating systems and are experienced at working with microproces-
sors, or in writing assembly code or in higher level languages such as C.

Manual Organization

This Reference Manual contains the following chapters and appendices.

Zilog Real-Time Kernel

This chapter provides an overview of RZK and why it is used for the
eZ80® family of devices.

RZK Architecture

This chapter provides functional description of the RZK objects.
RM000619-1211 Introduction

Zilog Real-Time Kernel
Reference Manual

xiv
RZK APIs

This chapter provides summary of the RZK APIs.

Board Support Package APIs

This chapter summarizes and describes each of the BSP APIs, which
cover the EMAC, UART, RTC, SPI, I2C, WDT, ADC, USB, WLAN and
Flash device driver.

RZK APIs and Context Switching

This chapter provides a list of each RZK API in terms of its context-
switching capability.

API Definitions

This chapter provides detailed descriptions for the RZK APIs in terms of
syntax, argument descriptions, return values and example code.

Appendix A. RZK Data Structures

This appendix provides description for RZK data structures.

Appendix B. RZK Error Conditions

This appendix provides description for RZK error conditions.

Appendix C. Interrupt Handling

This appendix provides a description of the RZK-specific prologues and
epilogues used to manage interrupt service routines.
RM000619-1211 Introduction

Zilog Real-Time Kernel
Reference Manual

xv
Related Documents

Table 1 lists the related documents that you must be familiar with, to use
RZK efficiently.

Manual Conventions

This manual has adopted the following conventions to provide clarity and
ease of use.

Use of X.Y.Z

Throughout this document, X.Y.Z refers to the RZK version number in
Major.Minor.Revision format.

Use of <tool>

Throughout this documents, <tool> refers to ZDS II.

Courier New Typeface

Code lines and fragments, functions and various executable items are dis-
tinguished from general text by appearing in the Courier New typeface.

For example: #include "ZSysgen.h".

Table 1. Related Documents

Zilog Real-Time Kernel Quick Start Guide QS0048

Zilog File System Quick Start Guide QS0050

Zilog File System Reference Manual RM0039

Zilog TCP/IP Software Suite Quick Start Guide QS0049

Zilog TCP/IP Software Suite Reference Manual RM0041
RM000619-1211 Introduction

Zilog Real-Time Kernel
Reference Manual

xvi
Safeguards

When you use RZK with one of Zilog’s development platforms, follow
the precautions listed on this page to avoid permanent damage to the
development platform.

Power-Up Precautions

When powering up, observe the following sequence.

1. Apply power to the PC and ensure that it is running properly.

2. Start the terminal emulator program on the PC.

3. Apply power through connector P3 on the eZ80 Development Plat-
form.

Power-Down Precautions

When powering down, observe the following sequence.

1. Exit the monitor program.

2. Remove power from the eZ80 Development Platform.

Always use a grounding strap to prevent damage resulting from electro-
static discharge (ESD).

Note:
RM000619-1211 Introduction

Zilog Real-Time Kernel
Reference Manual

1

Zilog Real-Time Kernel

The Zilog Real-Time Kernel (RZK) is a real-time, preemptive multitask-
ing kernel designed for time-critical embedded applications. It is cur-
rently available for the eZ80® family of microprocessors and the
eZ80Acclaim!® family of microcontrollers.

A major portion of the RZK source code is written in the ANSI C lan-
guage; assembly language code is used only for target-related informa-
tion.

You can link real-time applications with the RZK library. The resulting
object can be downloaded to the Flash or RAM target, or placed in ROM.

Real-Time Response

Real-time response describes the software that produces the correct
response to external and internal events at the proper time. Real-time,
itself, is categorized as hard and soft real-time. In soft real-time, failure to
produce a response at the correct time is acceptable. However, a similar
failure occurring in hard real-time has the potential to be catastrophic.

Why RZK?

The advantages of using RZK are briefly described below:

• RZK’s modular design concept allows you to custom-tailor RZK to
meet your product requirements

• RZK is a reliable kernel that is tested extensively. It is backed by a
seasoned software development and support team at Zilog with the
intention of helping Zilog customers succeed in their respective ven-
RM000619-1211 Zilog Real-Time Kernel

Zilog Real-Time Kernel
Reference Manual

2

tures by offering quality software components and technical knowl-
edge

• RZK provides all of the standard benefits of a true kernel with very
low memory requirements

• RZK is affordable in terms of product and development costs and
resource overhead for most present-day implementations

Application Development

Embedded real-time applications are developed on a host computer sys-
tem such as an IBM PC or a UNIX workstation, and the resulting applica-
tion is cross-compiled to a target environment. The application software
runs on another system referred to as a target system (for example, an
eZ80® development module). The resulting binary image is either down-
loaded to target system RAM or programmed into ROM, EEPROM,
Flash or some other nonvolatile device on the target system.

Debugging software on a target system usually involves the use of an
extended set of debug tools such as Zilog Developer Studio (ZDS II) and
ZPAK II. When developing with RZK via the ZDS II tool, RZK startup is
executed through the ZDS II interface.

Application Initialization in the ZDS II Environment

Figure 1 displays the control flow of the Zilog RZK, from initialization in
the ZDS II environment to the first thread’s entry point function.
RM000619-1211 Zilog Real-Time Kernel

Zilog Real-Time Kernel
Reference Manual

3

The ZDS II standard start-up function invokes the main() routine after
execution of the basic system bootup. The main() routine contains the
required RZK function calls. Initially, this routine invokes the
RZK_KernelInit() routine that initializes the RZK internal data struc-
tures by creating internal threads. The main() routine then invokes the
application routine that creates threads or resources.

The user code is contained in the application routine and not in the
main() routine.

The following section applies to ZDS II.

Figure 1. Control Flow of RZK Application Initialization in the ZDS II Environment

Main Function

RZK_KernelInit()

RZK_KernelStart()

 Initializes RZK Internal
 Data Structures

 Initializes RZK Timers

 Calls RZK_Hw_Init()

 Creates internal threads
 and idle thread

Executes application threads

1

2

3

4

User Application

Threads/Resources
Create Function

ZDS II Standard
Startup

 Sets default
 interrupt handlers

 Copies data section

 Initializes bss section
 to zeroes

 Initializes code
 section (if any)

 Jumps to main
 function

User Application Code

Note:
RM000619-1211 Zilog Real-Time Kernel

Zilog Real-Time Kernel
Reference Manual

4

At the end of the main() routine, the RZK_KernelStart() function
must be called. Calling this function starts the execution of application
threads. After the RZK_KernelStart() function is invoked, the control
never returns to the next statement in the main() routine.

The following code snippet is a sample implementation of the main()
function.

int main(int argc, void *argv[])
{
RZK_KernelInit() ; // This first statement of the main
// function must be present. It is a user application
// statement that creates threads or resources.

RZK_KernelStart() ; // This function is the final
// function that the main function executes and
// must be present.
}

1. The RZK_KernelInit() routine creates and resumes the lowest-pri-
ority kernel thread that runs when no user-created threads are in a
ready-to-run state. The entry point function name of this kernel thread
is idlethread. This entry point function is exposed and contains an
infinite while loop. To handle idle scenario, you can write a routine in
this kernel thread.

2. Avoid performing blocking operations inside the main() routine.
This function runs until the RZK_KernelStart() routine has com-
pleted executing, then passes control to the scheduler.

3. An idle thread executes when no other threads are executing. When
entering a value for the maximum number of threads in the
RZK_Conf.c file, this idle thread must be added to the number
required by the user application in addition to an RZK internal thread.
Therefore, the total number of threads is equal to the number of appli-
cation threads plus two.

Notes:
RM000619-1211 Zilog Real-Time Kernel

Zilog Real-Time Kernel
Reference Manual

5

4. You can work without creating any other thread, in which case the
application executes sequentially. That is, if no threads are created in
the main() function, the application is executed sequentially and run
to completion until RZK_KernelStart() is called.

5. Interrupts are disabled throughout the execution of the main() func-
tion. The interrupts are enabled only after the first thread starts run-
ning, that is, after the execution of the RZK_KernelStart() routine.

6. RZK creates another internal thread to run the RZK timer. Whenever
a timer interrupt occurs, this interrupt thread resumes and processes
various threads that are in finite suspended/blocked states. This inter-
rupt thread also processes software timers and other bookkeeping rou-
tines.

Do not enable interrupts from the main() function. RZK execution is
unpredictable under such circumstances.

Caution:
RM000619-1211 Zilog Real-Time Kernel

Zilog Real-Time Kernel
Reference Manual

6

RZK Architecture

This chapter discusses the RZK architecture. This architecture is configu-
rable, scalable and modular in design, and provides a rich set of features
and easy-to-use APIs. RZK features are tuned to the stringent memory
and performance requirements of the 8-bit domain.

The RZK kernel consists of a preemptive scheduler, an algorithm to man-
age the Resource queue, the Dispatch queue (contains ready-to-run
threads at different priority levels) and the Time queue (contains inter-
task communications mechanism objects such as semaphores, message
queues and events that are finitely blocked) and hardware-dependent rou-
tines (see Figure 2 on page 8). All RZK objects use the kernel services for
resource management and provide a set of APIs as an interface to the
application. As an option, the application can use the inter-task communi-
cation mechanism objects described above, as appropriate.

In contrast to a messaging approach, RZK is designed to provide stand-
alone APIs that perform a number of required operations that increase
operational efficiency and minimize time of execution.

Resource Queue Manager

The Resource Queue Manager manages RZK inter-task communication
and synchronization mechanism objects such as semaphores, message
queues and event groups, on which different threads are pending and/or
blocking. Whenever a resource object (for example, a semaphore) is
being released, has received a message (via the message queue) or has
received an event (via an event group), the pertinent thread that is blocked
on the resource object is awakened, depending on the attribute of the
resource (Priority or FIFO). In essence, if a resource is created to wake up
threads in a Priority order, the highest-priority thread that is blocked is
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

7

awakened. If in FIFO order, the thread that is blocked on the resource first
is awakened.

Scheduler

The Scheduler, which depends upon different thread states, manages pro-
cessor execution by highest-priority thread. The scheduler implements
scheduling algorithms to manage priority-driven preemptive scheduling
and round-robin scheduling.

Time Queue Manager

The Time Queue Manager manages the timing of different threads that
must be executed and manages a queue that stores time-outs for threads in
a round-robin fashion; these threads are finitely blocked on resources
such as semaphores, message queues and events. For every system timer
tick, the Time queue is updated and an appropriate thread is executed.
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

8

Threads

A thread is an RZK object. It is synonymous to the task definition in
VRTX32™ context, and represents a self-sufficient execution entity that
runs concurrently with other threads. Each thread competes with other
threads for system resources such as CPU cycles, messages, semaphores
and so forth. RZK enables a particular thread to execute among all other
threads based on its priority and readiness to execute. RZK cannot be con-
figured without a thread object. A unique handle identifies each thread.
This thread handle is a pointer to the static thread control block (referred
to as TCB, an RZK internal structure containing numerous details about a

Figure 2. Zilog Real-Time Kernel Architecture

Hardware
(eZ80® Family of MPUs)

RZK Core

User Application

Interprocess
Communication

Mechanisms
Message Queues

Semaphores
Event Groups

Threads Timers

Memory

Interrupts Interrupts
Device
Driver

Framework

Partitions
Regions

Device
Driver

Zilog
File

System

Flash
Driver

Flash
Device
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

9

thread). Each thread can also be identified by a name; this name is a
fixed-length ASCII string.

To keep the size of the TCB compact, the name field is omitted for nonde-
bug mode.

Each thread contains a number of priority values. These values are
described in Table 2.

In addition, a part of the thread context (which refers to all CPU registers,
program counter and stack pointer values when a thread is preempted), is
stored in the TCB and updated when that thread is required to be pre-
empted by another thread or an interrupt service routine (the routine
called when an interrupt signal is encountered during the execution of an
RZK application). To restart a thread, the initial values of the thread con-
text, such as the stack pointer, the machine status word (refers to all CPU
registers/stack pointers and the program counter), the round-robin time
slice, pointers to an argument list and entry points, are stored separately.

The unit of time slice for round-robin scheduling is system ticks. The
duration for time slicing is stored on thread basis.

To maintain statistics about thread information, such as the total and
actual run-time of threads, the number of times a thread is blocked is also
stored.

Table 2. Thread Priority Values

Inherited This value is determined by RZK based on the priority inheritance
protocol. For details, see the inheritance and inversion concepts in
the Semaphores section on page 15.

Dispatch This value is used for queuing and selecting a thread for execution.

Note:
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

10
The state of the thread, such as RUN, BLOCKED, TIMED BLOCK and SUS-
PENDED, are also stored in the state field in the TCB. A thread waiting for
an input to a message queue is in a BLOCKED state. If a message queue
message is not received, the thread remains in the BLOCKED state. The
TIMED BLOCK feature allows the application to specify how long a thread
stays BLOCKED prior to discontinue waiting for the arrival of an input. A
blocking time-out, in ticks, is stored by RZK.

For events, the respective masks are provided. A NULL terminated list of
function addresses is managed to support clean-up functions at the time of
thread deletion.

A number of thread states are defined in Table 3.

The following subsections cover the attributes of a thread, such as static
creation, thread-switching time, and preemption.

Table 3. Thread States

Thread State Description

Running Thread is running.

Ready Thread is ready but another thread is running.

Suspended Thread is suspended for a finite or infinite time (usually devel-
oper-specified) so that a lower-priority thread runs while this
thread waits for an elapsed time.

Deleted Thread has been deleted. This state occurs either because its
operation is complete and a self delete occurs automatically, or
because another thread has deleted it.

Blocked/Timed Block Thread is blocked while waiting for a resource (resource is not
available).
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

11
Static Creation

You must decide the maximum number of thread objects to create. This
number is referred to as a static creation value. Although RZK objects are
created and deleted dynamically, they cannot exceed this static creation
value.

Thread-Switching Time

The switching time for suspending one thread and resuming another is a
constant.

Preemption

Preemption is the act of revoking CPU resources from a lower-priority
thread when a higher-priority thread is ready for execution. Preemption
can be enabled or disabled on an individual thread basis using the
RZKCreateThread API (see the RZKCreateThread API definition on
page 60). When preemption is disabled, no other thread can execute until
the current thread suspends, blocks or enables preemption, or until the
thread deletes itself.

Yield

Yield is a mechanism provided to a thread to voluntarily relinquish a pro-
cessor resource to other ready threads at the same priority level. The
thread that yields executes or resumes after all such ready threads at its
priority level utilize the CPU resource per the allowed quantum schedul-
ing policies, or until they are no longer in a running state.
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

12
Time Slicing

Time slicing (round-robin scheduling) is a CPU resource sharing mecha-
nism, provided by RZK, whereby a thread executes up to a specific time
interval prior to relinquishing the CPU resource to the next ready thread.
A time slice is the maximum number of time ticks that occur before con-
trol is ceded to the next ready-to-run thread at the same priority level. A
thread using time slicing can be preempted – before its time slice is com-
pleted – by a higher-priority thread.

Autostart

The autostart option, if active at the time of thread creation, allows the
thread to start running as soon as it is created – provided that no other
higher-priority thread is executing.

Timers

A timer is an optional RZK object. Timer objects invoke user-supplied
functions that are to be processed at periodic intervals. The Timer object
scheduling takes place through the hardware timer tick. Because the timer
object runs certain functions periodically, it runs from the timer interrupt
routine.

These periodically-run functions cannot make a blocking object call, and
they use the RZK timer interrupt thread stack to run. The timer functions
can be enabled or disabled dynamically.

Ticks

A tick is the basic unit of time for all RZK timer facilities. For more
details about the tick rate, see Appendix C. Interrupt Handling on page
359.
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

13
Margin of Error

A timer request can be satisfied by as much as one tick early in actual
time. A tick can occur immediately after the timer request. The first tick
of a timer request represents an actual duration of time, ranging from zero
to the rate of the hardware timer interrupt. For example, the actual time
elapsed for a request of n ticks falls between the actual time n and n–1
ticks present.

Hardware Requirement

RZK timer services require a periodic timer interrupt from the hardware.
Without this interrupt, timer facilities cannot function. Other RZK facili-
ties are not affected by the absence of timer facilities. For more details,
see Appendix C. Interrupt Handling on page 359.

Interprocess Communication Mechanisms

RZK provides several objects for the purpose of interprocess communica-
tion and synchronization. These objects are message queues, event groups
and semaphores. Synchronization of threads is required when two or
more threads share a common area of memory or resources.

Message Queues

The message queue object provides a mechanism to transfer multiple
bytes of information or messages. Two or more threads can use a message
queue to communicate with each other asynchronously. The length of
each message is variable but cannot exceed the specified maximum size
of the message when the message queue is created.

Message contents are user-defined. Messages are added to the end of the
queue by default; however, there is a facility to insert a message at the
head of the queue. Messages are retrieved only from the head of the
queue.
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

14
The message queue is an optional RZK object. Because the message
queue is a multiple message-based interprocess communication (IPC)
mechanism, it is not directed toward a specific thread. The message queue
handler contains a unique value and points to the static message queue
control block.

You can also identify each message queue by name. This name must be a
fixed-length ASCII string. To maintain the message queue control block’s
compact size, the name field is omitted for nondebug mode. RZK pro-
vides a fixed-length message queue storage area.

You must allocate necessary memory for the message queue object cre-
ated. In addition, all post operations result in a copy operation; i.e., the
contents of the user-supplied message input parameter in a send operation
is copied to the message queue object, and vice versa, in a pend operation.
Therefore, a sender can reuse the buffer upon returning from the post API.

If a message pointer is passed, ensure that the message buffer is globally
accessible and shareable between the sender and the recipient. In addition,
you must also ensure the safety of the buffer from untimely or accidental
modification or deletion. You must also design an independent mecha-
nism for allocation and deallocation of these message buffers.

Static Creation

As with all RZK objects, you must decide the maximum number of mes-
sage queue objects that can be created. This static value is referred to as
static creation. Therefore, although RZK objects are created and deleted
dynamically, they cannot exceed this static creation value.

Blocking

Threads can be blocked on a message queue for several reasons. A thread
attempting to receive a message from an empty message queue can be
blocked. A thread attempting to send a message to a full queue can be
blocked. A blocked thread is resumed when the message queue is able to
satisfy that thread’s request. Threads are blocked in either FIFO or PRI-
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

15
ORITY order, depending on the option with which the message queue is
created. If the queue is blocked with the FIFO option, the threads are
resumed in the order in which they were blocked. If the PRIORITY
option is supported, threads are resumed in priority order, from highest to
lowest priority.

You can choose not to block on message queues to receive or send mes-
sage queue messages. When this option is chosen, a TIMEOUT error
occurs if the message queue is empty while receiving, or full while send-
ing messages.

Processing Time

The processing time for sending and receiving a message in a message
queue is constant, but the processing time required to copy a message is
relative to the message size.

However, the processing time for sending and receiving a message
increases if there are number of threads trying to access the same resource
(message queue). The increase in processing time depends on whether the
executing thread is created with the PRIORITY option or the FIFO
option. With the FIFO option, the processing time depends on the number
of threads already blocked on the message queue. With the PRIORITY
option, the processing time depends on the thread’s priority level.

Semaphores

RZK provides semaphores and event groups for thread synchronization
purposes. Thread synchronization is used when two or more threads share
a common area of memory or resources.

A semaphore is an optional RZK object. It is the only object requiring a
priority inheritance protocol and is tightly coupled with scheduling meth-
ods.

Priority inheritance is a method of solving priority inversion problems.
Priority inversion occurs when a high-priority thread is starved of a par-
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

16
ticular CPU resource because a low-priority thread that owns the resource
(in this case, semaphore) and retains exclusive use of that resource, is
blocked for various reasons. One of these reasons is that a medium-prior-
ity thread preempts it and begins executing.

With priority inheritance, this low-priority thread that owns the sema-
phore temporarily inherits the highest priority, allowing it to execute com-
pletely, release the resource and return to its original priority level. The
higher-priority thread that requires the same resource (in this case, the
semaphore) acquires it as soon as it is released from the low-priority
thread. Priority inheritance is supported for the binary semaphore. For
more information about how to enable the priority inheritance protocol in
RZK, refer to the Zilog Real-Time Kernel User Manual (UM0075).

As a semaphore uses a mutual-exclusion mechanism (such as IPC), it is
not directed to a specific thread. The semaphore handle is a unique value
that points to a static semaphore control block. Each semaphore is also
identified by a name. This name is a fixed-length ASCII string. To main-
tain the compact size of the semaphore control block, the name field is
omitted for nondebug mode.

RZK implements semaphore behavior in the following manner:

1. A semaphore created by Thread A can be acquired or released by
Thread B if the semaphore is any of the following types:

– A counting semaphore with a receiving order of priority or FIFO

– A binary semaphore with a receiving order of FIFO

– A binary semaphore with a receiving order of PRIORITY but
does not use a priority inheritance algorithm

2. Thread B can delete a semaphore waiting to be acquired by Thread A.
In this case, an error called RZKERR_OBJECT_DELETED is returned
from the RZKAcquireSemaphore() API in Thread A.

3. When a task is deleted, no other task is notified about this task dele-
tion. The RZKThreadLockForDelete() and the RZKThreadUn-
RM000619-1211 RZK Architecture

http://www.zilog.com/docs/software/um0075.pdf

Zilog Real-Time Kernel
Reference Manual

17
LockForDelete() routines address problems that originate from an
unexpected deletion of the thread. The RZKThreadLockForDe-
lete() routine protects the thread from deletion by other threads.
This protection is often required when a thread executes in a critical
region or engages a critical resource.

For example, a thread may take a semaphore for exclusive access to data.
When executing inside the critical region, the thread can be deleted by
another thread. Because the thread is not able to complete execution in the
critical region, the data may be corrupt or inconsistent. As the semaphore
can never be released by the thread, the critical resource is now unavail-
able for use by any other thread and is therefore frozen.

The RZKThreadLockForDelete() API protects the thread that
acquires the semaphore and prevents an outcome in which the thread is
frozen. Any thread that tries to delete a thread protected by the RZK-
ThreadLockForDelete() API is returned with an error.

When a critical resource is exhausted, the protected thread can become
available for deletion by calling the RZKThreadUnLockForDelete()
API. To support nested deletion-safe regions, a count of the number of
times the APIs RZKThreadLockForDelete() and RZKThreadUn-
LockForDelete() are called is maintained. Deletion is allowed only
when this count is zero; i.e., there are as many unlocks as there are locks.
Protection operates only on the calling thread. A thread cannot prepare
another thread to be safe or unsafe from deletion.

The following code snippet illustrates the usage of the RZKThreadLock-
ForDelete() and RZKThreadUnLockForDelete() APIs:

ThreadBody()
{
RZKThreadLockForDelete();
RZKAcquireSemaphore(sem_handle);
// Critical region
RZKReleaseSemaphore(sem_handle);
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

18
RZKThreadUnLockForDelete();
}

A binary semaphore cannot be acquired or released from an ISR because
the ISRs do not have a fixed task context. ISRs run in the context of the
currently-running thread. When called within an ISR, the acquire / release
APIs return an error.

Static Creation

You must decide the maximum number of semaphore objects that can be
created. This number is referred to as a static creation value. Therefore,
although RZK objects are created and deleted dynamically, they cannot
exceed this static creation value.

Blocking

A thread trying to acquire a semaphore can become blocked when the
number of threads already with semaphore(s) equals the initial count.
Threads can get blocked in either FIFO or PRIORITY order, depending
on the option with which the semaphore is created. If a semaphore is
blocked with the FIFO option, threads are resumed in the order in which
they were blocked. If the PRIORITY option is supported, threads are
resumed from highest to lowest priority.

You can also specify threads not to block on a required semaphore. When
this option is chosen, a TIMEOUT error occurs.

Deadlock

A deadlock refers to a situation in which two or more threads are infi-
nitely blocked on the semaphore. For example, a system contains two
threads and two semaphores. The first thread occupies the second sema-
phore and the second thread occupies the first semaphore. If the second

Note:
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

19
thread tries to occupy the second semaphore and the first thread tries to
occupy the first semaphore, both block for an indefinite duration on the
requested semaphore. Prevention is the best way to deal with such situa-
tions: specifying that threads must not possess more than one semaphore
at a time prevents a deadlock from occurring. Deadlocks can also be pre-
vented if the order of acquiring multiple semaphores is the same for all
threads.

Processing Time

The processing time for acquiring and releasing a semaphore is constant.
However, the processing time increases if there are a number of threads
are trying to access the same resource (semaphore). The increase in pro-
cessing time depends on whether the executing thread is created with the
PRIORITY option or the FIFO option. With the FIFO option, the process-
ing time depends on the number of threads already blocked on the mes-
sage queue. With the PRIORITY option, the processing time depends on
the thread’s priority level.

Event Groups

Event groups are optional RZK objects. Events within an event group can
be masked but cannot be counted. They provide control synchronization
and do not carry any information. Events are directed to specified threads
and can be operated logically. Event groups provide an efficient mecha-
nism to communicate that a certain system event occurred, such as the
availability of data at the drive.

An event group accommodates a maximum of 24 events. Event groups
are not thread-specific, and can be directed to the selected thread’s group.
The event group handle is a unique value that points to a static event
group control block. Each event group is also identified with a name that
is a fixed-length ASCII string. To keep the event group control block size
compact, the name field is omitted for nondebug mode. The event group
control block contains the following elements:
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

20
• Pending event

• Mask

• List of blocked threads

Posting to an event group is equivalent to selectively broadcasting control
messages.

Static Creation

You must decide the maximum number of event group objects that can be
created. This number is referred to as a static creation value. Therefore,
although RZK objects are created and deleted dynamically, they cannot
exceed this static creation value.

Blocking

Blocking occurs when a thread attempts to receive a combination of event
flags that are yet to occur. The thread resumes only after all or any of the
expected events occur depending upon the logical operation specified.

You can specify threads not to block on events or event groups. When this
option is chosen, a TIMEOUT error occurs if an event group fails to
receive expected events.

Processing Time

The processing time for pending an event group is constant. The number
of threads blocked on the event group affect the processing time required
for posting to an event group.

Memory Management

Memory objects are optional RZK objects. However, they are required for
dynamic memory allocation by other objects (for example, message
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

21
queues). Memory objects that are allocated by a thread using a global
variable are not exclusive to that thread; this memory block can also be
utilized by other threads. The handle to the memory object is unique, and
points to the static memory control block.

Unused system memory is organized into two categories based on their
size: fixed and variable.

Partitions

Fixed-size memory blocks are known as partitions, which are helpful for
deterministic memory allocation time. However, the disadvantage of par-
titions is the potential waste of memory when the required memory is less
than the partition segment size.

Regions

Variable-size memory blocks are known as regions. Regions are helpful
for allocating variable-size memory dynamically. The memory allocation
time using regions is not deterministic because the regions must keep
track of the already-allocated and unallocated memory. It is advantageous
to use variable-size memory because it makes efficient use of available
memory.

Static Creation

You must decide the maximum number of memory objects that can be
created. This number is referred to as a static creation value. Therefore,
although RZK objects are created and deleted dynamically, they cannot
exceed this static creation value.

Dynamic Creation

RZK memory objects are created and deleted dynamically within static
creation values. Memory can be dynamically allocated and deallocated
within a created memory object.
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

22
Interrupts

Interrupt objects are the basic entities for a multithreading kernel and pro-
vide concurrent and independent execution of application threads. Inter-
rupts are generated by synchronous devices, such as a timer, as well as by
asynchronous devices such as a keyboard or a mouse.

After a system reset, system interrupt tables display undetermined con-
tents. Processor interrupt handling is normally disabled after a processor
reset. Processor interrupts must be disabled to protect the RZK data struc-
tures. The time taken between an interrupt disable and an interrupt enable
can affect interrupt latency and context switching times.

RZK normally operates with interrupts enabled, and provides APIs to dis-
able or enable interrupts to protect critical sections in the code. You can
also call RZK APIs from within an interrupt service routine (ISR). The
ISR runs to completion by itself and, at the end of execution, it passes the
control to the Scheduler API, if required.

Application Interrupt Lockout

RZK provides users the ability to disable and enable interrupts. When a
user application disables an interrupt, an application interrupt lockout
occurs. An interrupt locked out by an application remains locked until the
application unlocks it.

Device Driver Framework

RZK features a basic device driver framework (DDF) that facilitates com-
munication with I/O devices. This DDF provides a standard driver inter-
face in addition to an abstraction layer that can be used for communication
with the device. The RZK DDF is generic in nature and supports different
devices that exhibit different characteristics.
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

23
As Figure 3 illustrates, the DDF functions as an abstraction layer between
the application and the hardware device. The RZK DDF provides a stan-
dard set of APIs for I/O operations.

Observe the following procedure to add a new device to the DDF and to
begin using it.

1. Attach the required new device to the device driver table. To do so,
the user application must call the RZKDevAttach() function. A call
to this function adds the control block for the specific device to the
device driver table and calls the device-specific initialization func-
tion.

2. After the device is attached to the system’s device driver table, open
the device by invoking the RZKDevOpen() function. A call to this
function opens the device for communication by performing the nec-
essary initialization operations and by reserving the resources.

3. After opening the device, I/O operations can be performed by invok-
ing the RZKDevRead() or the RZKDevWrite() APIs.

Figure 3. I/O System Organization

Application Thread

Device Driver Framework

Device Driver
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

24
4. The device control parameters can be changed using the RZKDe-
vIOCTL() API.

5. After I/O operations are complete, the device can be closed by invok-
ing the RZKDevClose() API. A call to this function releases the
resources used by the device driver.

6. If required to clear the device control block to accommodate other
devices, a device can be detached from the DDF by invoking the
RZKDevDetach() API.

The steps listed above are only guidelines for using a device driver that
conforms to DDF.

Device Driver Table

The RZK Driver Framework calls device drivers by using the I/O device
driver table; the user supplies the driver table within the confines of the
device driver table structure. The driver table contains pointers to device
driver entry points. The RZK_DEVICE_CB_t structure describes the
device driver table.

The user typically enters driver routines in this structure so that they are
stored in the DDF and so that any references to this driver are for appro-
priate operations; the corresponding driver routines are called. For more
details, see the Device Driver Framework section on page 23.

A typical example for a device driver block is provided in the following
routine.

RZK_DEVICE_CB_t Serial0Dev =
{

RZK_FALSE,
"SERIAL0",
UARTInit,

Note:
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

25
(FNPTR_RZKDEV_STOP)IOERR,
UARTOpen,
UARTClose,
UARTRead,
UARTWrite,
(FNPTR_RZKDEV_SEEK)IOERR,
UARTGetc,
UARTPutc,
(FNPTR_RZKDEV_IOCTL)UARTControl,
(RZK_PTR_t)uart0isr,
0000,
(UINT8*)&Uart0_Blk,
0,
0

};

How to Write a Device Driver Using DDF

The DDF provides a simple wrapper over the actual device driver calls.
Observe the following procedure to write a device driver using DDF:

1. Write an init routine with a prototype of: DDF_STATUS_t
My_Driver_Init(struct RZK_DEVICE_CB_t *pdev) that ini-
tializes the device.

2. The operation of opening the device can be performed by writing the
following routine:

DDF_STATUS_t My_Driver_Open (struct
RZK_DEVICE_CB_t *pdev,RZK_DEV_NAME_t
*devName,RZK_DEV_MODE_t *devMode);

3. Close the device by writing the following string:

DDF_STATUS_t My_Driver_Close(struct RZK_DEVICE_CB_t
*pdev)

This driver read/write routine is valid only after the driver is opened.Note:
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

26
4. Write the read and write operations with the function prototypes to
read/write a single byte, or multiple bytes, to or from the driver using
the function prototypes FNPTR_RZKDEV_READ,
FNPTR_RZKDEV_WRITE, FNPTR_RZKDEV_GETC, or
FNPTR_RZKDEV_PUTC.

5. Write the IOCTL routine that sets the custom information for the
device with a prototype of FNPTR_RZKDEV_IOCTL.

6. Write a device driver control block that contains information about
the different driver routines that must be called.

7. Call the RZKDevAttach(), RZKDevOpen(), RZKDevRead(),
RZKDevWrite(), RZKDevIOCTL(), RZKDevClose(), RZKDevDe-
tach() routines sequentially, with appropriate parameters to cause a
complete life-cycle of a driver initialization, from open through read/
write to close and to detach the device driver from RZK.

Review the sample drivers implemented using the DDF for more infor-
mation. For more information about the DDF APIs, see the Device Driver
Framework section on page 39.

Zilog recommends using DDF APIs such as RZKDevOpen(), RZKDev-
Close(), RZKDevRead(), RZKDevWrite() and RZKDevIOCTL()
instead of driver routines such as UARTOpen, UARTClose, UARTRead,
UARTWrite and UARTControl for the UART device. This method of
calling the DDF APIs instead of calling device-specific APIs facilitates
the application to be device independent. The application can also func-
tion with different versions of the product and conceal the changes made
to device-specific APIs (if any).

Notes:
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

27
Sample Device Drivers That Use DDF

The following device drivers, provided with RZK, are written with
respect to the DDF guidelines discussed in the previous section.

• Serial Peripheral Interface Device Driver – see page 27

• Universal Asynchronous Receiver/Transmitter Driver – see page 28

• Ethernet Media Access Control Driver – see page 29

• Wireless Local Area Network Driver – see page 30

• Inter-Integrated Circuit Driver – see page 30

• Real-Time Clock Driver – see page 31

• Watchdog Timer Driver – see page 31

These drivers are provided in the board support package (BSP) and are
described in the following sections.

Serial Peripheral Interface Device Driver

The serial peripheral interface (SPI) device driver is developed using the
DDF implementation. The SPI device driver performs the following
tasks:

• Supports automatic poll/interrupt mode operation for data transfer/
reception

• Supports full duplex data transfer

• Supports byte transfers of data between SPI-compatible master and
slave devices

• Supports a facility for connecting two slave devices
RM000619-1211 RZK Architecture

Zilog Real-Time Kernel
Reference Manual

28
The SPI device driver only transfers data of the binary type, and the mode
of transfer is poll/interrupt mode. This transfer mode is determined
dynamically by the driver based on the baud rate.

The SPI device driver that is packaged in this release has been tested – at
up to 2 KB of data at a data rate of 3 Mbps – for the following two master/
slave combinations:

1. To test the eZ80® CPU as master: eZ80® CPU (master)/25C160
EEPROM (slave)

2. To test the eZ80® CPU as a slave: eZ80® CPU (master)/eZ80® CPU
(slave)

If, in the second Master/Slave combination above, any other processor
is used as the master, precautions must be taken. The master device in
this scenario must pull the eZ80® CPU’s Slave Select (SS) pin High for
approximately 60 microseconds before it can start sending data. At the
data rate outlined above, the eZ80® CPU slave can then respond to the
master. Additionally, before sending data bytes, approximately 10 mi-
croseconds’ delay time must be provided.

Universal Asynchronous Receiver/Transmitter Driver

The UART driver enables you to communicate over the serial interface.
The UART driver provided with the RZK BSP is based on the RZK DDF.
Therefore, the use model for the UART driver is same as that for the RZK
DDF. For more details about its configuration, refer to the Zilog Real-
Time Kernel User Manual (UM0075). For more information about UART
APIs and details about their operation, see the Universal Asynchronous
Receiver/Transmitter APIs section on page 243.

The UART driver supports the following features:

Caution:
RM000619-1211 RZK Architecture

http://www.zilog.com/docs/software/um0075.pdf
http://www.zilog.com/docs/software/um0075.pdf

Zilog Real-Time Kernel
Reference Manual

29
Reentrant APIs. These APIs are designed for multithreaded environ-
ments. The critical sections of the code are protected so that they are
accessed exclusively.

Fully Configurable. The driver is fully configurable, and users can
change the default values of the configurable parameters to suit applica-
tion and memory requirements.

In addition, the following two features are supported by this UART
driver:

• Synchronous and asynchronous data communication

• Hardware flow control using RTS/CTS

Ethernet Media Access Control Driver

The EMAC driver is based on RZK DDF. It manages the Data Link layer
and communicates with the upper layers through a well-defined interface.
For more details about its configuration, refer to the Zilog Real-Time Ker-
nel User Manual (UM0075). For more information about EMAC APIs
and details about their operation, see the Ethernet Media Access Control
APIs section on page 223.

The EMAC driver includes the following features:

Configurability. The EMAC driver is fully configurable, and users can
change the default values of the configurable parameters to suit applica-
tion and memory requirements.

Memory Management. The EMAC driver provides a very basic form of
memory management for received packets.

The EMAC driver provides the following additional support features:

• Functions on 10/100 BT networks supporting half/full duplex com-
munication

• Currently supports the eZ80F91 MCU’s Realtek and CS8900 EMAC
controllers
RM000619-1211 RZK Architecture

http://www.zilog.com/docs/software/um0075.pdf
http://www.zilog.com/docs/software/um0075.pdf

Zilog Real-Time Kernel
Reference Manual

30
• On the eZ80F91 MCU, The EMAC driver supports the AMD and
Micrel PHYs

• Supports multicast addressing

Wireless Local Area Network Driver

The Wireless Local Area Network Driver (WLAN) is developed as per
the RZK DDF. The WLAN driver is written for the RTL8711 chipset.

The WLAN driver can be configured either to transfer unencrypted data
or to use a security mechanism that will encrypt all wireless data. The
WLAN driver supports the following security mechanisms:

• 64-bit Wired Equivalent Privacy (WEP)

• 128-bit WEP

• Wi-Fi Protected Access (WPA)

• Wi-Fi Protected Access II (WPA2)

Inter-Integrated Circuit Driver

The I2C driver provides a generic framework that can be used to develop
more specialized applications that can communicate over the I2C bus. The
I2C driver, which is based on the DDF model, initializes the I2C bus for
communication and also handles the protocols for Transmit and Receive
operations within the APIs. Users must configure the I2C for parameters
such as slave address, bus speed and subnet address, then send or receive
data over the bus. For more details about I2C configuration, refer to the
Zilog Real-Time Kernel User Manual (UM0075). For more information
about I2C APIs and details about their operation, see the Inter-Integrated
Circuit APIs section on page 282.

The I2C driver features the following elements:

• Supports master and slave mode

• I2C protocol handling within the API
RM000619-1211 RZK Architecture

http://www.zilog.com/docs/software/um0075.pdf

Zilog Real-Time Kernel
Reference Manual

31
• Fully configurable

Real-Time Clock Driver

The Real-Time Clock (RTC) driver can be used to keep time in a system.
Input to the RTC can be via crystal oscillator or power line frequency.
When an alarm is enabled, the RTC driver generates an interrupt at a
specified time. For more details about its configuration, refer to the Zilog
Real-Time Kernel User Manual (UM0075). For more information about
RTC APIs and details about their operation, see the Real-Time Clock
APIs section on page 263.

The Real-Time Clock can be programmed to get and set time through the
RZK DDF common interface. The Real-Time Clock includes the follow-
ing features:

• Reentrant APIs

• Configurability

• Alarm support

Watchdog Timer Driver

RZK features Watchdog Timer (WDT) driver support. WDT is used in
situations wherein system response is not observed for durations of min-
utes/hours/days, and is used as an option to maintain integrity in the sys-
tem. The WDT resets the system whenever a time-out occurs; such time-
outs are specified in the WDT registers.

A value written into the WDT Control Register explicitly resets the WDT.
Implicitly, WDT is reset after the RZKIsrProlog and RZKIsrEpilog
functions are invoked. For information about WDT APIs, see the Watch-
dog Timer APIs section on page 299.
RM000619-1211 RZK Architecture

http://www.zilog.com/docs/software/um0075.pdf
http://www.zilog.com/docs/software/um0075.pdf

Zilog Real-Time Kernel
Reference Manual

32
RZK APIs

This chapter describes the APIs that are provided by RZK, including DDF
APIs.

RZK API Summary

The RZK APIs described in this chapter are grouped based on their usage,
as shown by the list below.

• Kernel Startup – see page 32

• Thread Control – see page 33

• Thread Communication – see page 33

• Thread Synchronization – see page 34

• Software Timer – see page 36

• Memory Management – see page 37

• Interrupt Management – see page 38

• Device Driver Framework – see page 39

• Miscellaneous APIs – see page 40

Kernel Startup

Kernel start-up APIs are used to initialize RZK and start the kernel for the
execution of application threads. Table 4 lists the kernel start-up APIs that
are described in this subsection.

Table 4. Kernel Start-Up API

RZK_KernelInit RZK_KernelStart
RM000619-1211 RZK APIs

Zilog Real-Time Kernel
Reference Manual

33
Thread Control

Thread APIs are used to create threads and perform the following opera-
tions on a created thread:

• Suspend a thread finitely or infinitely

• Resume a thread

• Delete a thread

• Change the priority of a thread

• Yield control to other threads

• Get thread parameters

• Get scheduler parameters

Table 5 lists the thread control APIs.

Thread Communication

The following operations are possible on a message queue using the
thread communication/message queue APIs.

• Posting messages to a message queue – the post time-out can range
from immediate to infinite

Table 5. Thread Control APIs

RZKCreateThread RZKDeleteThread

RZKCreateThreadEnhanced RZKDeleteThreadEnhanced

RZKDeleteThreadEnhanced RZKSetThreadPriority

RZKYieldThread RZKGetSchedulerParameters

RZKGetThreadParameters RZKResumeThread
RM000619-1211 RZK APIs

Zilog Real-Time Kernel
Reference Manual

34
• Receiving a message from a message queue – the pending time-out
can range from immediate to infinite

• Posting/inserting a message to the front of a message queue

• Deleting a message queue

• Getting message queue parameters

• Peeking into a message queue and copying a message, if present

• Sending a unique message to the queue

The message queue APIs are listed in Table 6.

Thread Synchronization

Thread synchronization APIs provide access to RZK semaphores and
event flags.

Semaphore APIs

Semaphore APIs are used to synchronize two threads, provide mutual
exclusion during access to shared resources, and prevent interference
from other threads while modifying critical sections of a shared resource
such as a database. They can also be used to protect global variables that
are shared across threads. A semaphore can be created as either a binary
semaphore or a counting semaphore. The following operations can be
performed on a created semaphore:

Table 6. Thread Communication (Message Queue) APIs

RZKCreateQueue RZKDeleteThread

RZKSendToQueueFront RZKSendToQueue

RZKPeekMessageQueue RZKReceiveFromQueue

RZKGetQueueParameters RZKSendToQueueUnique
RM000619-1211 RZK APIs

Zilog Real-Time Kernel
Reference Manual

35
• Deleting an unused semaphore

• Acquiring the semaphore

• Releasing the semaphore

• Getting the semaphore parameters

Event Group APIs

Event group objects provide a mechanism to convey that a certain system
activity has occurred. Events can be grouped and can be logically oper-
ated upon. The following operations can be performed on the event
groups:

• Deleting an unused event group

• Posting the event to an event group

• Pending on an event group with timed pend and infinite pend

• Getting the event group parameters

Table 7 lists the semaphore and event group APIs.

Table 7. Semaphore and Event Group APIs

RZKCreateSemaphore RZKDeleteSemaphore

RZKReleaseSemaphore RZKAcquireSemaphore

RZKCreateEventGroup RZKGetSemaphoreParameters

RZKPostToEventGroup RZKDeleteEventGroup

RZKGetEventGroupParameters RZKPendOnEventGroup
RM000619-1211 RZK APIs

Zilog Real-Time Kernel
Reference Manual

36
Software Timer

Timer APIs provide access to RZK timer facilities. Timer APIs are help-
ful when a user-supplied function must be executed at periodic intervals.
The following operations can be performed on the software timers:

• Creating timers with a user-supplied timer handler function

• Deleting the timer

• Enabling the timer

• Disabling the timer

• Getting the parameters of a timer object

• Get timer resolution

• Getting system clock value

• Setting system clock value

Table 8 lists the Timer APIs.

Table 8. Timer APIs

RZKCreateTimer RZKDeleteTimer

RZKEnableTimer RZKDisableTimer

RZKGetTimerParameters RZKGetClock

RZKGetTimerResolution RZKSetClock
RM000619-1211 RZK APIs

Zilog Real-Time Kernel
Reference Manual

37
Memory Management

The memory APIs consist of partition and region APIs and provide access
to RZK memory management facilities.

Partition APIs

Partitions are useful for storing fixed-size data and are also helpful for
determining memory allocation time. The following operations can be
performed on partitions:

• Creating a partition with maximum number of blocks by specifying
the size of each block

• Allocating a memory block in partition

• Freeing the allocated memory block in partition

• Deleting the unused partition

• Getting the partition parameters

Region APIs

These objects are similar to partitions but the memory that can be allo-
cated from a region is of variable size. The following operations can be
performed on regions:

• Allocating a variable length of memory block

• Freeing the allocated block

• Deleting the unused region

• Getting the region parameters

• Initialize malloc

• Allocate memory using malloc

• Free allocated memory
RM000619-1211 RZK APIs

Zilog Real-Time Kernel
Reference Manual

38
• Query for available memory

Table 9 lists the partitions and region APIs.

Interrupt Management

Interrupt APIs provide access to RZK interrupt management facilities and
are the main source for external and internal events. To protect shared
data in a multithread kernel, interrupts are disabled. After an operation
upon shared data is complete, interrupts are brought to their previous
state. The following operations are performed on interrupts:

• Installing the interrupt handler for the interrupt

• Disabling the interrupt before accessing/modifying the critical data

• Enabling the interrupts after the critical data is modified/accessed

• Calls to be included while designing the RZK for ISR (making RZK
calls from inside an ISR)

• Resume interrupt thread

• Suspend interrupt thread

Table 9. Partition and Region APIs

RZKCreatePartition RZKDeletePartition

RZKAllocFixedSizeMemory RZKFreeFixedSizeMemory

RZKGetPartitionParameters RZKDeleteRegion

RZKCreateRegion RZKAllocSegment

RZKFreeSegment RZKGetRegionParameters

malloc free

RZKQueryMem
RM000619-1211 RZK APIs

Zilog Real-Time Kernel
Reference Manual

39
Table 10 lists the interrupt APIs.

Device Driver Framework

DDF APIs are used to call hardware-specific driver routines which are
present in another global table. The following operations can be per-
formed using DDF APIs.

• Opening a specified device

• Closing a specified device

• Reading a specified number of bytes from the device

• Writing specified number of bytes to the device

• Controlling the device-specific hardware using an API

Table 11 lists the DDF APIs.

Table 10. Interrupt APIs

RZKInstallInterruptHandler RZKEnableInterrupts

RZKDisableInterrupts RZKISRProlog

RZKISREpilog RZKResumeInterruptThread

RZKSuspendInterruptThread

Table 11. Device Driver Framework APIs

RZKDevOpen RZKDevClose RZKDevIOCTL

RZKDevWrite RZKDevRead RZKDevPutc

RZKDevGetc RZKDevAttach RZKDevDetach
RM000619-1211 RZK APIs

Zilog Real-Time Kernel
Reference Manual

40
Miscellaneous APIs

A number of miscellaneous APIs are used to obtain information about the
threads and the statistics of threads and timers. The following operations
can be performed using these APIs:

• Getting the current executing thread handle

• Getting the error number stored in the TCB, which is set by an RZK
API execution

• Getting the arguments list that is passed to a thread

• Formatting an error to print in an error string

• Getting thread execution and timer execution statistics

• Resetting the complete system

• Disable/enable/restore preemption calls

• Get current system time in ticks

• Lock a thread for delete operation

• Unlock a thread from delete operation

Table 12 lists the miscellaneous APIs.

Table 12. Miscellaneous APIs

RZKFormatError RZKGetCurrentThread

RZKGetErrorNum RZKGetThreadStatistics

RZKGetTimerStatistics RZK_Reboot

GetDataPersistence SetDataPersistence

RZKSystemTime RZKThreadLockForDelete

RZKThreadUnLockForDelete RZKDisablePreemption
RM000619-1211 RZK APIs

Zilog Real-Time Kernel
Reference Manual

41
RZKEnablePreemption RZKRestorePreemption

FreePktBuff

Table 12. Miscellaneous APIs (Continued)
RM000619-1211 RZK APIs

Zilog Real-Time Kernel
Reference Manual

42
Board Support Package APIs

This section summarizes and describes each of the BSP APIs.

Ethernet Media Access Control APIs

Ethernet Media Access Control (EMAC) APIs are used to call specific
driver routines that are used to communicate with Ethernet media. The
EMAC APIs in Table 13 are called through the DDF interface.

Wireless Local Area Network APIs

Wireless Local Area Network (WLAN) APIs are used to call specific
driver routines that are used to communicate through wireless media. The
WLAN APIs in Table 14 are called through the DDF interface. Only
eZ80F91 supports WLAN driver.

Table 13. Ethernet Media Access Control APIs

EmacOpen EmacClose EmacWrite

EmacRead EmacControl AddEmac

Table 14. Wireless Local Area Network APIs

AddWlan wlanWrite wlanClose

wlanOpen wlanRead
RM000619-1211 Board Support Package APIs

Zilog Real-Time Kernel
Reference Manual

43
Universal Asynchronous Receiver/Transmitter APIs

Universal Asynchronous Receiver/Transmitter (UART) APIs are used to
perform I/O operations on a UART device. The UART APIs in Table 15
are called through the DDF interface.

Real-Time Clock APIs

Real-Time Clock (RTC) APIs are used to set and get time. They also sup-
port an alarm function. The RTC APIs in Table 16 are called through the
DDF interface.

Serial Peripheral Interface APIs

Serial Peripheral Interface (SPI) APIs are used to call SPI specific driver
routines which are placed in a global table. The APIs in Table 17 are
called through the DDF interface.

Table 15. Universal Asynchronous Receiver/Transmitter APIs

UARTOpen UARTClose UARTWrite

UARTRead UARTControl AddUart0

AddUart1

Table 16. Real-Time Clock APIs

RTCRead RTCControl AddRtc

Table 17. Serial Peripheral Interface APIs

SPI_Open SPI_Close SPI_Write

SPI_Read SPI_IOCTL AddSpi
RM000619-1211 Board Support Package APIs

Zilog Real-Time Kernel
Reference Manual

44
Inter-Integrated Circuit APIs

RZK provides a generic set of inter-integrated circuit (I2C) APIs to enable
you to develop drivers for different types of I2C slave devices. The APIs
in Table 18 are called through the DDF interface.

Universal Serial Bus Device APIs

USB device APIs are used to call specific driver routines to communicate
with a USB host. These USB device APIs are called directly without the
DDF interface. See Table 43 on page 295 for a reference to the USB APIs
for RZK.

Watchdog Timer APIs

RZK provides a generic set of Watchdog Timer APIs to enable you to
reset the system according to user application requirements. The WDT
APIs are listed in Table 19.

Flash Device Driver APIs

RZK provides a generic set of Flash Device Driver APIs to enable you to
read/write the data from/to the Flash device, or to erase the Flash device.
These driver APIs can be directly interfaced to the Zilog File System to
store files in the corresponding Flash device. These driver APIs do not

Table 18. Inter-Integrated Circuit APIs

I2COpen I2CClose I2CControl

I2CWrite I2CRead AddI2c

Table 19. Watchdog APIs

wdt_init wdt_reset
RM000619-1211 Board Support Package APIs

Zilog Real-Time Kernel
Reference Manual

45
comply with the RZK Device Driver framework, and are implemented as
stand-alone APIs that can be invoked in the program.

The Flash Device Driver APIs are listed in Table 20.

In this table, FLASHDEV represents one of the following devices:

• MT28F008

• AT49BV162

• AM29LV160

• IntFlash

Table 20. Flash Device Driver APIs

FLASHDEV_Init FLASHDEV_Read

FLASHDEV_Erase FLASHDEV_Close

FLASHDEV_Write
RM000619-1211 Board Support Package APIs

Zilog Real-Time Kernel
Reference Manual

46
RZK APIs and Context Switching

Table 21 contains the key for the RZK API context-switching capability
listings shown in Table 22.

Table 21. RZK Context Switching Key

+ Context switching is possible.

– Context switching is not possible.

± Context switching is possible under certain circumstances.

Table 22. RZK APIs and Context Switching

RZK API
Context
Switch

RZKCreateThread1 ±

RZKDeleteThread2 ±

RZKCreateThreadEnhanced ±

RZKDeleteThreadEnhanced ±

RZKSuspendThread +

RZKResumeThread +

Notes:
1. Context switching occurs only if the created thread

holds a higher priority than the thread that created
it and the AUTOSTART attribute is present. One
exception to this rule is when main() runs at the
highest priority.

2. Context switching is conditional. If any RZK API,
which can cause a context switch, is called within
the RZKDeleteThread()’s clean-up function,
context switching is delayed until the delete opera-
tion is completed.
RM000619-1211 RZK APIs and Context Switching

Zilog Real-Time Kernel
Reference Manual

47
RZKGetThreadParameters –

RZKYieldThread +

RZKGetSchedulerParameters –

RZKCreateQueue –

RZKDeleteQueue +

RZKSendToQueue +

RZKSendToQueueFront +

RZKReceiveFromQueue +

RZKGetQueueParameters –

RZKPeekMessageQueue –

RZKCreateSemaphore –

RZKDeleteSemaphore +

RZKAcquireSemaphore +

RZKReleaseSemaphore +

RZKGetSemaphoreParameters –

RZKCreateEventGroup –

RZKDeleteEventGroup +

Table 22. RZK APIs and Context Switching (Continued)

RZK API
Context
Switch

Notes:
1. Context switching occurs only if the created thread

holds a higher priority than the thread that created
it and the AUTOSTART attribute is present. One
exception to this rule is when main() runs at the
highest priority.

2. Context switching is conditional. If any RZK API,
which can cause a context switch, is called within
the RZKDeleteThread()’s clean-up function,
context switching is delayed until the delete opera-
tion is completed.
RM000619-1211 RZK APIs and Context Switching

Zilog Real-Time Kernel
Reference Manual

48
RZKPostToEventGroup +

RZKPendOnEventGroup +

RZKGetEventGroupParameters –

RZKCreateTimer –

RZKDeleteTimer –

RZKEnableTimer –

RZKDisableTimer –

RZKGetTimerParameters –

RZKGetTimerResolution –

RZKSetClock –

RZKGetClock –

RZKCreatePartition –

RZKDeletePartition –

RZKAllocFixedSizeMemory –

RZKFreeFixedSizeMemory –

RZKGetPartitionParameters –

RZKCreateRegion –

Table 22. RZK APIs and Context Switching (Continued)

RZK API
Context
Switch

Notes:
1. Context switching occurs only if the created thread

holds a higher priority than the thread that created
it and the AUTOSTART attribute is present. One
exception to this rule is when main() runs at the
highest priority.

2. Context switching is conditional. If any RZK API,
which can cause a context switch, is called within
the RZKDeleteThread()’s clean-up function,
context switching is delayed until the delete opera-
tion is completed.
RM000619-1211 RZK APIs and Context Switching

Zilog Real-Time Kernel
Reference Manual

49
RZKDeleteRegion +

RZKAllocSegment +

RZKFreeSegment +

RZKGetRegionParameters –

RZKInstallInterruptHandler –

RZKEnableInterrupts –

RZKDisableInterrupts –

RZKFormatError –

RZKGetTimerStatistics –

RZKGetThreadStatistics –

RZKGetCurrentThread –

RZKGetErrorNum –

RZKDevOpen –

RZKDevClose –

RZKDevIOCTL –

RZKDevWrite ±

RZKDevRead ±

Table 22. RZK APIs and Context Switching (Continued)

RZK API
Context
Switch

Notes:
1. Context switching occurs only if the created thread

holds a higher priority than the thread that created
it and the AUTOSTART attribute is present. One
exception to this rule is when main() runs at the
highest priority.

2. Context switching is conditional. If any RZK API,
which can cause a context switch, is called within
the RZKDeleteThread()’s clean-up function,
context switching is delayed until the delete opera-
tion is completed.
RM000619-1211 RZK APIs and Context Switching

Zilog Real-Time Kernel
Reference Manual

50
RZKDevPutc ±

RZKDevGetc ±

RZK_Reboot –

RZKDisablePreemption –

RZKRestorePreemption ±

RZKEnablePreemption ±

RZKSuspendInterruptThread ±

RZKResumeInterruptThread ±

RZKSystemTime –

wdt_init –

wdt_reset –

RZK_KernelInit –

RZK_KernelStart +

malloc ±

free ±

RZKSetThreadPriority ±

RZKThreadLockForDelete –

Table 22. RZK APIs and Context Switching (Continued)

RZK API
Context
Switch

Notes:
1. Context switching occurs only if the created thread

holds a higher priority than the thread that created
it and the AUTOSTART attribute is present. One
exception to this rule is when main() runs at the
highest priority.

2. Context switching is conditional. If any RZK API,
which can cause a context switch, is called within
the RZKDeleteThread()’s clean-up function,
context switching is delayed until the delete opera-
tion is completed.
RM000619-1211 RZK APIs and Context Switching

Zilog Real-Time Kernel
Reference Manual

51
RZKThreadUnLockForDelete –

RZKSendtoQueueUnique ±

RZKQueryMem –

Table 22. RZK APIs and Context Switching (Continued)

RZK API
Context
Switch

Notes:
1. Context switching occurs only if the created thread

holds a higher priority than the thread that created
it and the AUTOSTART attribute is present. One
exception to this rule is when main() runs at the
highest priority.

2. Context switching is conditional. If any RZK API,
which can cause a context switch, is called within
the RZKDeleteThread()’s clean-up function,
context switching is delayed until the delete opera-
tion is completed.
RM000619-1211 RZK APIs and Context Switching

Zilog Real-Time Kernel
Reference Manual

52
API Definitions

This section provides detailed descriptions of the APIs available in the
Zilog Real-Time Kernel. To use RZK APIs, the ZSysgen.h
and ZTypes.h header files must be included in the application program.
Other header files are included as and when necessary.

To maintain solid RZK performance, avoid defining RZK_DBG, which per-
forms error-checking logic.

Standard Data Types

 Table 23 describes the standard data types that RZK uses.

Table 23. Standard Data Types

Data Type Description

unsigned
int

An integer corresponding to the natural word size of the
machine. In the eZ80® core, the natural word size is 3
bytes.

unsigned
char

An 8-bit unsigned character.

void Equivalent to the target compiler’s void type.

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

53
Include Files

Table 24 lists the header files included in the RZK APIs.

Table 24. Header Files

Header File Name Description

ZSysgen.h Defines the configurable system parameters.

ZTypes.h Defines the typedefs, macros and enums used by RZK.

ZThread.h Provides the declaration of RZK Thread structures.

ZTimer.h Provides the declaration of RZK Timer structures and APIs.

ZScheduler.h Provides the declaration of RZK Scheduler structures and
APIs.

ZMessageQ.h Provides the declaration of RZK message queue structures
and APIs.

ZSemaphore.h Provides the declaration of RZK semaphore structures and
APIs.

ZEventgroup.h Provides the declaration of RZK event group structures
and APIs.

ZClock.h Provides the declaring of RZK clock parameters and APIs.

ZMemory.h Provides the declaration of RZK memory partition structures
and APIs.

ZRegion.h Provides the declaration of RZK region structures and
APIs.

ZInterrupt.h Provides the declaration of RZK interrupt handling APIs.

ZDevice.h Provides the declaration of RZK device driver framework.

EtherMgr.h Provides the declaring of macros and structure
declarations related to EMAC driver.

Serial.h Provides the serial driver macros and structure definitions.

Dataperstruct.h Provides data structures required for data persistence of
difference values.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

54
API Definition Format

Descriptions for each RZK API follow a standard format. In this docu-
ment, header file names are shown just below the function prototype and
are followed by the function syntax, its parameters, return values and an
example, which is in turn followed by a list of APIs for referencing. A
brief discussion of the API description format is provided below.

Include

This section provides the name of the header files included in the API.

Prototype

This section contains the exact declaration of the API call.

Description

This section contains a paragraph describing the API.

rtc.h Provides the macros and structure declarations for RTC
driver.

spi.h Provides the macros and structure declarations for SPI
driver.

i2c.h Provides the macros and structure declarations for I2C
driver.

wdt.h Provides the macros and structure declarations for
watchdog timer.

ZThreadstatistics.h Provides the declaration of RZK thread statistics structure
and APIs.

ZTimerstatistics.h Provides the declaration of RZK timer statistics structure
and APIs.

Table 24. Header Files (Continued)
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

55
Argument

This section describes the arguments (if any) to the API.

Return Value

This section describes the return value of the API, if any.

Example(s)

This section(s) contain examples of how the API function is called.

See Also

This section lists related API calls.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

56
RZK API Quick Reference

Table 25 provides a quick reference to the RZK APIs that are described in
this section.

Kernel Start-Up APIs

Table 26 provides a quick reference to two kernel start-up RZK APIs that
are described in this subsection.

Table 25. RZK API Quick Reference

Kernel Start-Up APIs Clock APIs

Thread Control APIs Partition APIs

Scheduler APIs Region APIs

Message Queue APIs Interrupt APIs

Semaphore APIs Watchdog Timer APIs

Event Group APIs Flash Device Driver APIs

Software Timer APIs Miscellaneous APIs

Table 26. Kernel Start-Up API Quick Reference

RZK_KernelInit

RZK_KernelStart
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

57
RZK_KERNELINIT

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype
void RZK_KernelInit(void) ;

Description

The RZK_KernelInit() API initializes the kernel. This API is the first
API that must be called in the main() function.

Argument(s)

None.

Return Value(s)

None.

Example
int main(int argc, void *argv[])
{

RZK_KernelInit() ;

// Application code

RZK_KernelStart();
}

See Also

RZK_KernelStart
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

58
RZK_KERNELSTART

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype
void RZK_KernelStart(void) ;

Description

The RZK_KernelStart() API starts the RZK kernel and executes the
application threads. This API is the last API that must be called in the
main() function. After calling this API, the control never returns to the
caller. The control is passed to the scheduler, which schedules the threads
for execution.

Argument(s)

None.

Return Value(s)

None.

Example
int main(int argc, void *argv[])
{

RZK_KernelInit() ;
// Application code
RZK_KernelStart();

}

See Also

RZK_KernelInit
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

59
Thread Control APIs

Table 27 provides a quick reference to a number of thread control APIs
that are described in this subsection.

Table 27. Thread Control API Quick Reference

RZKCreateThread RZKYieldThread

RZKDeleteThread RZKGetThreadParameters

RZKCreateThreadEnhanced RZKDisablePreemption

RZKDeleteThreadEnhanced RZKEnablePreemption

RZKSuspendThread RZKRestorePreemption

RZKSetThreadPriority RZKSuspendInterruptThread

RZKResumeThread RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

60
RZKCREATETHREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

Description

The RZKCreateThread() API call is used to create a thread with an
entry point function, initial stack, operation mode, time slice for round-
robin scheduling, and parameters to be passed to the thread entry func-
tion.

RZK_THREADHANDLE_t RZKCreateThread (

 RZK_NAME_t szName [MAX_OBJECT_NAME_LEN],

 RZK_PTR_t pEntryFunction,

 FNP_THREAD_ENTRY *pCleanupFunction,

 CADDR_t pInitialStack,

 RZK_THREAD_PRIORITY_t etPriority,

 TICK_t tQuantum,

 RZK_OPERATIONMODE_t uOperationMode,

 UINT8 nArgs,

)

RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

61
Argument(s)

szName Specifies the name of the thread (ASCII string).
The length of this thread name must be less than
12 characters.

pEntryFunction Pointer to a entry point function from where the
thread starts running. The thread entry function
prototype depends on the arguments passed and
the types of arguments. Irrespective of any num-
ber of parameters passed to the entry point func-
tion, the return value must be void.

pCleanupFunction Pointer to a null terminated list of clean up func-
tion(s) called when the thread is deleted (global
data). The clean-up function prototype must be
void MyThreadCleanupFn(void);

pInitial Stack Pointer to the top of the stack of the thread.

etPriority The priority of the thread can range from 1 to
31, where 1 represents the highest priority and
31 represents the lowest priority.

tQuantum The time slice in system ticks for which the
thread runs, for round robin mode. If this slice is
0, user-provided default time slice
(RZK_TIME_SLICEH) is considered for
round-robin time slice.

uOperationMode Specifies the mode of operation of the thread
and can be one or a combination of the follow-
ing values:
• RZK_THREAD_ROUNDROBIN: two or

more threads with the same priority
• RZK_THREAD_AUTOSTART: starts

immediately after creation
• RZK_THREAD_PREEMPTION: thread can

be preempted by higher-priority thread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

62
Return Value(s)

When the thread is created successfully, this API returns a handle to the
thread and RZKERR_SUCCESS is set in the thread’s control block.

If the thread is not created, a NULL is returned and the API sets one of the
following error values in the current thread’s control block. RZKGetEr-
rorNum() API can be called to retrieve the error number stored in the
thread control block.

nArgs Specifies the number of arguments that can be
passed to the thread as parameters. After the
this, you can pass the parameters that are equal
to the nArgs value. Only pointer, (unsigned)
char and (unsigned) integer variables type can
be passed. RZK does not support any other data
types.

... Specifies the arguments that can be passed to
the thread’s entry point function depending on
the value of nArgs.

RZKERR_INVALID_STACK Indicates that the initial stack
pointer is invalid.

RZKERR_CB_UNAVAILABLE Indicates that the control block is
unavailable for the allocation.
Number of threads exceeds the
(MAX_THREADSH – 2) value*.

RZKERR_INVALID_ARGUMENTS Indicates that one or more argu-
ments are invalid.

RZKERR_INVALID_PRIORITY Indicates that the specified Prior-
ity value is invalid. Valid Priority
Range is between 1 and 31.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

63
Example 1

A thread is created with the name Sample, and the thread entry function is
named ThreadEntry. No arguments are passed to the thread entry function
by the thread, but it passes an array that contains the address of clean-up
functions. The thread priority is 15; round-robin ticks = 10. The thread is
created in PREEMPTION mode; i.e., this thread can be preempted by
other threads in the system. The thread entry function does not accept any
parameters.

#define THREAD_STACK_SIZE 1024
#define THREAD_PRIORITY 15
#define THREAD_RR_TICKS 10
extern void ThreadCleanup(void);
extern void ThreadEntry(void) ;
CADDR_t g_threadStack[THREAD_STACK_SIZE];

FNP_THREAD_ENTRY g_SampleCleanupfns[] =
{ThreadCleanup, NULL };
RZK_THREADHANDLE_t g_hThreadHandle;

g_hThreadHandle = RZKCreateThread(
(RZK_NAME_t[]) "Sample",
ThreadEntry,
g_SampleCleanupfns,
(CADDR_t) (g_threadStack + THREAD_STACK_SIZE),
THREAD_PRIORITY,
THREAD_RR_TICKS,
RZK_THREAD_PREEMPTION,
0) ;

RZKERR_INVALID_SIZE Indicates that the length of the
thread name is invalid, if it
exceeds 12 characters.

Note: *There are two kernel threads launched by RZK (idle thread of lowest priority and
timer thread of highest priority). The minimum number for MAX_THREADSH must be 2.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

64
Example 2

A thread is created with the name Sample and thread entry function as
ThreadEntry. Two arguments of type char and int and values B and
4721 are passed to the thread entry function. The thread priority is 15
with round-robin ticks equal to 10. The thread is created in ROUND
ROBIN mode with an AUTOSTART option. This thread cannot be pre-
empted by other threads during execution.

#define THREAD_STACK_SIZE 1024
#define THREAD_PRIORITY 15
#define THREAD_RR_TICKS 10
extern void ThreadCleanup(void);
extern void ThreadEntry(char ch_type, int n_value) ;
CADDR_t g_threadStack[THREAD_STACK_SIZE];

FNP_THREAD_ENTRY g_SampleCleanupfns[] =
{ ThreadCleanup, NULL };

RZK_THREADHANDLE_t g_hThreadHandle;

g_hThreadHandle = RZKCreateThread(
(RZK_NAME_t[]) "Sample",
ThreadEntry,
g_SampleCleanupfns,
(CADDR_t) (g_threadStack + THREAD_STACK_SIZE),
THREAD_PRIORITY,
THREAD_RR_TICKS,
RZK_THREAD_ROUNDROBIN | RZK_THREAD_AUTOSTART,
2, // Number of parameters
(char) 'B',
(int) 4721);

See Also

RZKDeleteThread RZKSuspendThread

RZKSetThreadPriority RZKYieldThread

RZKGetThreadParameters RZKGetErrorNum

RZK_OPERATIONMODE_t RZKDisablePreemption
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

65
RZKEnablePreemption RZKRestorePreemption

RZKSuspendInterruptThread RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

66
RZKCREATETHREADENHANCED

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

Description

The RZKCreateThreadEnhanced() API call is used to create a thread
with an entry point function, stack size, operation mode, time slice for
round-robin scheduling and parameters to be passed to the thread entry
function. The RZKCreateThreadEnhanced() API allocates memory
for the thread’s stack.

RZK_THREADHANDLE_t RZKCreateThreadEnhanced (

 RZK_NAME_t szName [MAX_OBJECT_NAME_LEN],

 RZK_PTR_t pEntryFunction,

 FNP_THREAD_ENTRY *pCleanupFunction,

 COUNT_t uStackSize,

 RZK_THREAD_PRIORITY_t etPriority,

 TICK_t tQuantum,

 RZK_OPERATIONMODE_t uOperationMode,

 UINT8 nArgs,

)

RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

67
If a thread is created using the RZKCreateThreadEnhanced() API, that
thread must be deleted only using the RZKDeleteThreadEnhanced()
API, not using the RZKDeleteThread() API.

Argument(s)

szName Specifies the name of the thread (ASCII string).
This thread name must be less than 12 charac-
ters.

pEntryFunction Pointer to a entry point function from where the
thread starts running. The thread entry function
prototype depends on the arguments passed and
the types of arguments. Irrespective of any num-
ber of parameters passed to the entry point func-
tion, the return value must be void.

pCleanupFunction Pointer to a null terminated list of clean up func-
tion(s) called when the thread is deleted (global
data). The clean-up function prototype must be
void MyThreadCleanupFn(void);

uStackSize Stack size in number of bytes.

etPriority The priority of the thread can range from 1 to
31, where 1 represents the highest priority and
31 represents the lowest priority.

tQuantum The time slice in system ticks for which the
thread runs, for round robin mode. If this slice is
0, user-provided default time slice
(RZK_TIME_SLICEH) is considered for
round-robin time slice.

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

68
Return Value(s)

When the thread is created successfully, this API returns a handle to the
thread and RZKERR_SUCCESS is set in the thread’s control block.

If the thread is not created, a NULL is returned and the API sets one of the
following error values in the current thread’s control block. RZKGetEr-
rorNum() API can be called to retrieve the error number stored in the
thread control block.

uOperationMode Specifies mode of operation of the thread and
can be one or a combination of the following
values:
• RZK_THREAD_ROUNDROBIN: two or

more threads with the same priority
• RZK_THREAD_AUTOSTART: starts

immediately after creation
• RZK_THREAD_PREEMPTION: thread can

be preempted by higher-priority thread

nArgs Specifies the number of arguments that can be
passed to the thread as parameters. After the
this, you can pass the parameters that are equal
to the nArgs value. Only pointer, (unsigned)
char and (unsigned) integer variables type can
be passed. RZK does not support any other data
types.

... Specifies the arguments that can be passed to
the thread’s entry point function depending on
the value of nArgs.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

69
Example

A thread is created with the name Sample and the thread entry function is
named ThreadEntry. No arguments are passed to the thread entry function
by the thread, but it passes an array that contains the address of clean-up
functions. The thread priority is 15 with round-robin ticks = 10. The
thread is created in PREEMPTION mode, that is, this thread can be pre-
empted by other threads in the system. The thread entry function does not
accept any parameters.

#define THREAD_STACK_SIZE 1024
#define THREAD_PRIORITY 15
#define THREAD_RR_TICKS 10
extern void ThreadCleanup(void);
extern void ThreadEntry(void);
CADDR_t g_threadStack[THREAD_STACK_SIZE];

RZKERR_INVALID_STACK Indicates that the initial stack
pointer is invalid.

RZKERR_CB_UNAVAILABLE Indicates that the control block is
unavailable for the allocation.
Number of threads exceeds the
(MAX_THREADSH – 2) value.*

RZKERR_INVALID_ARGUMENTS Indicates that one or more argu-
ments are invalid.

RZKERR_INVALID_PRIORITY Indicates that the specified Prior-
ity value is invalid. Valid Priority
Range is between 1 and 31.

RZKERR_INVALID_SIZE Indicates that the length of the
thread name is invalid, if it
exceeds 12 characters.

Note: *There are two kernel threads launched by RZK (idle thread of lowest priority and
timer thread of highest priority). The minimum number for MAX_THREADSH must be 2.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

70
FNP_THREAD_ENTRY g_SampleCleanupfns[] =
{ThreadCleanup, NULL};
RZK_THREADHANDLE_t g_hThreadHandle;

g_hThreadHandle = RZKCreateThreadEnhanced(
(RZK_NAME_t[]) "Sample",
ThreadEntry,
g_SampleCleanupfns,
THREAD_STACK_SIZE,
THREAD_PRIORITY,
THREAD_RR_TICKS,
RZK_THREAD_PREEMPTION,
0) ;

See Also

RZKDeleteThread RZKSuspendThread

RZKSetThreadPriority RZKYieldThread

RZKGetThreadParameters RZKGetErrorNum

RZK_OPERATIONMODE_t RZKDisablePreemption

RZKEnablePreemption RZKRestorePreemption

RZKSuspendInterruptThread RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

71
RZKDELETETHREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

RZK_STATUS_t RZKDeleteThread(
RZK_THREADHANDLE_t hThread);

Description

The RZKDeleteThread() API deletes a thread and invalidates the
thread control block (TCB). This invalidated control block is allocated to
other threads when they are created. The clean-up functions are called
first through a clean-up function pointer provided during a RZKCrea-
teThread() call and then the thread handle is invalidated.

A thread can delete another thread. If an API is called inside a clean-up
function, note that the clean-up function executes from the context of the
thread calling RZKDeleteThread(). The clean-up functions are used to
release the resources that were used by the thread being deleted.

When a thread deletes itself, the delete operation is automatic, implying
that any context switching, which occurs as a result of making an RZK
API call within the thread’s clean-up function, is delayed until the delete
operation is complete.

1. If RZK_PRIORITYINHERITANCE is enabled, the binary semaphore
held by the thread is released when the thread is deleted.

2. Any allocated partition /region/acquired semaphore is not freed auto-
matically in the RZKDeleteThread() call. You must free these allo-
cated partitions/regions/acquired semaphores in the thread’s clean-up
function.

Notes:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

72
3. RZKERR_CB_UNAVAILABLE and RZKERR_CB_BUSY are returned
only if RZK_PERFORMANCE is undefined.

Refer to the Zilog Real-Time Kernel User Manual (UM0075) for more
details.

Argument(s)

Return Value(s)

Example

A previously-created thread, hThreadHandle is deleted. The thread
deletion status is stored in the status variable.

/*contains thread handle to be deleted.*/
RZK_THREADHANDLE_t hThreadHandle;
RZK_STATUS_t status;

status = RZKDeleteThread (hThreadHandle);

hThread Handle to the thread to be deleted.

RZKERR_SUCCESS Indicates that the function returned
successfully.

RZKERR_INVALID_HANDLE Indicates that the thread handle to be
deleted is invalid or already deleted.

RZKERR_INVALID_OPERATION Indicates that you tried to delete a
thread that is not in DELETED state
or contains a locked thread from
DELETED state.
RM000619-1211 API Definitions

http://www.zilog.com/docs/software/um0075.pdf

Zilog Real-Time Kernel
Reference Manual

73
See Also

RZKCreateThread RZKDeleteThread

RZKSetThreadPriority RZKYieldThread

RZKGetThreadParameters RZKDisablePreemption

RZKEnablePreemption RZKRestorePreemption

RZKSuspendInterruptThread RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

74
RZKDELETETHREADENHANCED

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

RZK_STATUS_t RZKDeleteThreadEnhanced(
RZK_THREADHANDLE_t hThread);

Description

The RZKDeleteThreadEnhanced() API deletes a thread and invali-
dates the thread control block (TCB). This invalidated control block is
allocated to other threads when they are created. The clean-up functions
are called first through a clean-up function pointer provided during a
RZKCreateThread() call and then the thread handle is invalidated.

A thread can delete another thread. If an API is called inside a clean-up
function, be aware that the clean-up function executes from the context of
the thread calling RZKDeleteThread(). The clean-up functions are
used to release the resources that were used by the thread being deleted.

When a thread deletes itself, the delete operation is automatic, implying
that any context switching, which can occur as a result of making an RZK
API call within the thread’s clean-up function, is delayed until the delete
operation is complete.

The RZKDeleteThreadEnhanced() API deallocates memory of the
thread stack, which is allocated by the RZKCreateThreadEnhanced()
API.

1. If RZK_PRIORITYINHERITANCE is enabled, the binary semaphore
held by the thread is released when the thread is deleted.

Notes:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

75
2. Any allocated partition /region/acquired semaphore is not freed auto-
matically in the RZKDeleteThreadEnhanced() call. You must free
these allocated partitions/regions/acquired semaphores in the thread’s
clean-up function.

3. RZKERR_CB_UNAVAILABLE and RZKERR_CB_BUSY are returned
only if RZK_PERFORMANCE is undefined.

Argument(s)

Return Value(s)

Example

A previously-created thread, hThreadHandle is deleted. The thread
deletion status is stored in the status variable.

/*contains thread handle to be deleted.*/
RZK_THREADHANDLE_t hThreadHandle;
RZK_STATUS_t status;

status = RZKDeleteThreadEnhanced (hThreadHandle);

hThread Handle to the thread to be deleted.

RZKERR_SUCCESS Indicates that the function returned
successfully.

RZKERR_INVALID_HANDLE Indicates that the thread handle to be
deleted is invalid or already deleted.

RZKERR_INVALID_OPERATION Indicates that you tried to delete a
thread that is not in DELETED state
or contains a locked thread from
DELETED state.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

76
See Also

RZKCreateThread RZKDeleteThread

RZKSetThreadPriority RZKYieldThread

RZKGetThreadParameters RZKDisablePreemption

RZKEnablePreemption RZKRestorePreemption

RZKSuspendInterruptThread RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

77
RZKSUSPENDTHREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

Description

The RZKSuspendThread() API suspends a thread finitely or infinitely.
If suspended infinitely, it can be started again only by a RZKResumeTh-
read() call. For suspending the thread infinitely, pass the
MAX_INFINITE_SUSPEND to tTicks.

A thread can call the RZKSuspendThread() API to suspend itself
finitely, but when it tries to suspend another thread finitely, an
RZKERR_INVALID_OPERATION is returned.

This API returns immediately when called within the clean-up function of
a thread that has deleted itself because the preemption for the deleted
thread is disabled. See the RZKDeleteThread API definition on page 71.

RZK_STATUS_t RZKSuspendThread(

RZK_THREADHANDLE_t hThread,

TICK_t tTicks);

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

78
Argument(s)

Return Value(s)

Example 1

A thread is suspended from execution for a period of 10 ticks. The status
of execution is stored in the status variable.

#define THREAD_SUSPEND_TICKS 10

RZK_THREADHANDLE_t hThreadHandle;
RZK_STATUS_t status;

hThread Handle to the thread to be suspended.

tTicks The time-out period to wait before returning. If time-out
period is 0, the API returns immediately. If the time-out
period is MAX_INFINITE_SUSPEND, the API waits infi-
nitely.

RZKERR_SUCCESS Indicates that the function returned
successfully.

RZKERR_INVALID_HANDLE Indicates that thread handle to be sus-
pended is invalid.

RZKERR_INVALID_OPERATION Indicates that you tried to perform a
timed suspend on another thread OR
tried to suspend a thread in the process
of being deleted.

RZKERR_CB_BUSY Indicates that the thread control block
is busy.

RZKERR_TIMEOUT Indicates that the system timer ISR
was unable to resume the thread
within the time.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

79
status = RZKSuspendThread(hThreadHandle,
THREAD_SUSPEND_TICKS);

Example 2

A thread is suspended from execution infinitely. The status of execution is
stored in the status variable.

RZK_THREADHANDLE_t hCurr_Thread;
RZK_STATUS_t status;
status = RZKSuspendThread(hCurr_Thread,
MAX_INFINITE_SUSPEND);

See Also

RZKCreateThread RZKDeleteThread

RZKSetThreadPriority RZKYieldThread

RZKGetThreadParameters RZKDisablePreemption

RZKEnablePreemption RZKRestorePreemption

RZKSuspendInterruptThread RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

80
RZKSETTHREADPRIORITY

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

Description

The RZKSetThreadPriority() API sets a new priority value for a
thread.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKSetThreadPriority(

RZK_THREADHANDLE_t hThread,

RZK_THREAD_PRIORITY_t threadPriority);

hThread Handle to the thread to be resumed.

threadPriority The new priority for the thread. The range of val-
ues is from 1 to 31.

RZKERR_SUCCESS Indicates that the function returned
successfully.

RZKERR_INVALID_HANDLE Indicates that the thread handle to
be resumed is invalid.

RZKERR_INVALID_ARGUMENTS Indicates that the thread priority
value is invalid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

81
Example

The priority of thread hThreadHandle is changed to a value 20.

#define NEW_PRIORITY 20

RZK_THREADHANDLE_t hThreadHandle;
RZK_STATUS_t status;

status = RZKSetThreadPriority(hThreadHandle,
NEW_PRIORITY);

See Also

RZKERR_INVALID_OPERATION Indicates that you tried to set a new
priority value to a thread that is in
the process of being deleted.

RZKERR_CB_BUSY Indicates that the thread control
block is in exclusive use.

RZKCreateThread RZKDeleteThread

RZKSuspendThread RZKYieldThread

RZKGetThreadParameters RZKDisablePreemption

RZKEnablePreemption RZKRestorePreemption

RZKSuspendInterruptThread RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

82
RZKRESUMETHREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

Description

The RZKResumeThread() API resumes an infinitely-suspended thread.

This API returns immediately when called within the clean-up function of
a thread that has deleted itself because the preemption for the deleted
thread is disabled. See the RZKDeleteThread API definition on page 71.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKResumeThread(

RZK_THREADHANDLE_t hThread);

hThread Handle to the thread to be resumed.

RZKERR_SUCCESS Indicates that the function returned
successfully.

RZKERR_INVALID_HANDLE Indicates that the thread handle to be
resumed is invalid.

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

83
Example

An infinitely suspended thread hThreadHandle resumes and stores the
call status in status variable.

/** thread handle to be resumed */
RZK_THREADHANDLE_t hThreadHandle;
RZK_STATUS_t status;
status = RZKResumeThread(hThreadHandle);

See Also

RZKERR_INVALID_OPERATION Indicates operation is invalid and you
tried to resume a finitely suspended
thread OR tried to resume a thread in
the process of being deleted.

RZKERR_CB_BUSY Indicates that the thread control block
is in exclusive use.

RZKCreateThread RZKDeleteThread

RZKSuspendThread RZKYieldThread

RZKGetThreadParameters RZKSetThreadPriority

RZKDisablePreemption RZKEnablePreemption

RZKRestorePreemption RZKSuspendInterruptThread

RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

84
RZKYIELDTHREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

Description

The RZKYieldThread() API yields control and use of the CPU to a
next ready-to-run thread in the dispatch queue that is at an equal priority
level.

This API returns immediately when called within the clean-up function of
a thread that has deleted itself because the preemption for the deleted
thread is disabled. See the RZKDeleteThread API definition on page 71.

Argument(s)

None.

Return Value(s)

Example

Control of a processor from hThreadHandle is yielded to other threads
that are created with the same priority. The call status is stored in the
status variable.

RZK_STATUS_t RZKYieldThread();

RZKERR_SUCCESS Indicates that the function returned successfully.

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

85
/** thread handle from which the control to be yielded
*/
RZK_THREADHANDLE_t hThreadHandle;
RZK_STATUS_t status;
status = RZKYieldThread();

See Also

RZKCreateThread RZKDeleteThread

RZKSuspendThread RZKSetThreadPriority

RZKGetThreadParameters RZKDisablePreemption

RZKEnablePreemption RZKRestorePreemption

RZKSuspendInterruptThread RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

86
RZKGETTHREADPARAMETERS

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

Description

The RZKGetThreadParameters() API obtains the current parameters
of the thread from the thread control block and returns them in the
RZK_THREADPARAMS_t structure. See Table 57 on page 346 for the
members of the RZK_THREADPARAMS_t structure.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKGetThreadParameters(

RZK_THREADHANDLE_t hThread,

RZK_THREADPARAMS_t *pThreadParams);

hThread Handle to the thread for which the parameters are
required.

pThreadParams A pointer to the structure that receives the appro-
priate values.

RZKERR_SUCCESS Indicates that the function returned
successfully.

RZKERR_INVALID_HANDLE Indicates that thread handle is invalid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

87
Example

The parameters of a thread, pointed to by hThreadHandle, are stored in
the RZK_THREADPARAMS_t structure. The call status is returned in the
status variable.

RZK_THREADHANDLE_t hThreadHandle;
RZK_THREADPARAMS_t ThreadParams;
RZK_STATUS_t status;
status = RZKGetThreadParameters(hThreadHandle,

&ThreadParams);

See Also

RZKERR_INVALID_ARGUMENTS Indicates that pThreadParams is
invalid.

RZKERR_CB_BUSY Indicates that thread control block is in
exclusive use, that is, it is busy.

RZKCreateThread RZKDeleteThread

RZKSuspendThread RZKSetThreadPriority

RZKYieldThread RZK_THREADPARAMS_t

RZKDisablePreemption RZKRestorePreemption

RZKSuspendInterruptThread RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

88
RZKDISABLEPREEMPTION

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype
RZK_STATE_t RZKDisablePreemption();

Description

The RZKDisablePreemption() API disables the preemption of the
current task.

Argument(s)

None.

Return Value(s)

This API returns a value 1 if preemption is enabled, or returns a value of 0
if preemption is disabled.

See Also

RZKCreateThread RZKDeleteThread

RZKSuspendThread RZKSetThreadPriority

RZKYieldThread RZK_THREADPARAMS_t

RZKEnablePreemption RZKRestorePreemption

RZKSuspendInterruptThread RZKSuspendInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

89
RZKENABLEPREEMPTION

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype
void RZKEnablePreemption ();

Description

The RZKEnablePreemption() API enables the preemption of the cur-
rent task irrespective of the previous status of preemption.

Argument(s)

None.

Return Value(s)

None.

See Also

RZKCreateThread RZKDeleteThread

RZKSuspendThread RZKSetThreadPriority

RZKYieldThread RZK_THREADPARAMS_t

RZKDisablePreemption RZKRestorePreemption

RZKSuspendInterruptThread RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

90
RZKRESTOREPREEMPTION

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype
void RZKRestorePreemption (RZK_STATE_t uState);

Description

The RZKRestorePreemption() API restores the preemption of the
current task. If the preemption was disabled twice previously, restore does
not enable a preemption. If preemption disabling was conducted only
only one time previously, this call enables preemption.

Argument(s)

Previous status of preemption (return value of the previous RZKDis-
ablePreemption() call).

Return Value(s)

None.

See Also

RZKCreateThread RZKDeleteThread

RZKSuspendThread RZKSetThreadPriority

RZKYieldThread RZK_THREADPARAMS_t

RZKDisablePreemption RZKEnablePreemption

RZKSuspendInterruptThread RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

91
RZKSUSPENDINTERRUPTTHREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype
void RZKSuspendInterruptThread ();

Description

The RZKSuspendInterruptThread() API suspends the currently-
executing interrupt thread. This API must only be called from within an
interrupt thread. You must exercise caution while using this API, because
it does not return error values. This API must be called under disable
interrupts and to disable the interrupt RZKDisableInterrupt API is
called.

Argument(s)

None.

Return Value(s)

None.

See Also

RZKCreateThread RZKDeleteThread

RZKSuspendThread RZKSetThreadPriority

RZKYieldThread RZK_THREADPARAMS_t

RZKDisablePreemption RZKEnablePreemption

RZKRestorePreemption RZKSuspendInterruptThread

RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

92
RZKRESUMEINTERRUPTTHREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype
void RZKResumeInterruptThread (RZK_THREADHANDLE_t

hThread);

Description

The RZKResumeInterruptThread() API resumes an interrupt thread
and must be called only from within an interrupt’s prologue. You must
exercise caution while using this API, because it does not return error val-
ues. This API must be called under disable interrupts and to disable the
interrupt RZKDisableInterrupt API is called.

Argument(s)

The interrupt thread’s handle.

Return Value(s)

None.

See Also

RZKCreateThread RZKDeleteThread

RZKSuspendThread RZKSetThreadPriority

RZKYieldThread RZK_THREADPARAMS_t

RZKDisablePreemption RZKEnablePreemption

RZKRestorePreemption RZKSuspendInterruptThread

RZKResumeInterruptThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

93
Scheduler APIs

RZK includes one scheduler API, which is described below.

RZKGETSCHEDULERPARAMETERS

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZScheduler.h"

Description

The RZKGetSchedulerParameters() API is defined as a macro to the
uDefaultTimeSlice variable, which indicates the current default time
slice. The value of this variable is used for round-robin threads if you
specify zero quantum during thread creation.

Argument(s)

None.

Return Value(s)

The value of the uDefaultTimeSlice variable is returned whenever the
RZKGetSchedulerParameters() API is invoked.

Example

The default round-robin time slice value is assigned to the rrTICS vari-
able.

TICKS_t rrTICS;
rrTICS=RZKGetSchedulerParameters();
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

94
Message Queue APIs

Table 28 provides a quick reference to a number of message queue APIs
that are described in this subsection.

Table 28. Message Queue API Quick Reference

RZKCreateQueue RZKReceiveFromQueue

RZKDeleteQueue RZKPeekMessageQueue

RZKSendToQueue RZKGetQueueParameters

RZKSendToQueueFront RZKSendToQueueUnique
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

95
RZKCREATEQUEUE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMessageQ.h"

Prototype

Description

The RZKCreateQueue() API creates a message queue with the speci-
fied parameters and sets various items in the message queue control
block. The messages are stored in the memory area that is allocated by the
program that calls this function. The length of the memory area allocated
is: (uQueueLength * sizeof(COUNT_t)) + (uQueueLength *
uMaxSizeOfMessage);

Argument(s)

RZK_MESSAGEQHANDLE_t RZKCreateQueue(

RZK_NAME_t szName[MAX_OBJECT_NAME_LEN],

COUNT_t uQueueLength,

RZK_PTR_t pMessage,

COUNT_t uMaxSizeOfMessage,

RZK_RECV_ATTRIB_et etAttrib);

szName Specifies the name of the message queue–
ASCII string.

uQueueLength Specifies the queue length, which is the number
of messages that can be stored in the message
queue.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

96
Return Value(s)

The function returns a handle to the message queue if it is created suc-
cessfully or returns NULL. If NULL is returned it sets one of the following
error values in the thread control block of the current thread. RZKGetEr-
rorNum() API can be called to retrieve the error number stored in the
thread control block.

Example 1

A message queue is created with the name Zilog, a queue length of 10, a
maximum message size of 200 and a receiving order of messages of
FIFO. The return value is stored in the message queue handle.

#define MSGQ_LENGTH 10
#define MESSAGE_SIZE 200

pMessage Pointer to the memory area where messages are
to be stored.

uMaxSizeOfMessage The maximum size of individual messages.

etAttrib Specifies the receiving order attribute and con-
tains one of the following.*

RECV_ORDER_FIFO Receiving order is
FIFO.

RECV_ORDER_
PRIORITY

Receiving order is PRI-
ORITY.

Note: *If receiving order is not RECV_ORDER_FIFO, by default it is taken as
RECV_ORDER_PRIORITY.

RZKERR_CB_UNAVAILABLE The control block is not available to
create a new queue.

RZKERR_INVALID_ARGUMENTS The parameters are invalid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

97
unsigned char msgBuffer[(MSGQ_LENGTH * MESSAGE_SIZE)
+ (MSGQ_LENGTH * sizeof(COUNT_t))];
RZK_MESSAGEQHANDLE_t hMessageQueue;
hMessageQueue = RZKCreateQueue((RZK_NAME_t [
])"Zilog",

MSGQ_LENGTH,
msgBuffer,
MESSAGE_SIZE,
RECV_ORDER_FIFO);

Example 2

A message queue is created with the name Zilog, a queue length of 10, a
maximum message size of 200 and a receiving order of messages of pri-
ority-based. The return value is stored in the message queue handle.

#define MSGQ_LENGTH 10
#define MESSAGE_SIZE 200
unsigned char msgBuffer[(MSGQ_LENGTH * MESSAGE_SIZE)
+

(MSGQ_LENGTH * sizeof(COUNT_t))];
RZK_MESSAGEQHANDLE_t hMessageQueue;
hMessageQueue = RZKCreateQueue((RZK_NAME_t [
])"Zilog",

MSGQ_LENGTH,
msgBuffer,
MESSAGE_SIZE,
RECV_ORDER_PRIORITY);

The memory to be allocated in bytes to hold the messages in the message
queue can be calculated. Assuming that MESSAGE_SIZE is the maximum
message size that can be present in the message queue and MSGQ_LENGTH
is the message queue length, then the following equation can be con-
structed.

Memory to be allocated in bytes = (MESSAGE_SIZE *
MSGQ_LENGTH) + (MSGQ_LENGTH * sizeof(COUNT_t))
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

98
See Also

RZKDeleteQueue RZKSendToQueueFront

RZKSendToQueue RZKGetQueueParameters

RZKReceiveFromQueue RZKPeekMessageQueue

RZKSendToQueueUnique
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

99
RZKDELETEQUEUE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMessageQ.h"

Prototype

Description

The RZKDeleteQueue() API deletes a queue and the threads that are
waiting on the queue to pend/post are placed into the READY state from
the BLOCKED/TIME_WAIT state.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKDeleteQueue(

RZK_MESSAGEQHANDLE_t hMessageQueue);

hMessageQueue Specifies the message queue handle to be deleted.

RZKERR_SUCCESS The operation completed successfully.

RZKERR_INVALID_HANDLE The specified message queue handle is
invalid.

RZKERR_CB_BUSY The message queue control block is
used for an exclusive purpose; for
example, it is busy.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

100
Example

A previously-created message queue represented by hMessageQueue, is
deleted. The return value is stored in the status variable.

extern RZK_MESSAGEQHANDLE_t hMessageQueue;
RZK_STATUS_t status;
status = RZKDeleteQueue(hMessageQueue);

See Also

RZKCreateQueue RZKSendToQueueFront

RZKSendToQueue RZKGetQueueParameters

RZKReceiveFromQueue RZKPeekMessageQueue

RZKSendToQueueUnique
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

101
RZKSENDTOQUEUE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMessageQ.h"

Prototype

Description

This function sends a message to a specified queue. The message is
appended to the end of the queue. Thread blocking occurs when the queue
cannot store any more messages because the maximum queue length
specified during queue creation is reached.

If the message size sent to the queue is greater than the maximum mes-
sage size set during queue creation, then the previously set maximum
message size is used and rest of the message is truncated.

Argument(s)

RZK_STATUS_t RZKSendToQueue(

RZK_MESSAGEQHANDLE_t hMessageQueue,

RZK_PTR_t pMessage,

COUNT_t uSize,

TICK_t tBlockTime);

hMessageQueue Specifies the handle to the message queue to which
messages are required to be sent.

pMessage Pointer to the message.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

102
Return Value(s)

Example 1

A message is sent that is pointed to by the pMessage to the message
queue with a handle that is stored in hMessageQueue. If the queue is not
empty, the thread waits for a period of 200 ticks (worst case). Message
size is 500 bytes and the return value is the call status.

#define MESSAGE_SIZE 500
extern RZK_MESSAGEQHANDLE_t hMessageQueue;
unsigned char pMessage[MESSAGE_SIZE] = "Hello
World";

uSize Message size.

tBlockTime Period to wait if the message queue is full. For infi-
nite blocking, use MAX_INFINITE_SUSPEND.

RZKERR_SUCCESS The operation completed success-
fully.

RZKERR_INVALID_HANDLE The specified message queue handle
is invalid.

RZKERR_INVALID_ARGUMENTS The parameters are invalid.

RZKERR_OBJECT_DELETED The message queue on which a
thread is pending to send a message
is deleted.

RZKERR_CB_BUSY The message queue control block is
used for an exclusive purpose, that is,
busy.

RZKERR_TIMEOUT A time-out occurred and the pend
operation could not be completed
within the specified time.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

103
RZK_STATUS_t status;
status =
RZKSendToQueue(hMessageQueue,pMessage,MESSAGE_SIZE,200
);

Example 2

A message is sent that is pointed to by the pMessage to the message
queue with a handle of hMessageQueue. This example tries to post mes-
sage with time-out value as zero. If the message queue is full, the status
variable contains an error code RZKERR_TIMEOUT.

#define MESSAGE_SIZE 500
extern RZK_MESSAGEQHANDLE_t hMessageQueue;
unsigned char pMessage[MESSAGE_SIZE] = "Hello
World";
RZK_STATUS_t status;
status = RZKSendToQueue(hMessageQueue,

pMessage,
MESSAGE_SIZE,
0);

See Also

RZKCreateQueue RZKDeleteQueue

RZKReceiveFromQueue RZKSendToQueueFront

RZKPeekMessageQueue RZKGetQueueParameters

RZKSendToQueueUnique
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

104
RZKSENDTOQUEUEFRONT

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMessageQ.h"

Prototype

Description

This function sends the message to the front position in the queue. If the
queue is full, it returns an error. If there are a number of threads waiting to
receive the message, this function directly copies the message to the first
thread waiting to receive the message. The selection of the thread is based
on FIFO or PRIORITY mode of operation.

If the message size sent to the queue is greater than the maximum mes-
sage size set during queue creation, then the previously set maximum
message size is used.

Argument(s)

RZK_STATUS_t RZKSendToQueueFront(

RZK_MESSAGEQHANDLE_t hMessageQueue,

RZK_PTR_t pMessage,

COUNT_t uSize);

hMessageQueue Specifies the handle to the message queue to
whose front the message is to be posted.

pMessage Pointer to the message.

uSize Size of the message.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

105
Return Value(s)

Example

A message is sent that is pointed by pMessage to the front of the message
queue with a handle of hMessageQueue. The size of the message is 500
bytes. The return value is stored in the status variable.

#define MESSAGE_SIZE 500
extern RZK_MESSAGEQHANDLE_t hMessageQueue;
unsigned char pMessage[MESSAGE_SIZE] = "Hello
World";
RZK_STATUS_t status;
status = RZKSendToQueueFront(hMessageQueue,

pMessage,
MESSAGE_SIZE);

See Also

RZKERR_SUCCESS The operation completed success-
fully.

RZKERR_INVALID_HANDLE Specified message queue handle
invalid.

RZKERR_INVALID_ARGUMENTS The parameters are invalid.

RZKERR_CB_BUSY message queue control block is used
for an exclusive purpose; for exam-
ple, it is busy.

RZKERR_QUEUE_FULL Indicates that the message queue is
full.

RZKCreateQueue RZKDeleteQueue

RZKReceiveFromQueue RZKSendToQueue

RZKPeekMessageQueue RZKGetQueueParameters

RZKSendToQueueUnique
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

106
RZKRECEIVEFROMQUEUE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMessageQ.h"

Prototype

Description

The RZKReceiveFromQueue API receives a message from the front of
the message queue. If the message is not available, the thread performs a
timed/infinite wait until it receives a message. The message is received
depending on the receiving attribute (RZK_RECV_FIFO or
RZK_RECV_PRIORITY) of the message queue. The message size received
from the queue is either the size represented by the uSize parameter or
the actual maximum message size for the message queue, whichever is
minimum.

Argument(s)

RZK_STATUS_t RZKReceiveFromQueue(

RZK_MESSAGEQHANDLE_t hMessageQueue,
RZK_PTR_t pMessage,
COUNT_t *uSize,
TICK_t tBlockTime);

hMessageQueue Specifies the handle to the message queue to
receive the message from.

pMessage Pointer to the memory where the received message
is required to be stored.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

107
Return Value(s)

uSize* This parameter is an input and an output to/from
the API.

Input: uSize defines the buffer size meaning a
message of this size or less to be received
(expected maximum size).

Output: When this API executes successfully
and receives message.

tBlockTime The period to wait if message is not available. Use
MAX_INFINITE_SUSPEND for infinite blocking.

Note: *uSize contains the actual size of the message received, depending on current
queue status.

RZKERR_SUCCESS The operation completed success-
fully.

RZKERR_INVALID_HANDLE Handle of specified message queue is
invalid.

RZKERR_INVALID_ARGUMENTS The parameters are invalid.

RZKERR_OBJECT_DELETED The message queue from which the
message is to be received is deleted
by another thread.

RZKERR_CB_BUSY The message queue control block is
used for an exclusive purpose; for
example, it is busy.

RZKERR_TIMEOUT A time-out occurred and the receive
operation could not be completed
within the specified time.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

108
Example 1

A message is received from the message queue with a handle of hMes-
sageQueue; this message is copied into the buffer pMessage. If the
queue is empty, the thread waits in the time queue for 200 ticks. The max-
imum message size that pMessage can receive is 500 bytes (stored in
uSize). The API execution status is stored in the status variable. When
this API executes successfully, the uSize variable contains the actual
size of the received message.

#define MESSAGE_SIZE 500
extern RZK_MESSAGEQHANDLE_t hMessageQueue;
unsigned char pMessage[MESSAGE_SIZE];
RZK_STATUS_t status;
COUNT_t uSize = MESSAGE_SIZE;
status = RZKReceiveFromQueue(hMessageQueue,

pMessage,
&uSize,
200);

Example 2

A message is received from the message queue with a handle of hMes-
sageQueue; it is copied into the buffer pMessage. If the queue is empty,
the thread waits infinitely. The maximum message size that pMessage
can receive is 500 bytes (stored in uSize). The API execution status is
stored in the status variable. When this API executes successfully, the
uSize variable contains the actual size of the received message.

#define MESSAGE_SIZE 500
extern RZK_MESSAGEQHANDLE_t hMessageQueue;
unsigned char pMessage[MESSAGE_SIZE];
RZK_STATUS_t status;
COUNT_t uSize = MESSAGE_SIZE;
status = RZKReceiveFromQueue(hMessageQueue,

pMessage,
&uSize,
MAX_INFINITE_SUSPEND);
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

109
See Also

RZKCreateQueue RZKDeleteQueue

RZKSendToQueueFront RZKSendToQueue

RZKPeekMessageQueue RZKGetQueueParameters

RZKSendToQueueUnique
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

110
RZKPEEKMESSAGEQUEUE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMessageQ.h"

Prototype

Description

The RZKPeekMessageQueue() API call peeks into the specified mes-
sage queue and copies the message from the queue to a specified location.
Being a nonblocking call, the RZKPeekMessageQueue() returns imme-
diately. The message queue status remains intact. Before the call is exe-
cuted, uSize takes a value for the buffer that holds the message. If the
call is successful, uSize reflects the actual message size.

Argument(s)

RZK_STATUS_t RZKPeekMessageQueue(

RZK_MESSAGEQHANDLE_t hMessageQueue,
RZK_PTR_t pMessage
COUNT_t *uSize);

hMessageQueue Specifies the handle to the message queue for
peeking into.

pMessage Pointer to the memory area where the message is
required to be stored.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

111
Return Value(s)

Example

A message queue with a handle of hMessageQueue peeks into and deter-
mines if any message is present. If a message is present, it is copied to the
buffer pMessage with a maximum size of 500 bytes (stored in uSize).
The API execution status is stored in the status variable. When this API
executes and if the call is successful, uSize contains the actual size of the
message being copied to pMessage.

#define MESSAGE_SIZE 500

uSize* This parameter is an input and an output to/from
the API.

Input: uSize defines the buffer size meaning a
message of this size or less to be received
(Expected MAX size)

Output: when this API executes successfully
and receives message.

Note: *uSize contains the actual size of the message received depending on current
queue status.

RZKERR_SUCCESS The operation completed success-
fully.

RZKERR_INVALID_HANDLE The handle of the message queue
specified is invalid.

RZKERR_CB_BUSY The message queue control block is
used for an exclusive purpose; for
example, it is busy.

RZKERR_QUEUE_EMPTY The message queue is empty.

RZKERR_INVALID_ARGUMENTS The parameters are invalid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

112
extern RZK_MESSAGEQHANDLE_t hMessageQueue;
unsigned char pMessage[MESSAGE_SIZE];
RZK_STATUS_t status;
COUNT_t uSize = MESSAGE_SIZE;
status = RZKPeekMessageQueue(hMessageQueue,

pMessage,
&uSize);

See Also

RZKCreateQueue RZKDeleteQueue

RZKSendToQueueFront RZKSendToQueue

RZKGetQueueParameters RZKReceiveFromQueue

RZKSendToQueueUnique
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

113
RZKGETQUEUEPARAMETERS

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMessageQ.h"

Prototype

Description

The RZKGetQueueParameters() API obtains the parameters of the
specified message queue and stores it in the RZK_MESSAGEQPARAMS_t
structure. See Table 59 on page 348 for members of the
RZK_MESSAGEQPARAMS_t structure.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKGetQueueParameters(

RZK_MESSAGEQHANDLE_t hMessageQueue,
RZK_MESSAGEQPARAMS_t *pQueueParams);

hMessageQueue Specifies the handle to the message queue whose
parameters must be obtained.

pQueueParams Pointer to the structure to receive the parameters.

RZKERR_SUCCESS The operation completed success-
fully.

RZKERR_INVALID_HANDLE Specified message queue handle
invalid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

114
Example

The parameters of the message queue with a handle of hMessageQueue
are stored into the RZK_MESSAGEQPARAMS_t structure. The RZKGet-
QueueParameters() API execution status is stored in the status vari-
able.

extern RZK_MESSAGEQHANDLE_t hMessageQueue;
RZK_MESSAGEQPARAMS_t *pParams;
RZK_STATUS_t status;
status = RZKGetQueueParameters(hMessageQueue,

pParams);

See Also

RZKERR_INVALID_ARGUMENTS The parameters are invalid.

RZKERR_CB_BUSY The message queue control block is
used for exclusive purpose; for exam-
ple, it is busy.

RZKCreateQueue RZKDeleteQueue

RZKSendToQueueFront RZKSendToQueue

RZK_MESSAGEQPARAMS_t RZKReceiveFromQueue

RZKPeekMessageQueue RZKSendToQueueUnique
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

115
RZKSENDTOQUEUEUNIQUE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZMessageQ.h"

Prototype
COUNT_t RZKSendToQueueUnique (

RZK_MESSAGEQHANDLE_t hMessageQueue,
RZK_PTR_t pMessage,
COUNT_t uSize,
TICK_t tBlockTime
);

Description

The RZKSendToQueueUnique() API sends only unique messages to
the message queue. If the queue already contains messages that you must
resend, this API returns the error RZKERR_MSG_PRESENT.

Argument(s)

hMessageQueue Specifies the handle to the message queue to
which messages must be sent.

pMessage Pointer to the message.

uSize Message size.

tBlockTime Period to wait if the message queue is full. For
infinite blocking, use
MAX_INFINITE_SUSPEND.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

116
Return Value(s)

See Also

RZKERR_SUCCESS Indicates that the operation com-
pleted successfully.

RZKERR_INVALID_HANDLE Indicates that the message queue
handle is invalid.

RZKERR_INVALID_ARGUMENTS Indicates that the parameters are
invalid.

RZKERR_OBJECT_DELETED Indicates the message queue on
which a thread is pending to send a
message is deleted.

RZKERR_CB_BUSY Indicates that the message queue
control block is used for an exclusive
purpose, that is, busy.

RZKERR_TIMEOUT Indicates that a time-out occurred
and the pend operation could not be
completed within the specified time.

RZKERR_MSG_PRESENT Indicates that the message is already
present.

RZKCreateQueue RZKDeleteQueue

RZKSendToQueueFront RZKSendToQueue

RZK_MESSAGEQPARAMS_t RZKReceiveFromQueue

RZKPeekMessageQueue
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

117
Semaphore APIs

Table 29 provides a quick reference to a number of semaphore APIs that
are described in this subsection.

Table 29. Semaphore API Quick Reference

RZKCreateSemaphore RZKReleaseSemaphore

RZKDeleteSemaphore RZKGetSemaphoreParameters

RZKAcquireSemaphore
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

118
RZKCREATESEMAPHORE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZSemaphore.h"

Prototype

Description

The RZKCreateSemaphore() API call creates a semaphore specifying
the initial count and the mode of waiting for the threads on this sema-
phore. The initial count (uInitialCount) decides the number of threads
that can hold this shared resource simultaneously. The notion of exclusive
ownership of a resource is present only for a binary semaphore.

Argument(s)

RZK_SEMAPHOREHANDLE_t RZKCreateSemaphore(

RZK_NAME_t szName[MAX_OBJECT_NAME_LEN],
COUNT_t uInitialCount,
RZK_RECV_ATTRIB_et etAttrib);

szName Specifies the name of the semaphore/ASCII string.

uInitialCount The maximum number of objects that can acquire
the semaphore. If this value is 1, the semaphore is
a binary semaphore. If this value is 0, the sema-
phore is a binary semaphore and it acquires imme-
diately. Otherwise, it is a counting semaphore.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

119
Return Value(s)

The function returns a handle to the semaphore if it is created successfully
or else returns NULL. If NULL is returned it sets one of the following
error values in the current thread’s thread control block.The RZKGetEr-
rorNum() API is called to retrieve the error number stored in the thread
control block.

Example 1

A counting semaphore is created with the name Zilog, an initial count of 5
and a receive order of FIFO. Upon successful creation, the semaphore
handle is returned to the hSemaphore variable.

#define MAX_SEM_COUNT 5
RZK_SEMAPHOREHANDLE_t hSemaphore;
hSemaphore = RZKCreateSemaphore((RZK_NAME_t [
])"Zilog",

MAX_SEM_COUNT,
RECV_ORDER_FIFO);

etAttrib Specifies the receiving order attribute and contains
one of the following.

RECV_ORDER_FIFO Receiving order is
FIFO.

RECV_ORDER_PRIORITY Receiving order is
Priority.

Note: *If the receiving order is not RECV_ORDER_PRIORITY, by default it is taken
as RECV_ORDER_FIFO.

RZKERR_INVALID_ARGUMENTS The parameters are invalid.

RZKERR_CB_UNAVAILABLE The control block is not available to
create the semaphore.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

120
Example 2

A counting semaphore is created with the name Zilog, an initial count of 0
(binary semaphore) and a receive order of PRIORITY. Upon successful
creation, the semaphore handle is returned into the hSemaphore variable.

#define MAX_SEM_COUNT 1
RZK_SEMAPHOREHANDLE_t hSemaphore;
hSemaphore = RZKCreateSemaphore((RZK_NAME_t [
])"Zilog",

MAX_SEM_COUNT,
RECV_ORDER_PRIORITY);

For priority inheritance to work, uInitialCount must be 1, etAttrib
must be RECV_ORDER_PRIORITY and RZK_PRIORITYINHERITANCE
must be defined in the ZSysgen.h file.

See Also

RZKDeleteSemaphore RZKReleaseSemaphore

RZKAcquireSemaphore RZKGetErrorNum

RZKGetSemaphoreParameters RZK_RECV_ATTRIB_et

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

121
RZKDELETESEMAPHORE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZSemaphore.h"

Prototype

Description

The RZKDeleteSemaphore() API call invalidates an existing sema-
phore control block and resumes all waiting threads on this semaphore in
the order specified during the semaphore creation. It sets the appropriate
status in the thread control blocks and makes the semaphore control block
available for RZKCreateSemaphore() calls.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKDeleteSemaphore(

RZK_SEMAPHOREHANDLE_t hSemaphore);

hSemaphore Specifies the handle of the semaphore to delete.

RZKERR_SUCCESS The operation completed successfully.

RZKERR_INVALID_HANDLE The specified Semaphore handle is
invalid.

RZKERR_CB_BUSY If the semaphore control block is used
for an exclusive purpose; for example,
it is busy.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

122
Example

A previously-created semaphore with a handle of hSemaphore is
deleted, making the handle invalid. The API execution status is stored in
the status variable.

extern RZK_SEMAPHOREHANDLE_t hSemaphore;
RZK_STATUS_t status;
status = RZKDeleteSemaphore(hSemaphore);

See Also

RZKCreateSemaphore RZKAcquireSemaphore

RZKReleaseSemaphore RZKGetSemaphoreParameters
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

123
RZKACQUIRESEMAPHORE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZSemaphore.h"

Prototype

Description

The RZKAcquireSemaphore() API is used to acquire a semaphore. The
thread waits for the duration specified in tBlockTime if the semaphore is
not immediately available (that is, the maximum count is already
reached). If this semaphore supports priority inheritance, the priority of
the thread that acquired this semaphore is raised, if necessary.

Argument(s)

RZK_STATUS_t RZKAcquireSemaphore(

RZK_SEMAPHOREHANDLE_t hSemaphore,
TICK_t tBlockTime);

hSemaphore Specifies the handle to the Semaphore that is acquired.

tBlockTime Specifies the time to wait if semaphore not available.
For infinite time waiting, use
MAX_INFINITE_SUSPEND.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

124
Return Value(s)

Example 1

The acquisition of a previously-created counting semaphore with a handle
of hSemaphore is attempted. If the semaphore is already acquired or the
semaphore is not free then the thread waits 200 ticks to acquire the sema-
phore. The execution status of the API is stored in the status variable.

extern RZK_SEMAPHOREHANDLE_t hSemaphore;
RZK_STATUS_t status;
status = RZKAcquireSemaphore(hSemaphore,

200);

Example 2

The acquisition of a previously-created binary semaphore with a handle
of hSemaphore is attempted. If the semaphore is already acquired or the

RZKERR_SUCCESS Indicates that the operation com-
pleted successfully.

RZKERR_INVALID_HANDLE Indicates that the handle to the speci-
fied semaphore to acquire is invalid.

RZKERR_TIMEOUT Indicates that the requested sema-
phore could not be acquired in the
specified time.

RZKERR_OBJECT_DELETED Indicates that the semaphore on
which the acquire is requested is
deleted by another thread.

RZKERR_CB_BUSY Indicates that the semaphore control
block is used for an exclusive pur-
pose; for example, it is busy.

RZKERR_INVALID_OPERATION Indicates that the API is called from
an ISR and the semaphore is a binary
semaphore.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

125
semaphore is not free then the thread waits infinitely to acquire the sema-
phore. The execution status of the API is stored in the status variable.

extern RZK_SEMAPHOREHANDLE_t hSemaphore;
RZK_STATUS_t status;
status = RZKAcquireSemaphore(hSemaphore,

MAX_INFINITE_SUSPEND);

See Also

RZKCreateSemaphore RZKDeleteSemaphore

RZKGetSemaphoreParameters RZKReleaseSemaphore
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

126
RZKRELEASESEMAPHORE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZSemaphore.h"

Prototype

Description

The RZKReleaseSemaphore() API releases a previously acquired
semaphore and makes it available for further acquiring. If this semaphore
supports priority inheritance, the owner thread’s priority and the priority
of the other threads in sequence of the priority inheritance, are restored.

If RZK_PRIORITYINHERITANCE is defined, the binary semaphore held by
the thread is released when the thread terminates.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKReleaseSemaphore(

RZK_SEMAPHOREHANDLE_t hSemaphore);

hSemaphore Specifies the handle to the semaphore to be released.

RZKERR_SUCCESS Indicates that the operation is com-
pleted successfully.

RZKERR_INVALID_HANDLE Indicates that the handle to the sema-
phore specified for release is invalid.

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

127
Example

An acquired semaphore is released (freed) after data manipulation in a
critical section. The RZKReleaseSemaphore() API execution call sta-
tus is stored in the status variable.

extern RZK_SEMAPHOREHANDLE_t hSemaphore;
RZK_STATUS_t status;
status = RZKReleaseSemaphore(hSemaphore);

See Also

RZKERR_INVALID_OPERATION Indicates that the API is called from
an ISR and the semaphore is a binary
semaphore.

RZKERR_SEM_NOTOWNED Generated if the semaphore is not
owned by the thread which calls the
release API. This error is returned
only if
RZK_PRIORITYINHERITANCE is
defined.

RZKERR_CB_BUSY Indicates that the semaphore control
block is used for an exclusive pur-
pose; for example, it is busy.

RZKCreateSemaphore RZKDeleteSemaphore

RZKGetSemaphoreParameters RZKAcquireSemaphore
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

128
RZKGETSEMAPHOREPARAMETERS

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZSemaphore.h"

Prototype

Description

The RZKGetSemaphoreParameters() API gets the semaphore parameters
and places it into the RZK_SEMAPHOREPARAMS_t structure. See Table 60 on
page 349 for the members of the RZK_SEMAPHOREPARAMS_t structure.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKGetSemaphoreParameters(

RZK_SEMAPHOREHANDLE_t hSemaphore,

RZK_SEMAPHOREPARAMS_t *pSemaphoreParams);

hSemaphore Specifies the handle to the semaphore, the
parameters of which are to be obtained.

pSemaphoreParams Pointer to the structure type
RZK_SEMAPHOREPARAMS_t receiving the
semaphore parameters.

RZKERR_SUCCESS Indicates that the operation is completed suc-
cessfully.

RZKERR_INVALID_
HANDLE

Indicates that the handle to the semaphore
whose parameters are requested is invalid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

129
Example

This example stores the parameters of a semaphore with a handle of
hSemaphore into RZK_SEMAPHOREPARAMS_t structure. The RZKGe-
tSemaphoreParameters() API execution status is stored in the sta-
tus variable.

extern RZK_SEMAPHOREHANDLE_t hSemaphore;
RZK_SEMAPHOREPARAMS_t SemParams;
RZK_STATUS_t status;
status = RZKGetSemaphoreParameters(hSemaphore,
&SemParams);

See Also

RZKERR_INVALID_
ARGUMENTS

Indicates that the function arguments are
invalid.

RZKERR_CB_BUSY Indicates that the semaphore parameters could
not be obtained at this time.

RZKCreateSemaphore RZKDeleteSemaphore

RZKReleaseSemaphore RZKAcquireSemaphore

RZK_SEMAPHOREPARAMS_t
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

130
Event Group APIs

Table 30 provides a quick reference to a number of event group APIs that
are described in this subsection.

Table 30. Event Groups and Events API Quick Reference

RZKCreateEventGroup RZKPendOnEventGroup

RZKDeleteEventGroup RZKGetEventGroupParameters

RZKPostToEventGroup
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

131
RZKCREATEEVENTGROUP

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZEventgroup.h"

Prototype

Description

The RZKCreateEventGroup() API creates the event group with the
specified mask (mEventMask) and returns a handle.

Argument(s)

Return Value(s)

The function returns a handle to the event group if it is created success-
fully or returns NULL. If NULL is returned, it sets the following error
value in the current thread’s thread control block. The RZKGetError-
Num() API is called to retrieve the error number stored in the thread con-
trol block.

RZK_EVENTHANDLE_t RZKCreateEventgroup(

RZK_NAME_t szName [MAX_OBJECT_NAME_LEN],
RZK_MASK_t mEventMask);

szName An ASCII string that specifies the name of the event
group being created.

mEventMask The events to mask.

RZKERR_CB_UNAVAILABLE The control block is not available for
the event group to be created.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

132
Example

This example creates an event group with a name of Zilog and a group
mask of 0x000b. That is, threads can pend and post on this event group
for three events only (0x000b). The handle of the created event group is
stored in hEventGroup.

RZK_EVENTHANDLE_t hEventGroup;
hEventGroup = RZKCreateEventGroup((RZK_NAME_t [
])"Zilog",

0x000B);

See Also

RZKDeleteEventGroup RZKPostToEventGroup

RZKPendOnEventGroup RZKGetEventGroupParameters

RZKGetErrorNum
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

133
RZKDELETEEVENTGROUP

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZEventgroup.h"

Prototype

Description

The RZKDeleteEventGroup() API invalidates the event group handle
and releases all of the threads waiting on this handle with appropriate sta-
tus.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKDeleteEventgroup(

RZK_EVENTHANDLE_t hEventGroup);

hEventGroup Specifies the handle to the event group to delete.

RZKERR_SUCCESS Indicates that the operation is com-
pleted successfully.

RZKERR_INVALID_HANDLE Indicates that the handle to event group
to be deleted is invalid.

RZKERR_CB_BUSY Indicates that event group control block
is used for exclusive purpose; for exam-
ple, it is busy.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

134
Example

This example deletes a previously-created event group, hEventGroup
and makes the handle invalid. The RZKDeleteEventGroup() API exe-
cution status is stored in the status variable.

extern RZK_EVENTHANDLE_t hEventGroup;
RZK_STATUS_t status;
status = RZKDeleteEventGroup(hEventGroup);

See Also

RZKCreateEventGroup RZKPostToEventGroup

RZKPendOnEventGroup RZKGetEventGroupParameters
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

135
RZKPOSTTOEVENTGROUP

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZEventgroup.h"

Prototype

Description

The RZKPostToEventGroup() API call sends the specified events to
particular event groups. While posting the specified events it also per-
forms operations such as AND, OR and XOR with the current events.

Argument(s)

RZK_STATUS_t RZKPostToEventgroup(

RZK_EVENTHANDLE_t hEventGroup,
RZK_EVENT_t eEvent,
RZK_EVENT_OPERATION_et etOperation);

hEventGroup Specifies the handle to the EventGroup to which the
event is posted.

eEvent The event to be posted.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

136
Return Value(s)

Example 1

An event group is created with the name Zilog and an event mask of
0x0Fh. The event handle is stored in hEventGroup. The following oper-
ation could be performed on the event group created.

#define EVENT_MASK 0x0F
RZK_EVENTHANDLE_t hEventGroup;

etOperation Specifies the operation of the event with the existing
value. The following operations can be performed
with the events:

EVENT_AND AND operation with the current
events.

EVENT_OR OR operation with the current
events.

EVENT_XOR XOR operation with the current
events.

RZKERR_SUCCESS Indicates that the operation is com-
pleted successfully.

RZKERR_INVALID_HANDLE Indicates that the handle of the event
group is invalid.

RZKERR_INVALID_OPERATION This error is returned if wrong etOp-
eration is passed. EVENT_CONSUME
must not be used in this API.

RZKERR_CB_BUSY Indicates if the event group control
block is used for an exclusive pur-
pose; for example, it is busy.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

137
hEventGroup = RZKCreateEventGroup((RZK_NAME_t [
])"Zilog",

EVENT_MASK);

Example 2

An event 0x05h is posted to an event group, hEventGroup. The opera-
tion to be performed on the event is AND (EVENT_AND). The return value
is stored in the status variable. The AND operation is performed with
the existing events that are present in the event group and the result is
used for any pending threads.

#define EVENT_TOBE_POSTED 0x05
extern RZK_EVENTHANDLE_t hEventGroup;
RZK_STATUS_t status;
status = RZKPostToEventGroup(hEventGroup,

EVENT_TOBE_POSTED,
EVENT_AND);

Example 3

An event 0x05h is posted to an event group, hEventGroup. The opera-
tion to be performed on the event is OR (EVENT_OR). The return value is
stored in the status variable. The OR operation is performed with the
existing events that are present in the event group and the result is used
for any pending threads.

#define EVENT_TOBE_POSTED 0x05
extern RZK_EVENTHANDLE_t hEventGroup;
RZK_STATUS_t status;
status = RZKPostToEventGroup(hEventGroup,

EVENT_TOBE_POSTED,
EVENT_OR);

Example 4

An event 0x05h is posted to an event group, hEventGroup. The opera-
tion to be performed on the event is XOR (EVENT_XOR). The return value
is stored in the status variable. The XOR operation is performed with
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

138
the existing events that are present in the event group and the result is
used for any pending threads.

#define EVENT_TOBE_POSTED 0x05
extern RZK_EVENTHANDLE_t hEventGroup;
RZK_STATUS_t status;
status = RZKPostToEventGroup(hEventGroup,
EVENT_TOBE_POSTED,
EVENT_XOR);

See Also

RZKCreateEventGroup RZKDeleteEventGroup

RZKPendOnEventGroup RZKGetEventGroupParameters

RZK_EVENT_OPERATION_et
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

139
RZKPENDONEVENTGROUP

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZEventgroup.h"

Prototype

Description

The calling thread uses the RZKPendOnEventGroup() API to either
retrieve a logic operation (based on a sufficient combination of successful
events from the event flag group), or perform a timed blocking pend until
the requested events are set.

Argument(s)

RZK_STATUS_t RZKPendOnEventgroup(

RZK_EVENTHANDLE_t hEventGroup,

RZK_EVENT_t eEvent,

TICK_t tBlockTime

RZK_EVENT_OPERATION_et etOperation);

hEventGroup Specifies the handle to the EventGroup to pend on.

eEvent The events to pend on.

tBlockTime The pend time-out if events fail to occur. To pend
infinitely, use MAX_INFINITE_SUSPEND.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

140
Return Value(s)

Example 1

An event group is created with the name Zilog and an event mask of
0x07h. The event handle is stored in hEventGroup. The following oper-
ation is performed on the event group created.

etOperation Specifies the operation of the event with the existing
value.The following operations can be performed
with the events:

EVENT_AND AND operation performed with
the received events.

EVENT_OR OR operation performed with the
received events.

EVENT_CONSUME The event received is consumed.
This operation can be combined
with EVENT_OR or EVENT_AND.

EVENT_CONSUME nullifies
received events.

RZKERR_SUCCESS Indicates that the operation is com-
pleted successfully.

RZKERR_OBJECT_DELETED Indicates that the EventGroup is
deleted.

RZKERR_TIMEOUT The time-out occurred before the Event-
Group could be retrieved.

RZKERR_CB_BUSY If the EventGroup control block is used
for an exclusive purpose; for example,
it is busy.

RZKERR_INVALID_HANDLE Handle passed to the routine is invalid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

141
#define EVENT_MASK 0x07
RZK_EVENTHANDLE_t hEventGroup;
hEventGroup = RZKCreateEventGroup((RZK_NAME_t [
])"Zilog",

EVENT_MASK);

Example 2

An event group is pended with a handle of hEventGroup for event
0x06h and an operation of EVENT_OR for a finite period of 200 ticks. The
thread calling this API first checks for the event to which it is pending,
0x06h. If any of the bits are set in the value 0x06h, then this thread
unblocks and successfully returns a value. If the event(s) are not set, then
the API blocks until the time-out period or when required events are set.
The status of API execution is stored in the status variable.

#define EVENT_TOBE_PENDON 0x06
extern RZK_EVENTHANDLE_t hEventGroup;
RZK_STATUS_t status;
status = RZKPendOnEventGroup(hEventGroup,

EVENT_TOBE_PENDON,
200,
EVENT_OR);

Example 3

An event group is pended with a handle of hEventGroup for event
0x06h and an operation of EVENT_AND for an infinite period. The thread
calling this API first checks for the event to which it is pending, 0x06h. If
all of the bits are set in the value 0x06h, then this thread unblocks and
successfully returns a value. If the event(s) are not set, then the API
blocks until the time-out period or when required events are set. The sta-
tus of API execution is stored in the status variable.

#define EVENT_TO_PENDON 0x06
extern RZK_EVENTHANDLE_t hEventGroup;
RZK_STATUS_t status;
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

142
status = RZKPendOnEventGroup(hEventGroup,
EVENT_TO_PENDON,
MAX_INFINITE_SUSPEND,
EVENT_AND);

Example 4

An event group is pended with a handle of hEventGroup for event
0x06h and an operation of EVENT_AND for infinite time. The thread call-
ing this API first checks for the event to which it is pending, 0x06h. If all
of the bits are set in the value 0x06h, then the event for the event group is
reset and the calling thread unblocks and successfully returns a value. If
the event(s) are not set, then the API blocks until the time-out period or
when required events are set. The status of API execution is stored in the
status variable.

#define EVENT_TOBE_PENDON 0x06
extern RZK_EVENTHANDLE_t hEventGroup;
RZK_STATUS_t status;
status = RZKPendOnEventGroup(hEventGroup,

EVENT_TOBE_PENDON,
MAX_INFINITE_SUSPEND,
EVENT_AND | EVENT_CONSUME);

See Also

RZKCreateEventGroup RZKDeleteEventGroup

RZKPostToEventGroup RZKGetEventGroupParameters

RZK_EVENT_OPERATION_et
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

143
RZKGETEVENTGROUPPARAMETERS

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZEventgroup.h"

Prototype

Description

The RZKGetEventGroupParameters() API gets the event group
parameters and stores them in RZK_EVENTGROUPPARAMS_t structure.
See Table 61 on page 350 for members of the
RZK_EVENTGROUPPARAMS_t structure.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKGetEventgroupParameters(

RZK_EVENTHANDLE_t hEventGroup,

RZK_EVENTGROUPPARAMS_t *pEventGroupParams);

hEventGroup Specifies the handle to the event group from
which to get parameters.

pEventGroupParams Pointer to a structure to receive the requested
parameters.

RZKERR_SUCCESS Indicates that the operation is com-
pleted successfully.

RZKERR_INVALID_HANDLE Indicates that the handle to the event
group is invalid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

144
Example

Parameters or information about a previously-created event group with an
hEventGroup handle is stored onto the RZK_EVENTGROUPPARAMS_t
structure. The API execution status is stored in the status variable.

extern RZK_EVENTHANDLE_t hEventGroup;
RZK_EVENTGROUPPARAMS_t EventGroupParams;
RZK_STATUS_t status;
status = RZKGetEventGroupParameters(hEventGroup,

&EventGroupParams);

See Also

RZKERR_INVALID_ARGUMENTS Indicates that the pEventGroupPa-
rams is invalid.

RZKERR_CB_BUSY If the event group control block is
used for an exclusive purpose; for
example, it is busy.

RZKCreateEventGroup RZKDeleteEventGroup

RZKPostToEventGroup RZKPendOnEventGroup

RZK_EVENTGROUPPARAMS_t
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

145
Software Timer APIs

Table 31 provides a quick reference to a number of Software Timer APIs
that are described in this subsection.

Table 31. Software Timer API Quick Reference

RZKCreateTimer RZKDisableTimer

RZKDeleteTimer RZKGetTimerParameters

RZKEnableTimer RZKGetTimerResolution
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

146
RZKCREATETIMER

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZTimer.h"

Prototype

Description

The RZKCreateTimer() API creates a software timer with specified
time-out values and an initial delay. It returns a unique handle. A created
timer is activated only after a RZKEnableTimer() function is called.

Argument(s)

RZK_TIMERHANDLE_t RZKCreateTimer(

RZK_NAME_t szName [MAX_OBJECT_NAME_LENs],

FNP_TIMER_FUNCTION pTimerFunction,

TICK_t tInitialDelay,
TICK_t tPeriod);

szName This parameter specifies the name to be used for
identifying the timer.

pTimerFunction This parameter specifies a pointer to the entry
point function for the timer. The timer entry func-
tion must feature the following prototype:
void MyTimerEntryFunction(void);

tInitialDelay This parameter specifies the initial delay (in ticks)
for the timer.

tPeriod This parameter specifies a cyclic period (in ticks)
for the timer after an initial delay.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

147
Return Value(s)

The function returns a handle to the Timer if it is created successfully;
else it returns NULL. If NULL is returned, it sets one of the following
error values in the thread control block of the current thread. The RZKGe-
tErrorNum() API is called to retrieve the error number stored in the
thread control block.

Example

This example creates a software timer with handler function as MyTim-
erHandler, with a name as Zilog, initial delay as 5 ticks and time-out
period of 10 ticks. The timer handle is stored in hTimer.

#define INITIAL_DELAY 5
#define TIMEOUT_PERIOD 10
extern void MyTimerHandler(void);
RZK_TIMERHANDLE_t hTimer;
hTimer = RZKCreateTimer((RZK_NAME_t [])"Zilog",

MyTimerHandler,
INITIAL_DELAY,
TIMEOUT_PERIOD);

A number of limitations apply to the pTimerFunction pointer passed for
this function, as it is directly invoked as a subroutine from the timer ISR.
There can be several timers created by the collection of all running threads
and applications. Ensure that all these functions run one after the other (an
extreme case), the timer ISR can complete in a reasonable amount of time
and not interfere with system functionality.

RZKERR_INVALID_ARGUMENTS Indicates that some of the parameters
were incorrectly passed.

RZKERR_CB_UNAVAILABLE Indicates that the system is unable to
allocate the required control block.

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

148
No arguments are passed to the pTimerFunction function. The
RZKCreateTimer() function must not consume more than a specified
thread’s stack space (including any function/procedure calls inside) and
must be a compact, efficient routine that is designed to be reentrant and
nonblocking. The timer callback function works on timer thread context.

Any assembly routine called from this routine is expected to save and
restore registers on entry and exit.

The RZKGetTimerResolution() API can be used to get the resolution
of timer used by RZK in terms of ticks per second. The ticks per second
can be used to calculate the time-out period in seconds or milliseconds.

See Also

RZKDeleteTimer RZKEnableTimer

RZKDisableTimer RZKGetTimerParameters

RZKGetErrorNum RZKGetTimerResolution
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

149
RZKDELETETIMER

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZTimer.h"

Prototype

Description

The RZKDeleteTimer() API deletes a software timer specified by the
handle of the timer object.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKDeleteTimer(

RZK_TIMERHANDLE_t hTimer);

hTimer Specifies the handle of the timer for deletion.

RZKERR_SUCCESS Indicates that the timer object is deleted
successfully.

RZKERR_INVALID_HANDLE Indicates that the hTimer parameter is
invalid.

RZKERR_CB_BUSY Indicates that the timer block is in
exclusive use; for example, it is busy.

RZKERR_OBJECT_IN_USE Indicates that the timer block is in use;
for example, not yet disabled. The timer
object must be disabled before it is
deleted.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

150
Example

A previously-created timer, hTimer is deleted. The API execution status
is stored in the status variable.

extern RZK_TIMERHANDLE_t hTimer;
RZK_STATUS_t status;
status = RZKDeleteTimer(hTimer);

See Also

RZKCreateTimer RZKEnableTimer

RZKDisableTimer RZKGetTimerParameters

RZKGetTimerResolution
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

151
RZKENABLETIMER

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZTimer.h"

Prototype

Description

The RZKEnableTimer() API enables the software timer associated with
the input timer handle. The timer pointed to by the timer handle hTimer
is restarted, if it is already disabled, by using RZKDisableTimer()
when this API is called.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKEnableTimer(

RZK_TIMERHANDLE_t hTimer);

hTimer This parameter specifies the handle of the timer.

RZKERR_SUCCESS Indicates that the timer object is suc-
cessfully enabled.

RZKERR_INVALID_HANDLE This error occurs when the hTimer
parameter is invalid.

RZKERR_CB_BUSY The timer control block is used for an
exclusive purpose; for example, it is
busy.

RZKERR_OBJECT_IN_USE If the timer is not in disabled state.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

152
Example

A previously-created disabled timer, hTimer, is enabled. The API exe-
cution status is stored in the status variable.

extern RZK_TIMERHANDLE_t hTimer;
RZK_STATUS_t status;
status = RZKEnableTimer(hTimer);

See Also

RZKCreateTimer RZKDeleteTimer

RZKDisableTimer RZKGetTimerParameters

RZKGetTimerResolution
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

153
RZKDISABLETIMER

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZTimer.h"

Prototype

Description

The RZKDisableTimer() API disables a software timer when it is pro-
vided with the timer object handle.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKDisableTimer(

RZK_TIMERHANDLE_t hTimer);

hTimer This parameter specifies the handle of the timer.

RZKERR_SUCCESS Indicates that the timer is success-
fully disabled.

RZKERR_INVALID_HANDLE This error occurs when the hTimer
parameter is invalid.

RZKERR_CB_BUSY If the timer control block is used for
an exclusive purpose; for example, it
is busy.

RZKERR_INVALID_OPERATION If the timer is already disabled.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

154
Example

A previously enabled timer, hTimer, is disabled. The API execution sta-
tus is stored in the status variable.

extern RZK_TIMERHANDLE_t hTimer;
RZK_STATUS_t status;
status = RZKDisableTimer(hTimer);

See Also

RZKCreateTimer RZKDeleteTimer

RZKEnableTimer RZKGetTimerParameters

RZKGetTimerResolution
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

155
RZKGETTIMERPARAMETERS

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZTimer.h"

Prototype

Description

The RZKGetTimerParameters() API obtains the parameters of the
software timer and stores them in RZK_TIMERPARAMS_t structure. See
Table 62 on page 351 for the members of RZK_TIMERPARAMS_t struc-
ture.

Argument(s)

Return Value(s)

This function returns the status after retrieving the Timer parameters. In
case of an error, one of the following values is returned.

RZK_STATUS_t RZKGetTimerParameters(

RZK_TIMERHANDLE_t hTimer,
RZK_TIMERPARAMS_t *pTimerParams);

hTimer This parameter specifies the handle of the timer.

pTimerParams This parameter specifies a pointer to the structure for
receiving the Timer parameters.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

156
Example

A previously-created software timer with a handle of hTimer is stored
into the TimerParams structure. The API execution status is also stored
in the status variable.

extern RZK_TIMERHANDLE_t hTimer;
RZK_TIMERPARAMS_t TimerParams;
RZK_STATUS_t status;
status = RZKGetTimerParameters(hTimer,

&TimerParams);

See Also

RZKERR_SUCCESS Indicates that the timer parameters
are successfully stored.

RZKERR_INVALID_HANDLE This error occurs when the hTimer
parameter is invalid.

RZKERR_INVALID_ARGUMENTS Indicates that a parameter is incor-
rectly passed.

RZKERR_CB_BUSY Indicates that the timer control block
is used for an exclusive purpose; for
example, it is busy.

RZKCreateTimer RZKDeleteTimer

RZKEnableTimer RZKDisableTimer

RZK_TIMERPARAMS_t RZKGetTimerResolution
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

157
RZKGETTIMERRESOLUTION

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZTimer.h"

Prototype

Description

This macro provides the calling thread with the resolution of the timer in
ticks per second.

Argument(s)

None.

Return Value(s)

The macro returns the number of ticks per second.

Example

The timer resolution of the system is stored into the timres variable.

TICK_t timres;
timres = RZKGetTimerResolution();

See Also

TICK_t RZKGetTimerResolution()

RZKCreateTimer RZKDeleteTimer

RZKEnableTimer RZKDisableTimer

RZKGetTimerParameters
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

158
Clock APIs

Table 32 provides reference to the different Clock APIs. The following
sections provide description for each Clock API.

Table 32. Clock API Quick Reference

RZKGetClock

RZKSetClock
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

159
RZKGETCLOCK

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZClock.h"

Prototype

Description

The RZKGetClock() API gets the current system time-elapsed value
from the most recent board reset/most recent RZKSetClock() call invo-
cation. This time-elapsed value is obtained in a clock parameter structure
that contains year/month/date/hour/minute/seconds. This API is useful to
compute the elapsed time between two events. See Table 67 on page 356
for members of RZK_CLOCKPARAMS_t structure.

Argument(s)

Return Value(s)

This function returns the current clock time.

Example

The clock parameters are stored into the ClockParams structure.

void RZKGetClock(

RZK_CLOCKPARAMS_t *pClockParams);

pClockParams This parameter is a pointer to structure that holds the
time elapsed values.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

160
RZK_CLOCKPARAMS_t Clockparams;
RZKGetClock(&Clockparams);

See Also

RZKSetClock

RZK_CLOCKPARAMS_t
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

161
RZKSETCLOCK

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZClock.h"

Prototype

Description

The RZKSetClock() API sets the system time to the input value from a
clock parameter structure. The input structure contains year/month/date/
hour/minute/second information. See Table 67 on page 356, for members
of the RZK_CLOCKPARAMS_t structure.

Argument(s)

Return Value(s)

None.

Example

The system clock parameters that are present in the
RZK_CLOCKPARAMS_t structure are set.

RZK_CLOCKPARAMS_t clkParams = {
1990, /** year */

void RZKSetClock (

RZK_CLOCKPARAMS_t *pClockParam);

pClockParams This parameter is a pointer to structure that holds the
time to set.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

162
1, /** month */
1, /** day */
10, /** hour */
50, /** minutes */
27}; /** seconds */
RZKSetClock(&clkParams);

The reference value for the RZK Clock is the year 1970.

See Also

RZKGetClock

RZK_CLOCKPARAMS_t

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

163
Partition APIs

Table 33 provides a quick reference to the memory/partition APIs. The
following sections provide description for each memory/partition API.

Table 33. Memory Partition API Quick Reference

RZKCreatePartition RZKFreeFixedSizeMemory

RZKDeletePartition RZKGetPartitionParameters

RZKAllocFixedSizeMemory
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

164
RZKCREATEPARTITION

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMemory.h"

Prototype

Description

The RZKCreatePartition() API call creates a memory partition at the
specified pointer. RZK uses the memory pointer to allocate fixed-length
memory blocks. The size of the memory is calculated as follows:

((uMemoryBlocks * uBlockSize) + (uMemoryBlocks * size
of pointer)).

Argument(s)

RZK_PARTITIONHANDLE_t RZKCreatePartition(

RZK_NAME_t szName [MAX_OBJECT_NAME_LEN],
RZK_PTR_t pMemory,
UINT uMemoryBlocks,
UINT uBlockSize);

szName Specifies the name used to identifying the partition
area.

pMemory Specifies a pointer to the memory area, where the
partition must be created.

uMemoryBlocks Specifies the number of memory blocks used as a part
of this partition.

uBlockSize Specifies the size of each memory block.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

165
Return Value(s)

This function returns a handle to the partition if it is created successfully
or returns NULL. If NULL is returned it sets one of the following error val-
ues in the thread control block of the current thread. RZKGetError-
Num() API is called to retrieve the error number stored in the thread
control block.

Example

A partition is created with the name Zilog containing MEMORY_BLOCKS
blocks of BLOCK_SIZE length. Memory is allocated with required bytes.
The partition handle is stored in hPartition.

#define MEMORY_BLOCKS 10
#define BLOCK_SIZE 100

unsigned char memBuffer[(MEMORY_BLOCKS * BLOCK_SIZE)
+ (MEMORY_BLOCKS * sizeof(void *))];
RZK_PARTITIONHANDLE_t hPartition;
hPartition = RZKCreatePartition((RZK_NAME_t [
])"Zilog",

memBuffer,
MEMORY_BLOCKS,
BLOCK_SIZE);

See Also

RZKERR_INVALID_ARGUMENTS This error indicates that some of the
parameters were incorrectly passed.

RZKERR_CB_UNAVAILABLE This error indicates that the system is
unable to allocate the required con-
trol block.

RZKDeletePartition RZKAllocFixedSizeMemory

RZKFreeFixedSizeMemory RZKGetPartitionParameters

RZKGetErrorNum RZKQueryMem
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

166
RZKDELETEPARTITION

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMemory.h"

Prototype

Description

The RZKDeletePartition API call deletes the memory partition speci-
fied by the handle if (and only if) all blocks in it are currently unallocated/
freed.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKDeletePartition(

RZK_PARTITIONHANDLE_t hPartition);

hPartition This parameter specifies the handle of the partition area
for deletion,

RZKERR_SUCCESS The partition is deleted and API executed
successfully.

RZKERR_INVALID_HANDLE This error occurs when the hPartition
parameter is invalid.

RZKERR_CB_BUSY If the partition control block is used for an
exclusive purpose; for example, it is busy.

RZKERR_OBJECT_IN_USE The segments allocated from this partition
are not freed.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

167
Example

A previously-created partition, hPartition, is deleted, making the han-
dle invalid. The API execution status is stored in the status variable.

extern RZK_PARTITIONHANDLE_t hPartition;
RZK_STATUS_t status;
status = RZKDeletePartition(hPartition);

See Also

RZKCreatePartition RZKAllocFixedSizeMemory

RZKFreeFixedSizeMemory RZKGetPartitionParameters
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

168
RZKALLOCFIXEDSIZEMEMORY

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMemory.h"

Prototype

Description

The RZKAllocFixedSizeMemory() API call allocates a fixed memory
size from the specified partition and returns a pointer to the memory
block.

Argument(s)

Return Value(s)

This function returns a pointer to the newly created memory block. In
case of an error, one of the following values is set in the thread control
block of the thread making this call. RZKGetErrorNum() API is called
to retrieve the error number stored in the thread control block.

RZK_PTR_t RZKAllocFixedSizeMemory(

RZK_PARTITIONHANDLE_t hPartition);

hPartition This parameter specifies the handle of the partition from
which memory block must be allocated.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

169
Example

A memory block is allocated from a partition with a handle that is stored
in hPartition. The allocated memory address is stored into the pMem-
Buf variable.

extern RZK_PARTITIONHANDLE_t hPartition;
void *pMemBuf;
pMemBuf = RZKAllocFixedSizeMemory(hPartition);

See Also

RZKERR_INVALID_HANDLE This error occurs when the hParti-
tion parameter is invalid.

RZKERR_OUT_OF_MEMORY This error occurs when there is no avail-
able space for creating another memory
block. Number of memory blocks allo-
cated is greater than the memory blocks
at the time of partition creation.

RZKERR_CB_BUSY The timer control block is used for an
exclusive purpose; for example, it is
busy.

RZKCreatePartition RZKDeletePartition

RZKFreeFixedSizeMemory RZKGetPartitionParameters

RZKGetErrorNum
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

170
RZKFREEFIXEDSIZEMEMORY

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMemory.h"

Prototype

Description

The RZKFreeFixedSizeMemory() API call frees fixed size of memory
and returns the call status.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKFreeFixedSizeMemory(

RZK_PARTITIONHANDLE_t hPartition,

RZK_PTR_t pBlock);

hPartition This parameter specifies the handle of the partition area
required for freeing a memory block.

pBlock This parameter specifies the pointer to the allocated
block of memory.

RZKERR_SUCCESS If the block is successfully returned
to the partition.

RZKERR_INVALID_HANDLE This error occurs when the hParti-
tion parameter is invalid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

171
Example

A previously-allocated memory block pMemBuf is released (freed) from
its partition with a handle that is stored in hPartition. The API execu-
tion status is stored in the status variable.

extern RZK_PARTITIONHANDLE_t hPartition;
extern void *pMemBuf;
RZK_STATUS_t status;
status = RZKFreeFixedSizeMemory(hPartition,

pMemBuf);

See Also

RZKERR_INVALID_ARGUMENTS This error indicates that the pBlock
parameter is not a valid block
address.

RZK_INVALID_OPERATION This error occurs when a thread tries
to free a block when all of the blocks
in the specified partition are already
deleted.

RZKERR_CB_BUSY The partition control block is used
for exclusive purpose; for example, it
is busy.

RZKCreatePartition RZKDeletePartition

RZKAllocFixedSizeMemory RZKGetPartitionParameters
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

172
RZKGETPARTITIONPARAMETERS

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMemory.h"

Prototype

Description

The RZKGetPartitionParameters() API gets the parameters of the
specified partition and stores them in the RZK_PARTITIONPARAMS_t
structure. See Table 63 on page 352 for members of the
RZK_PARTITIONPARAMS_t structure.

Argument(s)

RZK_STATUS_t RZKGetPartitionParameters(

RZK_PARTITIONHANDLE_t hPartition,

RZK_PARTITIONPARAMS_t *pPartitionParams);

hPartition This parameter specifies the partition area han-
dle required for retrieving the partition parame-
ters.

pPartitionParams This parameter specifies a pointer to the struc-
ture for receiving the partition parameters.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

173
Return Value(s)

Example

Information related to a partition’s memory blocks and block size, with a
handle that is stored in hPartition, is retrieved into the
RZK_PARTITIONPARAMS_t structure.

extern RZK_PARTITIONHANDLE_t hPartition;
RZK_PARTITIONPARAMS_t PartitionParams;
RZK_STATUS_t status;
status = RZKGetPartitionParameters(hPartition,

&PartitionParams);

See Also

RZKERR_SUCCESS If the partition parameters were suc-
cessfully obtained.

RZKERR_INVALID_HANDLE This error occurs when the hParti-
tion parameter is invalid.

RZKERR_INVALID_ARGUMENTS This error indicates that a parameter
passed is incorrect.

RZKERR_CB_BUSY If the partition control block is used
for an exclusive purpose; for exam-
ple, it is busy.

RZKCreatePartition RZKDeletePartition

RZKAllocFixedSizeMemory RZKFreeFixedSizeMemory

RZK_PARTITIONPARAMS_t
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

174
Region APIs

Table 34 provides a quick reference to a number of region APIs that are
described in this subsection.

Table 34. Region API Quick Reference

RZKCreateRegion RZKGetRegionParameters

RZKDeleteRegion malloc

RZKAllocSegment free

RZKFreeSegment
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

175
RZKCREATEREGION

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZMemory.h"

Prototype

Description

The RZKCreateRegion() API creates a region and returns a handle to
the region control block.

Argument(s)

RZK_REGIONHANDLE_t RZKCreateRegion(

RZK_NAME_t szName[MAX_OBJECT_NAME_LEN],

void *RnAddr,

COUNT_t uLength,

COUNT_t uUnit_Size,

UINT uRnDelete,

RZK_RECV_ATTRIB_et etAttrib);

szName Specifies the name of the thread/ASCII string.

RnAddr Specifies the memory address for the region.

uLength Specifies the total memory size for the region.

uUnit_Size Specifies the minimum allocatable memory size from
the region. This minimum unit size is 16 bytes.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

176
Return Value(s)

This API returns a handle to the region if it is created successfully or
returns NULL. If NULL is returned, one of the following error values is
set in the current thread control block. RZKGetErrorNum() API is called
to retrieve the error number stored in the thread control block.

Example

The RZKCreateRegion() API call creates:

• A region with the name Zilog

uRnDelete Specifies whether the region releases the memory allo-
cated when it is deleted. If the value is 1, RZK frees
memory when RZKDeleteRegion() is called. If this
value is 0, you must release all allocated memory before
calling RZKDeleteRegion().

etAttrib Specifies the receiving attributes for the threads waiting
on the region and can be one of the following.*

RECV_ORDER_FIFO Receive order is FIFO

RECV_ORDER_PRIORITY Receive order is prior-
ity.

Note: *The default receive order is RECV_ORDER_PRIORITY.

RZKERR_INVALID_ARGUMENTS Indicates specified region parameter
is invalid. This error occurs when
RnAddr is NULL, uLength is zero,
or when a unit size is less than 16.

RZKERR_CB_UNAVAILABLE Indicates that a control block could
not be allocated for the region. The
number of regions created is more
than the value of MAX_REGIONSH.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

177
• A pointer to the memory area where the region must be created, with

– A total memory size set to 100

– A minimum allocatable size of 20

– A zero specifying that it is not necessary for the region to release
the allocatable memory while deleting

– A receive order of RECV_ORDER_FIFO

The created region handle is stored in hRegion.

#define TOTAL_MEM_FOR_REGION_ALLOC100
#define MINIMUM_ALLOC_SIZE20
#define AUTO_RELEASE_MEM_ENABLE1
#define AUTO_RELEASE_MEM_DISABLE0

RZK_REGIONHANDLE_t hRegion;
unsigned char memBuf[TOTAL_MEM_FOR_REGION_ALLOC];
hRegion = RZKCreateRegion((RZK_NAME_t [])"Zilog",

memBuf,
TOTAL_MEM_FOR_REGION_ALLOC,
MINIMUM_ALLOC_SIZE,
AUTO_RELEASE_MEM_DISABLE,
RECV_ORDER_FIFO);

See Also

RZKDeleteRegion RZKFreeSegment

RZKAllocSegment RZKGetErrorNum

RZKGetRegionParameters RZK_RECV_ATTRIB_et
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

178
RZKDELETEREGION

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZRegion.h"

Prototype

Description

The RZKDeleteRegion() API deletes the region specified by the han-
dle.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKDeleteRegion(

RZK_REGIONHANDLE_t hRegion);

hRegion Specifies the handle of the region to delete.

RZKERR_SUCCESS The operation completed success-
fully.

RZKERR_INVALID_HANDLE The handle of the region is invalid.

RZKERR_CB_BUSY Indicates that another thread uses the
region exclusively.

RZKERR_INVALID_OPERATION Indicates operation is invalid and you
tried to delete a region when threads
were blocked.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

179
Example

A previously-created region with a handle of hRegion is deleted, making
the handle invalid. API execution status is stored in the status variable.

extern RZK_REGIONHANDLE_t hRegion;
RZK_STATUS_t status;
status = RZKDeleteRegion(hRegion);

See Also

RZKCreateRegion RZKFreeSegment

RZKAllocSegment RZKGetRegionParameters
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

180
RZKALLOCSEGMENT

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZRegion.h"

Prototype

Description

This function allocates a variable size of memory from the specified
region (if available) and returns a pointer to the memory block.

Argument(s)

Return Value(s)

The RZKAllocSegment() API returns the pointer to the memory loca-
tion that is allocated, on success, or returns NULL. If NULL is returned, one
of the following error values is set in the current thread control block.

RZK_PTR_t RZKAllocSegment(

RZK_REGIONHANDLE_t hRegion,

COUNT_t uSize,

TICK_t tBlockTime);

hRegion Specifies the handle of the region area required for allo-
cating a memory block.

uSize Specifies the memory size to be allocated.

tBlockTime Specifies the time for which the thread must block on
the region, if the memory is not available. Use
INFINITE_SUSPEND to block infinitely.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

181
RZKGetErrorNum() API is called to retrieve the error number stored in
the thread control block.

Example

A variable size of memory (5 bytes each) is allocated from the specified
region with a handle that is stored in hRegion. If memory is not avail-
able, the thread waits for 10 ticks.

#define MEM_SIZE_TOBE_ALLOCATED 5
extern RZK_REGIONHANDLE_t hRegion;
RZK_PTR_t hSegment;
hSegment = RZKAllocSegment(hRegion,

MEM_SIZE_TOBE_ALLOCATED,
10);

RZKERR_INVALID_HANDLE This error occurs when the region han-
dle is invalid.

RZKERR_INVALID_ARGUMENTS Arguments to the function are invalid.

RZKERR_SCB_UNAVAILABLE There are not enough segment control
blocks available. Maximum number of
allocations for regions (system wide)
are used.

RZKERR_CB_BUSY A thread is using the region exclu-
sively.

RZKERR_TIMEOUT This error occurs when there is no
memory to allocate and the time of
blocking expires.

RZKERR_OBJECT_DELETED This error occurs when the region is
deleted while the thread is blocked on
it.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

182
See Also

RZKCreateRegion RZKDeleteRegion

RZKGetRegionParameters RZKFreeSegment

RZKGetErrorNum
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

183
RZKFREESEGMENT

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZRegion.h"

Prototype

Description

The RZKFreeSegment() API frees the allocated memory from the spec-
ified region. It frees the variable memory size from the specified segment
of the specified region handle.

Argument(s)

Return Value(s)

RZK_STATUS_t RZKFreeSegment(

RZK_REGIONHANDLE_t hRegion,

RZK_PTR_t pSegment);

hRegion Specifies the handle of the region area required for allocat-
ing a memory block.

pSegment Pointer to the memory to be freed.

RZKERR_SUCCESS The operation completed successfully.

RZKERR_INVALID_HANDLE This error occurs when the region han-
dle is invalid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

184
Example

A memory segment of hSegment that is allocated previously from a
region with a handle that is stored in hRegion is released (freed). The
API execution status is stored in status.

extern RZK_REGIONHANDLE_t hRegion;
extern RZK_PTR_t hSegment;
RZK_STATUS_t status;
status = RZKFreeSegment(hRegion,

hSegment);

See Also

RZKERR_INVALID_ARGUMENTS The arguments to the function are
invalid.

RZKERR_CB_BUSY When a thread is using the region
exclusively.

RZKCreateRegion RZKDeleteRegion

RZKGetRegionParameters RZKAllocSegment
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

185
RZKGETREGIONPARAMETERS

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZRegion.h"

Prototype

Description

The RZKGetRegionParameters() API returns the region parameters
into RZK_REGIONPARAMS_t structure which you provided. See Table 64
on page 353 for members of structure RZK_REGIONPARAMS_t.

Argument(s)

Return Value(s)

RZK_PTR_t RZKGetRegionParameters(

RZK_REGIONHANDLE_t hRegion,

RZK_REGIONPARAMS_t *pRegionParams);

hRegion Specifies the handle of the region area required for
allocating a memory block.

pRegionParams Pointer to the structure type
RZK_REGIONPARAMS_t, which receives memory
region parameters.

RZKERR_SUCCESS The operation completed successfully.

RZKERR_INVALID_HANDLE This error occurs when the region han-
dle is invalid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

186
Example

The parameters of a region with a handle that is stored in hRegion are
retrieved and stored into the RZK_REGIONPARAMS_t structure. The API
execution status is stored status variable.

extern RZK_REGIONHANDLE_t hRegion;
RZK_REGIONPARAMS_t regionParams;
RZK_STATUS_t status
status= RZKGetRegionParams(hRegion,

®ionParams);

See Also

A macro named MAX_REGION_TABH is provided in the RZK_Conf.c
header file. This macro indicates the maximum number of allocations that
can be made using all region handles defined in the application. For exam-
ple, an application creates 10 regions with varying maximum memory
capacity. If five allocations are made in each region, there are 50 alloca-
tions in total. Minimum value of MAX_REGION_TABH must be 50. During
debug phase, this value must be quite high. After the application is totally
developed, this value can be modified depending on the number of alloca-
tions in the application.

RZKERR_INVALID_ARGUMENTS The arguments to the function are
invalid.

RZKERR_CB_BUSY When a thread is using the region
exclusively.

RZKCreateRegion RZKDeleteRegion

RZKFreeSegment RZKAllocSegment

RZK_PARTITIONPARAMS_t

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

187
RZKQUERYMEM

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZRegion.h"

Prototype

Description

The RZKQueryMem() API returns the size of the largest portion of free
memory in the memory blocks of the passed region handles.

Argument(s)

Return Value(s)

The RZKQueryMem() API returns the number of bytes available as free
memory in the region.

Example

This example gets the largest portion of free memory available.

extern RZK_REGIONHANDLE_t hRegion;
COUNT_t nfree_bytes;

nfree_bytes = RZKQueryMem(hRegion) ;

printf("\n free memory available is : %d", nfree_bytes
) ;

COUNT_t RZKQueryMem(RZK_REGIONHANDLE_t hRegion)

hRegion Region handle.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

188
See Also

RZKCreateRegion RZKDeleteRegion

RZKFreeSegment RZKAllocSegment

RZKGetErrorNum RZKGetRegionParameters

RZK_RECV_ATTRIB_et
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

189
MALLOC

Include
#include <stdio.h>
#include <stdlib.h>
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZRegion.h"

Prototype

Description

The malloc() API allocates the size of memory, in bytes, from the heap
through RZK regions. If this required memory is not available, this API
returns an error.

This API is a different implementation than the ZDS II tool implementa-
tion of malloc().

Argument(s)

Return Value(s)

The malloc API returns the address of the starting memory location if
allocated, otherwise it returns NULL, indicating an error in memory allo-
cation or that memory has been exhausted.

void * malloc(size_t size) ;

size The number of bytes of memory to allocate.

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

190
Before using this API, the RZK_KernelInit() API must first be called
from the main() function. Only then the malloc() API can be called.

Example

This example allocates 50 bytes of memory from the heap.

void *ptr;
ptr = malloc(50);
if(ptr == NULL)

printf("\nMemory is not allocated");
else

printf("\nMemory is allocated and the address is
:%d",ptr) ;

See Also

free

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

191
FREE

Include
#include <stdio.h>
#include <stdlib.h>
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZRegion.h"

Prototype

Description

The free() API frees the previously-allocated memory, the starting
address location of which is present in the argument. If the pointer is
invalid, this API does not return an error.

Before using this API, the RZK_KernelInit() API must first be called
from the main() function. Only then the free() API can be called. Note
that this API is a different implementation than the ZDS II tool implemen-
tation of malloc().

Argument(s)

Return Value(s)

None.

void free(void *ptr) ;

ptr The starting address of the memory location that was previously
allocated.

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

192
Example

This example frees the memory allocated, the starting address of which is
present in the ptr variable.

extern void *ptr ; // Assuming the memory was
//allocated earlier
free(ptr) ;

See Also

malloc
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

193
Interrupt APIs

Table 35 provides a quick reference for the Interrupt APIs. The following
sections provide description for each Interrupt API.

Table 35. Interrupt API Quick Reference

RZKInstallInterruptHandler RZKISRProlog

RZKEnableInterrupts RZKISREpilog

RZKDisableInterrupts
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

194
RZKINSTALLINTERRUPTHANDLER

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZInterrupt.h"

Prototype

Description

The RZKInstallInterruptHandler() API call installs an interrupt
handler in the Interrupt Vector Table.

Argument(s)

Return Value(s)

This function returns the interrupt handler that is installed. During initial-
ization, the default interrupt handlers are installed. The default interrupt

RZK_FNP_ISR RZKInstallInterruptHandler(

RZK_FNP_ISR pHandlerFunc,

RZK_INTERRUPT_NUM_t nInterruptNum);

pHandlerFunc Specifies the address of the interrupt handler func-
tion. The interrupt handler function prototype must
be shown as void MyIntrHandler(void);

nInterruptNum Offset in the interrupt vector table for the interrupt
for which the interrupt handler must installed. For
specific interrupt offset, refer to the documents about
target specific product specification listed in the
Related Documents section on page xv.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

195
handlers print uninitialized interrupt and bring the processor to the HALT
mode.

Example

An interrupt handler function MyIntHandler for the timer() interrupt
(offset 0x54) of the eZ80F91 MCU is installed. The prevHandler stores
the current interrupt handler stored in the address.

extern void MyIntHandler(void);
RZK_FNP_ISR prevHandler;
prevHandler =
RZKInstallInterruptHandler(MyIntHandler,0x54);

See Also

RZKEnableInterrupts

RZKDisableInterrupts
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

196
RZKENABLEINTERRUPTS

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZInterrupt.h"

Prototype

Description

The RZKEnableInterrupts() API enables the interrupt(s) that were
disabled using the RZKDisableInterrupts() API, as per the mInt-
erruptMask parameter. In effect this API is used to restore the interrupt
status previous to the RZKDisableInterrupts() call.

Argument(s)

Return Value(s)

None.

Example

The interrupt status that is stored in the intrStatus variable is enabled.

extern UINTRMASK intrStatus;
RZKEnableInterrupts(intrStatus);

void RZKEnableInterrupts(

UINTRMASK mInterruptMask);

mInterruptMask Specifies the mask for enabling the interrupts.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

197
See Also

RZKInstallInterruptHandler

RZKDisableInterrupts
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

198
RZKDISABLEINTERRUPTS

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZInterrupt.h"

Prototype

Description

The RZKDisableInterrupts API disables interrupts and returns the
interrupt status.

Take care while using this function as it can affect the interrupt latency
time.

Argument(s)

None.

Return Value(s)

The function returns the current Interrupt Mask.

Example

The interrupt status is stored in the intrStatus variable after the inter-
rupts are disabled.

UINTRMASK intrStatus;
intrStatus = RZKDisableInterrupts();

UINTRMASK RZKDisableInterrupts();

Caution:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

199
See Also

RZKEnableInterrupts RZKInstallInterruptHandler
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

200
RZKISRPROLOG

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZInterrupt.h"

Prototype

Description

RZK is typically unaware of a user-defined interrupt event. When such an
interrupt occurs, the processor directly calls a user defined ISR installed
against the relevant vector. If an RZK API is invoked directly from within
an ISR, it can result in RZK performing a context switch or some other
internal processing that can, in turn result in unpredictable performance of
the RZK.

RZKISRProlog() and RZKISREpilog() are two assembly routines
designed to facilitate the invocation of RZK services such as sending a
message, using semaphores and so forth from within an ISR. RZKISR-
Prolog() call ensures that the RZK places itself in a well defined state
and all subsequent RZK API calls are prevented from invoking any extra-
neous RZK functioning. For example, a send message operation simply
queues the message and returns to the ISR immediately.

RZKISRProlog() must be called exactly one time in an ISR prior to any
other RZK API call from within that ISR, typically at the beginning of
that ISR. This routine can be called from an assembly routine by prefixing
the name with an underscore as _RZKISRProlog or can be called from a
C routine by just calling the function name. This routine must be called if
you need nested interrupts. See Appendix C. Interrupt Handling on page
359 for more details.

void RZKISRProlog(void);
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

201
If an RZKISRProlog() call is made from within the ISR, the final call
before termination of the ISR must be a call to RZKISREpilog().

Argument(s)

None

Return Value(s)

None

Registers used within this routine are saved and restored.

Example

See Appendix C. Interrupt Handling on page 359.

See Also

RZKISREpilog

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

202
RZKISREPILOG

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZInterrupt.h"

Prototype

Description

The RZKISREpilog() call ensures that the RZK resumes normal func-
tioning after the RZKISRProlog() API is called. This API is called only
if the RZKISRProlog() API is called previously. RZKISREpilog() is
called within an ISR after all other RZK API calls are made, typically at
the end of the ISR.

RZKISREpilog() can be called from an assembly routine by prefixing
the name with an underscore _RZKISRProlog or can be called from a C
routine by calling the function name.

Calling this API causes RZK to resume normal operation and the control
flow gets passed from ISR back to the RZK scheduler. If the interrupted
thread continues to be the highest priority thread after servicing the inter-
rupt (that is, if a higher-priority thread becomes ready as a result of an
action within the ISR), control passes to the higher-priority thread and the
previously interrupted thread is returned to the ready queue.

The user code must execute activities such as restoring any saved regis-
ters, reenabling the interrupts and other such activities, before this func-
tion is called.

Argument(s)

None.

void RZKISREpilog(void);
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

203
Return Value(s)

None.

Registers used within this routine are saved and restored.

Example

See Appendix C. Interrupt Handling on page 359.

See Also

RZKISRProlog

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

204
Device Driver Framework APIs

Table 36 provides a quick reference for the Device Driver Framework
RZK APIs. The following sections provide description for each of these
APIs.

The APIs listed in Table 36 inturn call the device-specific functions that
perform basic operations such as read/write/init/ioctl/close/uninit. It is
therefore advised to use these APIs instead of using device driver func-
tions such as UARTOpen, UARTRead etc., for the UART devices.

Table 36. Device Driver Framework API Quick Reference

RZKDevAttach RZKDevWrite

RZKDevDetach RZKDevIOCTL

RZKDevOpen RZKDevGetc

RZKDevClose RZKDevPutc

RZKDevRead

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

205
RZKDEVATTACH

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZDevice.h"

Prototype

DDF_STATUS_t RZKDevAttach(RZK_DEVICE_CB_t *pdev)

Description

The RZKDevAttach() API attaches a device to the DDF by initializing
the device driver table with the information provided by the
RZK_DEVICE_CB_t *pdev structure pointer. Any device used with the
RZK DDF must be attached to the DDF before any other operations are
performed using that device. Any device that is not attached to the DDF,
is not recognized by the system. The RZKDevAttach() function also
invokes the device-specific initialization function after initializing the
device driver table.

Argument(s)

Return Value(s)

pdev Pointer to a structure of RZK_DEVICE_CB_t type. The structure
must be initialized appropriate to the device.

Upon successful execution of the API, an RZKERR_SUCCESS value is
returned. Negative values are returned for the following error conditions:

DDFERR_INVALID_ARGUMENTS Specifies that the API execution is
not successful because the arguments
are not valid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

206
Example

This example adds a UART device block to the system. The example
assumes that necessary functions are declared externally.

RZK_DEVICE_CB_t Serial0Dev =
{

RZK_FALSE, "SERIAL0",
UARTInit, (FNPTR_RZKDEV_STOP)IOERR, UARTOpen,

UARTClose, UARTRead, UARTWrite,
(FNPTR_RZKDEV_SEEK)IOERR, UARTGetc, UARTPutc,
(FNPTR_RZKDEV_IOCTL)UARTControl,

(RZK_PTR_t)uart0isr, 0, (UINT8*)&Uart0_Blk,\
 0,0

}
DDF_STATUS_t status ;
status = RZKDevAttach(&Serial0Dev) ;

See Also

DDFERR_DCB_UNAVAILABLE When no device control blocks are
free.

Other error values are returned by the driver routine in case of any other
error conditions.

RZKDevRead RZKDevWrite

RZKDevClose RZKDevIOCTL

RZKDevGetc RZKDevPutc

RZKDevOpen RZKDevDetach
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

207
RZKDEVDETACH

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZDevice.h"

Prototype
DDF_STATUS_t RZKDevDetach(RZK_DEVICE_CB_t *pdev

Description

The RZKDevDetach() API detaches the device entry from the device
driver table and releases the control block.

Argument(s)

Return Value(s)

pdev Pointer to the device control block located in the device driver
table. The pointer returned by RZKDevOpen must be passed
here.

Upon successful execution of the API, an RZKERR_SUCCESS value is
returned. The following error value is returned if an error occurs:

DDFERR_INVALID_ARGUMENTS Specifies that the API execution is
not successful as the arguments are
not valid.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

208
See Also

RZKDevAttach RZKDevWrite

RZKDevClose RZKDevIOCTL

RZKDevGetc RZKDevPutc

RZKDevOpen RZKDevRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

209
RZKDEVOPEN

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZDevice.h"

Prototype
RZK_DEVICE_CB_t * RZKDevOpen(

RZK_DEV_NAME_t *devName,
RZK_DEV_MODE_t *devMode)

Description

The RZKDevOpen() API opens an I/O device and returns a HANDLE to
the opened device if successful.

Argument(s)

Return Value(s)

If the device is opened successfully, a HANDLE is returned to the opened
device. The HANDLE is of the type RZK_DEVICE_CB_t * which is a
pointer to the device control block of the device present in the device
driver table. Returns NULL if the device to be opened is invalid.

See Also

*devName Specifies the name of the device (ASCII characters) as ini-
tialized in the usrDevBlk structure.

*devMode Specifies the mode in which the device needs to be opened.

RZKDevRead RZKDevWrite

RZKDevClose RZKDevIOCTL
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

210
RZKDevGetc RZKDevPutc

RZKDevAttach RZKDevDetach

RZKDevRead RZKDevWrite
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

211
RZKDEVCLOSE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZDevice.h"

Prototype
RZK_STATUS_t RZKDevClose (
RZK_DEVICE_CB_t *pdev // device handle
);

Description

The RZKDevClose() API closes the device specified by the handle and
calls a device-specific close handler as registered in the usrDevBlk
structure.

Argument(s)

Return Value(s)

pdev The handle of the device to be closed.

Upon successful execution of the API, an RZKERR_SUCCESS value is
returned. Negative values are returned for the following error conditions:

DDFERR_INVALID_ARGUMENTS Specifies that the API execution is
not successful.

DDFERR_INVALID_INITIALIZER When the function pointer for
close is initialized to NULL in the
Device Driver Table.

Other error values are returned by the driver routine in case of any other
error conditions.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

212
See Also

RZKDevRead RZKDevWrite

RZKDevOpen RZKDevIOCTL

RZKDevGetc RZKDevPutc

RZKDevAttach RZKDevDetach
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

213
RZKDEVREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZDevice.h"

Prototype
DDF_STATUS_t RZKDevRead(

RZK_DEVICE_CB_t *pdev,
RZK_DEV_BUFFER_t *buf,
RZK_DEV_BYTES_t nBytes)

Description

The RZKDevRead() API reads a specified number of bytes from the
device into a given buffer.

Argument(s)

Return Value(s)

This API returns the value that is returned by the actual device read func-
tion (for example, UARTRead, SPIRead, I2CRead etc).

See Also

pdev Specifies the device handle to be read from.

buf Specifies the pointer to the memory location where the data
must be read into.

nBytes The number of bytes to read from the device.

RZKDevRead RZKDevWrite

RZKDevClose RZKDevIOCTL
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

214
RZKDevGetc RZKDevPutc

RZKDevAttach RZKDevDetach
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

215
RZKDEVWRITE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZDevice.h"

Prototype
DDF_STATUS_t RZKDevWrite(

RZK_DEVICE_CB_t *pdev,
RZK_DEV_BUFFER_t *buf,
RZK_DEV_BYTES_t nBytes

)

Description

The RZKDevWrite() API writes a specified number of bytes from the
device into a given buffer.

Argument(s)

Return Value(s)

This API returns the value that is returned by the actual device write func-
tion (for example, UARTWrite, SPIWrite, I2CWrite etc).

See Also

pdev Specifies the device handle to write to.

buf Specifies the pointer to the memory location where the data
needs to be written into.

nBytes No of bytes to write to the device.

RZKDevOpen RZKDevRead

RZKDevClose RZKDevIOCTL
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

216
RZKDevGetc RZKDevPutc

RZKDevAttach RZKDevDetach
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

217
RZKDEVIOCTL

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZDevice.h"

Prototype
DDF_STATUS_t RZKDevIOCTL(

RZK_DEVICE_CB_t *pdev,
RZK_DEV_BYTES_t uOperation,
void *addr1,
void *addr2

)

Description

The RZKDevIOCTL() API is used to set or get the I/O control parameters
from the device. Because the I/O control parameters are entirely device-
specific, the framework calls the device-specific I/O control function as
specified in the usrDevBlk structure.

Argument(s)

pdev Specifies the device handle for which I/O control parameters
must be set.

optype Specifies the type of control operation that must be performed
on the device.

*addr1 The first character pointer through which a device-specific
parameter can be passed to the driver routine.

*addr2 The second character pointer through which a device-specific
parameter can be passed to the driver routine.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

218
Return Value(s)

See Also

Upon successful execution of the API, an RZKERR_SUCCESS value is
returned. Negative values are returned for the following error conditions:

DDFERR_INVALID_ARGUMENTS Indicates that the API execution is
not successful.

DDFERR_INVALID_INITIALIZER When the function pointer for
Ioctl is initialized to NULL in
the Device Driver Table.

Other error values are returned by the driver routine in case of any other
error conditions.

RZKDevOpen RZKDevRead

RZKDevClose RZKDevGetc

RZKDevWrite RZKDevPutc

RZKDevAttach RZKDevDetach
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

219
RZKDEVGETC

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZDevice.h"

Prototype
DDF_STATUS_t RZKDevGetc(

RZK_DEVICE_CB_t *pdev);

Description

The RZKDevGetc() API reads one byte from the device specified by the
device HANDLE. This API returns the read byte.

Argument(s)

Return Value(s)

pdev Specifies the device handle to be read from.

Upon successful execution of the API, the byte read from the device is
returned. Negative values are returned for the following error conditions:

DDFERR_INVALID_ARGUMENTS Indicates that the API execution is
not successful.

DDFERR_INVALID_INITIALIZER When the function pointer for
getc is initialized to NULL in the
Device Driver Table.

Other error values are returned by the driver routine in case of any other
error conditions.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

220
See Also

RZKDevOpen RZKDevWrite

RZKDevClose RZKDevIOCTL

RZKDevGetc RZKDevRead

RZKDevAttach RZKDevDetach
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

221
RZKDEVPUTC

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZDevice.h"

Prototype
DDF_STATUS_t RZKDevPutc(

RZK_DEVICE_CB_t *pdev,
RZK_DEV_BUFFER_t buf

)

Description

The RZKDevPutc() API writes one byte to a device from the a buffer.

Argument(s)

Return Value(s)

pdev Specifies the device handle to write to.

buf Specifies the pointer to the memory location where the data
needs to be written into.

Upon successful execution of the API, an RZKERR_SUCCESS value is
returned. Negative values are returned for the following error conditions.

RZKERR_SUCCESS Indicates that the API completed
the operation successfully.

DDFERR_INVALID_ARGUMENTS Indicates that the API execution is
not successful.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

222
See Also

DDFERR_INVALID_INITIALIZER When the function pointer for
putc is initialized to NULL in the
Device Driver Table.

Other error values are returned by the driver routine in case of any other
error conditions.

RZKDevOpen RZKDevWrite

RZKDevClose RZKDevIOCTL

RZKDevGetc RZKDevRead

RZKDevAttach RZKDevDetach
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

223
Ethernet Media Access Control APIs

Table 37 provides a quick reference for Ethernet Media Access Control
(EMAC) RZK APIs. The following sections provide description for each
of these APIs.

Table 37. EMAC API Quick Reference

AddEmac EmacWrite

EmacOpen EmacRead

EmacClose EmacControl
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

224
ADDEMAC

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "ZEmacMgr.h"

Prototype
DDF_STATUS_t AddEmac(void) ;

Description

The AddEmac() API adds the default EMAC device control block to the
RZK device control table and initializes the EMAC device, depending on
the platform.

Argument(s)
None.

Return Value(s)

See Also

RZKERR_SUCCESS The EMAC device block is added to the RZK
device table.

Errors values returned by the RZKDevAttach API are returned in the
event of any error conditions.

EmacOpen EmacClose

EmacWrite EmacRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

225
EMACOPEN

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "EtherMgr.h"

Prototype
DDF_STATUS_t EmacOpen (RZK_DEVICE_CB_t
*pDev,RZK_DEV_NAME_t *devName, RZK_DEV_MODE_t * mode);

Description

The EmacOpen() API opens the EMAC device for communication and
initializes the EMAC controller and the PHY device. This API also cre-
ates the kernel resources required for communication and must be called
prior to any Transmit/Receive operation involving the EMAC device.

Argument(s)

Return Value(s)

pDev EMAC device handle

devName Device name

mode Not Applicable

One of the following error values is returned:

EMACDEV_ERR_SUCCESS EMAC device success-
fully opened.

EMACDEV_ERR_RESOURCE_NOT_CREATED If the open call fails to
create an RZK resource
(Thread/Message Queue).
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

226
See Also

EmacClose EmacWrite

EmacRead EmacControl
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

227
EMACCLOSE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "EtherMgr.h"

Prototype
DDF_STATUS_t EmacClose (RZK_DEVICE_CB_t *pDev);

Description

The EmacClose() API closes the EMAC device. Receive/transmit oper-
ations are not possible after the device is closed. This API frees up any
resources created during the opening of the device.

Argument(s)

Return Value(s)

See Also

pDev EMAC device handle.

The following error value is returned:

EMACDEV_ERR_SUCCESS EMAC device successfully closed.

EmacOpen EmacWrite

EmacRead EmacControl
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

228
EMACWRITE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "EtherMgr.h"

Prototype
DDF_STATUS_t EmacWrite (RZK_DEVICE_CB_t *pDev,
ETH_PKT_t *pep, RZK_DEV_BYTES_t len);

Description

The EmacWrite() API transmits a packet to a network. The packet to be
transmitted must be in the ETH_PKT_t structure format. See Appendix A.
RZK Data Structures on page 332 for a listing of the packet structure.

EmacWrite is a nonblocking call. If the EMAC device is busy, the packet
waits in an internal queue and is transmitted as soon as the EMAC trans-
mitter is free.

Argument(s)

Return Value(s)

pDev EMAC device handle.

*pep Pointer to the packet to be transmitted (ETH_PKT_t structure
pointer).

len Total length of ETH_PKT_t structure.

One of the following error values is returned:

EMACDEV_ERR_SUCCESS Packet successfully transmitted.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

229
See Also

EMACDEV_ERR_INVALID_
OPERATION

If this API is called without opening
the device

EMACDEV_ERR_INVALID_ARGS If the len specified is greater than
ETHPKT_MAXLEN (that is, Total size
of ETH_PKT_t structure).

EMACDEV_ERR_TX_WAITING EMAC device is busy and the packet
is queued up

EmacOpen EmacClose

EmacRead EmacControl
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

230
EMACREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "EtherMgr.h"

Prototype
DDF_STATUS_t EmacRead (RZK_DEVICE_CB_t *pDev,
ETH_PKT_t **pep, RZK_DEV_BYTES_t len);

Description

The EmacRead() API reads a single packet from the EMAC device.
Memory for the packet is allocated by the API. It is a blocking call and
the calling thread is suspended until the packet arrives. A packet pointer is
returned through pDev. After the packet is processed, the memory allo-
cated for the packet must be freed by calling FreePktBuff() function.

Argument(s)

Return Value(s)

pDev EMAC device handle.

*pep Pointer to the packet to be transmitted (ETH_PKT_t structure
pointer).

len Not applicable.

If the call is successful, this API returns the number of bytes read. Upon
an error, it returns one of the following error values.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

231
See Also

EMACDEV_ERR_INVALID_OPERATION If this API is called without
opening the device.

EMACDEV_ERR_KERNEL_ERROR There was an error in receiv-
ing the packet.

EmacOpen EmacClose

EmacWrite EmacControl
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

232
EMACCONTROL

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "EtherMgr.h"

Prototype
DDF_STATUS_t EmacControl(RZK_DEVICE_CB_t *pDev,
RZK_DEV_BYTES_t func, CHAR *arg1, CHAR *arg2);

Description

The EmacControl() API allows you to perform some control opera-
tions on the EMAC device.

Argument(s)

pDev EMAC device handle.

func A type of control function; the following values can be passed
through this parameter.

EPC_MADD Add a MAC address to the multicast
group.

EPC_MDEL Delete a MAC address from the mul-
ticast group.

EPV_IRQ_ENABLE Enable EMAC interrupts.

EPV_IRQ_DISABLE Disable EMAC interrupts.

EPV_RESET Reset EMAC device.

*arg1 Pointer to the value to be passed for a particular control func-
tion.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

233
Return Value(s)

See Also

For the control functions listed above, the following values are expected:

EPC_MADD arg1 → pointer to the Ethernet multi-
cast address to be added to the group.

EPC_MDEL arg1 → pointer to the Ethernet multi-
cast address to be deleted from the
group.

EPV_IRQ_ENABLE No arguments required.

EPV_IRQ_DISABLE No arguments required.

EPV_RESET No arguments required.

*arg2 Pointer to the value to be passed to a control function. For the
current set of functions, a NULL value must be passed.

EMACDEV_ERR_SUCCESS Packet successfully transmitted.

EMACDEV_ERR_INVALID_OPERATION If this API is called without
opening the device.

EmacOpen EmacClose

EmacWrite EmacRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

234
Wireless Local Area Network APIs

Table 38 provides a quick reference for Wireless Local Area Network
(WLAN) RZK APIs. The following sections provide description for each
of these APIs.

Table 38. Wireless Local Area Network APIs Quick Reference

AddWlan wlanRead

wlanOpen wlanClose

wlanWrite
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

235
ADDWLAN

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "ZWlan.h"

Prototype
DDF_STATUS_t AddWlan(void) ;

Description

The AddWlan() API adds the default WLAN device control block to the
RZK device control and initializes the device. The WLAN initialization
includes SDIO initialization, reading the configuration from EEPROM
and downloading FIRMWARE to the WLAN chipset.

Argument(s)

None

Return Value(s)

See Also

RZKERR_SUCCESS The WLAN device block is added to the RZK
device table.

Error values returned by RZKDevAttach API are returned in case of any
error conditions.

wlanOpen wlanWrite

wlanClose wlanRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

236
WLANOPEN

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "EtherMgr.h"
#include "ZWlan.h"

Prototype

DDF_STATUS_t wlanOpen(RZK_DEVICE_CB_t *pDev,
RZK_DEV_NAME_t *devName, RZK_DEV_MODE_t * mode);

Description

The wlanOpen() API opens the WLAN device for communication and
does the site survey. This API also creates the kernel resources required
for communication and must be called prior to any Transmit/Receive
operation involving the WLAN device.

Argument(s)

Return Value(s)

One of the following values is returned.

pDev WLAN device handle

devName Device name

mode Not Applicable

WLANDEV_ERR_SUCCESS WLAN device successfully opened.

WLANDEV_ERR_AP_NOT_FOUND Unable to connect to the specified
access point (AP).
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

237
See Also

wlanOpen wlanWrite

wlanClose wlanRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

238
WLANWRITE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "EtherMgr.h"
#include "ZWlan.h"

Prototype

DDF_STATUS_t wlanWrite(RZK_DEVICE_CB_t *pDev,
ETH_PKT_t *pep, RZK_DEV_BYTES_t len);

Description

The wlanWrite() API transmits a packet to a wireless network. The
packet to be transmitted must be in the ETH_PKT_t structure format. See
Appendix A. RZK Data Structures on page 332 for a listing of the packet
structure. wlanWrite is a nonblocking call. The packet is written in to the
WLAN chipset FIFO and thereafter the WLAN chipset firmware takes
care of the transmission. If FIFO is full, then the packet is dropped with-
out returning any error to the caller.

Argument(s)

pDev WLAN device handle

*pep Pointer to the packet to be transmitted (ETH_PKT_t structure
pointer)

len Total length of ETH_PKT_t structure
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

239
Return Value(s)

One of the following error values is returned.

See Also

WLANDEV_ERR_SUCCESS Packet successfully transmitted.

WLANDEV_ERR_INVALID_
OPERATION

If this API is called without opening the
device.

WLANDEV_ERR_INVALID_
ARGS

If the len specified is greater than
ETHPKT_MAXLEN (that is, total size of
ETH_PKT_t structure).

wlanOpen wlanWrite

wlanClose wlanRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

240
WLANREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "EtherMgr.h"
#include "ZWlan.h"

Prototype

DDF_STATUS_t wlanRead(RZK_DEVICE_CB_t *pDev, ETH_PKT_t
**pep, RZK_DEV_BYTES_t len);

Description

The wlanRead() API reads a single packet from the WLAN device. It is
a blocking call and the calling thread is suspended until the packet arrives
or times out. A packet pointer is returned through pDev. After the packet
is processed, the memory allocated for the packet must be freed by calling
the FreePktBuff() function.

Argument(s)

Return Value(s)

If the call is successful this API returns the number of bytes read. Upon an
error, it returns one of the following error values.

pDev WLAN device handle.

*pep Pointer to the packet to be transmitted (ETH_PKT_t structure
pointer).

len Not applicable.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

241
See Also

WLAN_ERR_INVALID_OP
ERATION

If this API is called without opening the
device.

WLANDEV_ERR_KERNEL_
ERROR

There is an error in receiving the packet.

wlanOpen wlanWrite

wlanClose wlanRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

242
WLANCLOSE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "EtherMgr.h"
#include "ZWlan.h"

Prototype

DDF_STATUS_t wlanClose(RZK_DEVICE_CB_t *pdev)

Description

The wlanClose() API closes the WLAN device. Receive/Transmit
operations are not possible after the device is closed. This API frees up
any resources created during the opening of the device.

Argument(s)

Return Value(s)

The following error value is returned.

See Also

pDev WLAN device handle.

WLANDEV_ERR_SUCCESS WLAN device successfully closed.

wlanOpen wlanWrite

wlanClose wlanRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

243
Universal Asynchronous Receiver/Transmitter APIs

Table 39 provides a quick reference for Universal Asynchronous
Receiver/Transmitter (UART) RZK APIs. The following sections provide
description for each of these APIs.

Table 39. Universal Asynchronous Receiver/Transmitter API Quick Reference

AddUart0 UARTRead

AddUart1 UARTControl

UARTOpen UARTPeek

UARTClose UARTGetc

UARTWrite UARTPutc
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

244
ADDUART0

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "serial.h"

Prototype
DDF_STATUS_t AddUart0(void) ;

Description

The AddUart0() API adds the default UART0 device control block to
the RZK device control table and initializes the UART0 device. This API
must be called before calling the UART0 device through DDF.

Argument(s)

None.

Return Value(s)

See Also

UARTDEV_ERR_SUCCESS The UART0 device block is added to
the RZK device table.

Errors values returned by the RZKDevAttach API are returned in the
event of any error conditions.

UARTOpen UARTClose

UARTWrite UARTRead

UARTPeek UARTGetc

RTCControl
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

245
ADDUART1

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "serial.h"

Prototype
DDF_STATUS_t AddUart1(void) ;

Description

The AddUart1() API adds the default UART1 device control block to
the RZK device control table and initializes the UART1 device. This API
must be called before calling the UART1 device through DDF.

Argument(s)

None.

Return Value(s)

See Also

UARTDEV_ERR_SUCCESS The UART1 device block is added to the
RZK device table.

Errors values returned by the RZKDevAttach API are returned in the
event of any error conditions.

UARTOpen UARTClose

UARTWrite UARTRead

UARTPeek UARTGetc

RTCControl
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

246
UARTOPEN

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "serial.h"

Prototype
DDF_STATUS_t UARTOpen
(

RZK_DEVICE_CB_t* pDev,
RZK_DEV_NAME_t* pName,
RZK_DEV_MODE_t* pMode

)

Description

The UARTOpen() API opens the UART device for communication. This
API sets the baud rate and initializes the control register with values pro-
vided in the serparams structure located in the UART_Conf.c file. In
addition, this API also creates the required kernel resources and installs
the interrupt vector.

Argument(s)

pDev UART device handle. When called through the RZKDe-
vOpen() DDF API, the handle is generated within the
RZKDevOpen API and passed to the UARTOpen function
call.

pName Name of the device.

pMode Ignore.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

247
Return Value(s)

One of the following values is returned:

See Also

UARTDEV_ERR_SUCCESS Device successfully opened.

UARTDEV_ERR_KERNEL_ERROR Kernel resources not created.

UARTDEV_ERR_INVALID_OPERATION The device is not initialized.

UARTClose UARTWrite

UARTRead UARTControl

UARTPeek UARTGetc

UARTPutc
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

248
UARTCLOSE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "serial.h"

Prototype
DDF_STATUS_t
UARTClose
(

RZK_DEVICE_CB_t* pDev
)

Description

The UART_Close() API closes the UART device for communication.
No further Transmit/Receive operation can be performed after closing the
UART device. All of the resources created during the UART_Open()
function call are released.

Argument(s)

Return Value(s)

One of the following values is returned:

pDev UART device handle.

UARTDEV_ERR_SUCCESS Device successfully closed.

UARTDEV_ERR_INVALID_OPERATION Device is not open.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

249
See Also

UARTOpen UARTWrite

UARTRead UARTControl

UARTPeek UARTGetc

UARTPutc
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

250
UARTWRITE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "serial.h"

Prototype
DDF_STATUS_t
UARTWrite
(

RZK_DEVICE_CB_t * pDev,
CHAR * pBuf,
RZK_DEV_BYTES_t Len

)

Description

The UARTWrite() API writes Len number of bytes into the buffer
pointed to by the pBuf pointer. For the UART device, if the
SERSET_SYNC bit in the serparams structure is set, the data is transmit-
ted in the poll mode. If this bit is not set, then the data transmission is
interrupt driven and the thread is blocked for some time if the Transmit
Hold register is not empty. If the SERSET_RTSCTS bit is set, the calling
thread is blocked until the CTS line is asserted. The thread calling this
API cannot be deleted until this call is completed.

If a write operation is already in progress and another thread tries to write
to the same device, the second thread is blocked until the first read opera-
tion is complete.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

251
Argument(s)

Return Value(s)

If the UARTWrite() API is executed successfully, it returns the number
of bytes transmitted. If an error occurs, the following error value is
returned:

See Also

pDev UART device handle.

*pBuf Transmit buffer pointer.

Len Number of bytes to be transmitted.

UARTDEV_ERR_INVALID_OPERATIO
N

Device is not open.

UARTOpen UARTClose

UARTRead UARTControl

UARTPeek UARTGetc

UARTPutc
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

252
UARTREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "serial.h"

Prototype
DDF_STATUS_t
UARTRead
(

RZK_DEVICE_CB_t * pDev,
CHAR * pBuf,
RZK_DEV_BYTES_t Len

)

Description

The UARTRead() API reads the number of bytes specified by the Len
argument into the buffer pointed to by the pbuf argument. If the specified
number of bytes are not yet read, then this API blocks the calling thread.
If a read operation is in progress and another thread tries to read from the
same device, the second thread is blocked until the first read operation is
complete. The thread calling this API cannot be deleted until this call is
completed.

Argument(s)

pDev UART device handle.

*pbuf Receive buffer pointer.

Len Number of bytes to be received.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

253
Return Value(s)

If the UARTRead() API is executed successfully, it returns the number of
bytes received. If an error occurs, the following error value is returned:

See Also

UARTDEV_ERR_INVALID_OPERATION Device is not open.

UARTOpen UARTClose

UARTWrite UARTControl

UARTPeek UARTGetc

UARTPutc
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

254
UARTCONTROL

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "serial.h"

Prototype
DDF_STATUS_t UARTControl(

RZK_DEVICE_CB_t *pDCB,
RZK_DEV_BYTES_t uOperation,
void *addr1,
void *addr2

)

Description

The UARTControl() API allows you to set the UART I/O control
parameters during runtime. The control parameters that can be set through
the UARTControl() API are baud rate, data bits, stop bits and parity. To
set any of these control parameters, set the appropriate values in the
SERIAL_PARAMS structure that is defined in the Uart_Conf.c file. To
realize these changes, invoke the UARTControl API with the correct
operation. This API allows you to set either the individual control param-
eters such as baud rate or all of the parameters in one function call. If a
read/write operation is currently in progress and involves the same
device, then the UARTControl API blocks the calling thread. The thread
calling this API cannot be deleted until this call is completed.

Argument(s)

pDCB UART device handle.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

255
Return Value(s)

One of the following values is returned:

See Also

uOperation Type of control function.

The following values can be passed through this param-
eter:

SET_BAUD Set the baud rate.

SET_DATABIT Set data bits.

SET_PARITY Set parity.

SET_STOPBITS Set stop bits.

SET_ALL Set all of the above parameters.

*addr1 Ignore.

*addr2 Ignore.

SET_READ_DELAY Set the read delay.

*addr1 Timer value in ticks for SET_READ_DELAY operation.
Ignore for remaining operations.

*addr2 Ignore.

UARTDEV_ERR_SUCCESS If the UARTControl() API is exe-
cuted successfully.

UARTDEV_ERR_INVALID_ARGS If incorrect arguments are passed to
the API.

UARTOpen UARTClose

UARTWrite UARTRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

256
UARTPeek UARTGetc

UARTPutc
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

257
UARTPEEK

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "serial.h"

Prototype
DDF_STATUS_t
UARTPeek
(

RZK_DEVICE_CB_t* pDev
)

Description

The UARTPeek() API returns the number of bytes available in the
receive buffer. This API provides information about the number of bytes
that are received after the UARTReceive API is invoked. Therefore, the
probability of a UARTRead() call being blocked due to the nonavailabil-
ity of data is eliminated.

Argument(s)

Return Value(s)

If the device is open, the UARTPeek() API returns the number of bytes
available in the receive buffer. If the device is not open, then this API
returns the UARTDEV_ERR_INVALID_OPERATION error.

pDev UART device handle.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

258
See Also

UARTOpen UARTClose

UARTWrite UARTRead

UARTControl UARTGetc

UARTPutc
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

259
UARTGETC

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "serial.h"

Prototype
DDF_STATUS_t
UARTGetc
(

RZK_DEVICE_CB_t* pDev
)

Description

The UARTGetc() API reads one byte from the UART device and returns
this byte to the function caller. This operation is equivalent to calling the
UARTRead() API with the Len argument equal to one byte.

Argument(s)

Return Value(s)

If theUARTGetc() API is executed successfully, then this API returns
the byte read from the UART device. If unsuccessful, this API
returns the following error:

pDev UART device handle.

UARTDEV_ERR_INVALID_OPERATION Device is not open.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

260
See Also

UARTOpen UARTClose

UARTWrite UARTRead

UARTPeek UARTControl

UARTPutc
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

261
UARTPUTC

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "serial.h"

Prototype
DDF_STATUS_t
UARTPutc
(

RZK_DEVICE_CB_t * pDev,
CHAR Data

)

Description

The UARTPutc() API writes one byte to the UART device. This opera-
tion is equivalent to calling the UARTWrite() API with the Len argu-
ment equal to one byte.

Argument(s)

Return Value(s)

If the UARTGetc() API is executed successfully, then this API returns
the number of bytes that is transmitted, that is, one. If unsuccessful, this
API returns the following error:

pDev UART device handle.

Data One byte data to be transmitted

UARTDEV_ERR_INVALID_OPERATION Device is not open.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

262
See Also

UARTOpen UARTClose

UARTWrite UARTRead

UARTPeek UARTGetc

RTCControl
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

263
Real-Time Clock APIs

Table 40 provides a quick reference to the real-time clock (RTC) RZK
APIs that are described in this subsection.

Table 40. Real-Time Clock API Quick Reference

AddRtc

RTCRead

RTCControl
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

264
ADDRTC

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "rtc.h"

Prototype
DDF_STATUS_t AddRtc (void) ;

Description

The AddRtc() API adds the default RTC device control block to the
RZK device control table and initializes the RTC device. This API must
be called before opening the RTC device through DDF.

Argument(s)

None.

Return Value(s)

See Also

RZKERR_SUCCESS The RTC device block is added to the RZK device
table.

Errors values returned by the RZKDevAttach API are returned in the
event of any error conditions.

RTCControl
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

265
RTCREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "rtc.h"

Prototype
DDF_STATUS_t RTCRead (RZK_DEVICE_CB_t *pdev,
RZK_DEV_BUFFER_t *buf, RZK_DEV_BYTES_t nBytes);

Description

The RTCRead() API reads the current date and time into the TIME data
structure. The TIME structure must be passed to the API through the
*buf argument. See Appendix A. RZK Data Structures on page 332 for a
listing of the TIME data structure.

Argument(s)

Return Value(s)

See Also

pDev RTC device handle.

*buf Pointer to the TIME structure.

nBytes Not applicable.

RTC_ERR_SUCCESS The current date and time has been read suc-
cessfully.

RTCControl
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

266
RTCCONTROL

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "rtc.h"

Prototype
DDF_STATUS_t RTCControl(RZK_DEVICE_CB_t *pdev,
RZK_DEV_BYTES_t uOperation, CHAR *addr1, CHAR *addr2);

Description

The RTCControl() API allows multiple control operations to be per-
formed on the RTC device, including the setting of date and time. It also
allows enabling and disabling of the alarm.

Argument(s)

pDev RTC device handle.

uOperationMode A type of control function. The following values
can be passed through this parameter

RTC_SET_SEC Set seconds value.

RTC_SET_MIN Set minutes value.

RTC_SET_HRS Set hours value.

RTC_SET_MON Set month value.

RTC_SET_DOW Set day of the week value.

RTC_SET_DOM Set day of the month value.

RTC_SET_YEAR Set year value..
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

267
RTC_SET_CENT Set century value

RTC_SET_ALL Set all the values mentioned
above.

RTC_ENABLE_BCD The values in the register are in
Binary Coded Decimal format.

RTC_DISABLE_BCD The values in the register are in
binary format.

RTC_RESET_CONTROL Initializes RTC control register
to zero.

RTC_ENABLE_ALARM Enables RTC alarm to the given
date and time. The driver con-
figures the RTC to generate an
interrupt at the specified date
and time and schedules an
interrupt task. The thread body
is exposed to you and the
required operation can be pro-
grammed in the thread body.

RTC_DISABLE_ALARM Disable RTC alarm.

RTC_CLK_SEL_CRYSTAL_OSCILL The crystal oscillator output is
the RTC clock source.

RTC_CLK_SEL_POWER_LINE_FREQ The power-line frequency input
is the RTC clock source.

RTC_POWER_LINE_FREQUENCY50HZ Power-line frequency is 50 Hz

RTC_POWER_LINE_FREQUENCY60HZ Power-line frequency is 60 Hz.

*addr1 The following values must be passed through this argument
for the control functions listed above.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

268
The values must be passed with consideration for whether BCD is enabled
or disabled.

RTC_SET_SEC Seconds value.

RTC_SET_MIN Minute value.

RTC_SET_HRS Hours value.

RTC_SET_MON Month value.

RTC_SET_DOW Day of the week value.

RTC_SET_DOM Day of the month value.

RTC_SET_YEAR Year value.

RTC_SET_CENT Century value.

RTC_SET_ALL Pointer to the TIME structure
with all the fields initialized to
appropriate values.

RTC_CLK_SEL_CRYSTAL_OSCILL None.

RTC_CLK_SEL_POWER_LINE_FREQ None..

RTC_POWER_LINE_FREQUENCY50HZ None

RTC_POWER_LINE_FREQUENCY60HZ None.

RTC_ENABLE_BCD None.

RTC_DISABLE_BCD None.

RTC_RESET_CONTROL None.

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

269
Return Value(s)

See Also

RTC_ENABLE_ALARM Pointer to the TIME structure with the date
and time field initialized to the value at which
an alarm must occur.

RTC_DISABLE_ALARM None.

RTC_ERR_SUCCESS Operation successfully com-
pleted.

RTC_ERR_RESOURCE_NOT_CREATED Unable to create resource for
the operation specified.

RTC_ERR_RESOURCE_NOT_DELETED Unable to delete resource.

RTCRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

270
Serial Peripheral Interface APIs

Table 41 provides a quick reference to a number of Serial Peripheral
Interface (SPI) RZK APIs that are described in this subsection.

Table 41. Serial Peripheral Interface API Quick Reference

AddSpi SPI_Write

SPI_Open SPI_Read

SPI_Close SPI_IOCTL
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

271
ADDSPI

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "spi.h"

Prototype
DDF_STATUS_t AddSpi (void) ;

Description

The AddSpi() API adds the default SPI device control block to the RZK
device control block and initializes the SPI device. This API must be
called before calling the SPI device through DDF.

Argument(s)

None.

Return Value(s)

One of the following error values is returned.

See Also

RZKERR_SUCCESS The SPI device block is added to the RZK device
table.

SPI_Close SPI_Write

SPI_Read SPI_IOCTL
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

272
SPI_OPEN

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "spi.h"

Prototype
DDF_STATUS_t SPI_Open (RZK_DEVICE_CB_t *pDCB,
RZK_DEV_NAME_t *devName, RZK_DEV_MODE_t *devMode);

Description

The SPI_Open() API opens the SPI device for communication. A
device must be closed with the SPI_Close call before it can be opened
again. SPI_Open installs the interrupt vector table and creates an SPI
interrupt thread for transferring data. By default, this device operates in
interrupt mode. The driver automatically shifts between poll and interrupt
mode based upon baud rate. For low baud rates, it operates in interrupt
mode; for higher baud rates, it automatically operates in poll mode.

Argument(s)

pDCB SPI device handle.

devName Name of the device.

devMode Mode in which device must be opened.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

273
Return Value(s)

One of the following values is returned.

See Also

RZKERR_SUCCESS Indicates that the device is suc-
cessfully opened.

SPIDEV_ERR_INVALID_OPERATION Indicates if the device is opened
again.

SPIDEV_ERR_KERNEL_ERROR Indicates if interrupt thread cre-
ation is unsuccessful.

SPI_Close SPI_Write

SPI_Read SPI_IOCTL
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

274
SPI_CLOSE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "spi.h"

Prototype
DDF_STATUS_t SPI_Close (RZK_DEVICE_CB_t *pDCB);

Description

The SPI_Close() API closes the SPI device for communication. No
further Receive/Transmit operation is possible after closing the device.
All resources created during the SPI_Open call are freed or deleted.

Argument(s)

Return Value(s)

One of the following values is returned.

See Also

pDCB SPI device handle.

RZKERR_SUCCESS Device successfully opened.

SPIDEV_ERR_INVALID_OPERATION If the device is not yet opened.

SPI_Open SPI_Write

SPI_Read SPI_IOCTL
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

275
SPI_WRITE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "spi.h"

Prototype
DDF_STATUS_t SPI_Write (RZK_DEVICE_CB_t *pDCB,
RZK_DEV_BUFFER_t *buf, RZK_DEV_BYTES_t size);

Description

The SPI_Write() API writes the number of bytes specified in the size
argument to the SPI slave device. It suspends the calling thread if it is
unable to transmit. It resumes transmission after the transmitter is free.
This API must be placed into the global device table if the eZ80® CPU is
configured as a master device.

Argument(s)

Return Value(s)

If the transmission occurs successfully, the API returns the transmitted
number of bytes. On error, the following error values are returned:

pDCB SPI device handle.

*buf Transmit buffer pointer.

size Number of bytes to be transmitted.

SPIDEV_ERR_BUSY If slave device is busy.

SPIDEV_ERR_WCOL If there is a write collision.

SPIDEV_ERR_MULTIMASTER If there is a multimaster conflict.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

276
See Also

SPI_Open SPI_Close

SPI_Read SPI_IOCTL
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

277
SPI_READ

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "spi.h"

Prototype
DDF_STATUS_t SPI_Read (RZK_DEVICE_CB_t *pDCB,
RZK_DEV_BUFFER_t *buf, RZK_DEV_BYTES_t size);

Description

The SPI_Read() API reads the number of bytes specified in the size
argument from the SPI master device. It suspends the calling thread if it is
unable to receive. It resumes transmission after the master sends the data.
This API must be placed into the global device table if the eZ80® CPU is
configured as a slave device.

Argument(s)

Return Value(s)

If the transmission occurs successfully, the API returns the transmitted
number of bytes. On error, the following error values are returned:

pDCB SPI device handle.

*buf Receive buffer pointer.

size Number of bytes to be received.

SPIDEV_ERR_BUSY Indicates if slave device is busy.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

278
See Also

SPIDEV_ERR_WCOL Indicates if there is a write collision.

SPIDEV_ERR_MULTIMASTER Indicates if there is a multimaster con-
flict.

SPI_Open SPI_Close

SPI_Write SPI_IOCTL
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

279
SPI_IOCTL

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "spi.h"

Prototype
DDF_STATUS_t SPI_IOCTL (RZK_DEVICE_CB_t *pDCB,
RZK_DEV_BYTES_t uOperation, CHAR *addr1, CHAR *addr2);

Description

The SPI_IOCTL() API allows you to perform control operations on the
SPI device.

Argument(s)

pDev SPI device handle.

uOperation Type of control function. Following values can be
passed through this parameter.

SET_BAUD Set the SPI baud rate.

LOAD_CONTROL Load the SPI control register.

SLAVE_SELECT Select Slave.

SLAVE_DESELECT Deselect Slave.

READ_STATUS Read SPI status register.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

280
Return Value(s)

*arg1 Pointer to the value to be passed for a particular control func-
tion. For the control functions listed above the following val-
ues are expected:

SET_BAUD BAUD_9600

BAUD_19200

BAUD_38400

BAUD_57600

BAUD_115200

LOAD_CONTROL Value to be loaded into SPI control register.

SLAVE_SELECT Any of the mentioned four characters (A/B/C/D).

READ_STATUS Read value is placed here.

*arg2 Pointer to the value to be passed to a control function. For the
current set of functions, a NULL value must be passed, except
in the case of SLAVE_SELECT and SLAVE_DESELECT. A
value from 1 to 8 can be passed with this argument to indicate
whether a slave is present on A1/B3/C5/D8. The first charac-
ter is taken from argument1.

RZKERR_SUCCESS Indicates that the control operation was performed
successfully.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

281
See Also

SPI_Open SPI_Close

SPI_Write SPI_Read
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

282
Inter-Integrated Circuit APIs

Table 42 provides a quick reference to a number of inter-integrated circuit
(I2C) RZK APIs that are described in this subsection.

Table 42. Inter-Integrated Circuit API Quick Reference

AddI2c I2CWrite

I2COpen I2CRead

I2CClose I2CPeek

I2CControl
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

283
ADDI2C

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "i2c.h"

Prototype
DDF_STATUS_t AddI2c(void) ;

Description

The AddI2c() API adds the default I2C device control block to the RZK
device control table and initializes the I2C device. This API must be
called before opening the I2C device through DDF.

Argument(s)

None.

Return Value(s)

See Also

RZKERR_SUCCESS The I2C device block is added to RZK.

Errors values returned by the RZKDevAttach API are returned in the
event of any error conditions.

I2CClose I2CControl

I2CWrite I2CRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

284
I2COPEN

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "i2c.h"

Prototype
DDF_STATUS_t I2COpen(RZK_DEVICE_CB_t *pDCB, CHAR
*SlaveName, CHAR * devMode);

Description

The I2COpen() API initializes the I2C bus and prepares it for communi-
cation. It creates the kernel resources required for driver operations. This
API can be called with either I2C_MASTER/I2C_SLAVE, depending on
whether the eZ80® CPU is a slave or a master.

Argument(s)

Return Value(s)

pDCB I2C device handle.

devName Name string as given in the I2C device control block.

devMode Whether I2C is a master or slave (I2C_MASTER/
I2C_SLAVE).

I2CERR_SUCCESS Indicates that the I2C device opened success-
fully.

I2CERR_KERNELERROR Indicates that the open call failed to create an
interrupt thread.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

285
See Also

I2CClose I2CControl

I2CWrite I2CRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

286
I2CCLOSE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "i2c.h"

Prototype
DDF_STATUS_t I2CClose(RZK_DEVICE_CB_t *pDCB);

Description

The I2CClose() API closes the I2C device. All of the kernel resources
acquired by the driver are released. For any further communication with
the device, the device must be reopened with the I2COpen() API.

Argument(s)

Return Value(s)

See Also

pDCB I2C device handle.

I2CERR_SUCCESS Indicates that the I2C device closed
successfully.

I2CERR_INVALID_OPERATION Indicates that the slave has not been
opened.

I2COpen I2CControl

I2CWrite I2CRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

287
I2CCONTROL

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "i2c.h"

Prototype
DDF_STATUS_t I2CControl(RZK_DEVICE_CB_t *pDCB,
RZK_DEV_BYTES_t uOperation, CHAR *addr1, CHAR *addr2)

Description

The I2CControl() API allows you to perform control operations on the
I2C device.

Argument(s)

pDCB The I2C device handle.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

288
Return Value(s)

uOperation The operation to be performed. The following opera-
tions are supported:

I2C_SET_SLAVE_ADDR Set the slave address to
which all further
I2CRead/I2CWrite
operations are directed.

I2C_SUBADDR_USED The subaddress is being
used for the slave device.
If this option is set in
MASTER mode, the slave
device subaddress are sent
after sending the control
byte. The length of the
subaddress can be set
using the
I2C_SUBADDR_LEN
option. The subaddress
value must be passed
through the addr1 argu-
ment.

I2C_SUBADDR_NOT_USED No subaddress are sent to
the slave device after
sending the control byte.

I2CERR_SUCCESS Indicates that the specified operation
has been successfully performed.

I2CERR_BUSBUSY If the I2C bus is in use.

I2CERR_INVALID_OPERATION If the I2C bus is not open.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

289
See Also

I2COpen I2CClose

I2CWrite I2CRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

290
I2CWRITE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "i2c.h"

Prototype
DDF_STATUS_t I2CWrite(RZK_DEVICE_CB_t *pDCB, CHAR
*buf, RZK_DEV_BYTES_t size);

Description

Transmits a specified number of bytes of data on the I2C bus. The nature
of the write call depends on the mode in which the device is operating.

If the eZ80® CPU is operating in MASTER mode, the number of bytes
specified by size are transmitted to the slave device. The slave device
address is taken from the currSlaveAddr field of the I2C_CONFIG_t
structure. The start condition, control byte and subaddress transmission
are performed within this function. I2CWrite is a nonblocking call and
returns immediately if an error is encountered.

In SLAVE mode, the I2CWrite() call adds the data provided in buf to a
Tx circular queue. These data bytes are transmitted from the interrupt
thread context when such a request arrives from a master. Therefore, call-
ing I2CWrite when the eZ80® CPU is in SLAVE mode does not neces-
sarily mean that the bytes have been transmitted to the slave. The circular
queue does not generate any warning if the queue is full. It simply keeps
overwriting the buffer if the data in the circular buffer is not being fetched
and transmitted. The size of this circular buffer is configurable.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

291
Argument(s)

Return Value(s)

The following values are returned from the I2CWrite() API. Other
errors are returned based on the values contained in the I2C Status Regis-
ter.

See Also

pDCB I2C device handle.

*buf Pointer to the buffer which contains data to be transmitted.

size Number of bytes to be transmitted.

I2CERR_SUCCESS Indicates that the write operation has
been performed successfully.

I2CERR_BUSBUSY Indicates if the I2C bus is in use.

I2CERR_INVALID_OPERATION Indicates if the I2C bus is not open.

I2CERR_FAILURE Indicates if the status is not handled
by the API.

I2CERR_TIMEOUT Indicates that the data byte transfer is
not completed within the polling
time.

I2COpen I2CClose

I2CControl I2CRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

292
I2CREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "i2c.h"

Prototype
DDF_STATUS_t I2CRead(RZK_DEVICE_CB_t *pDCB,
CHAR *buf, RZK_DEV_BYTES_t size) ;

Description

Reads a specified number of bytes of data from the slave/master on the
I2C bus. Again the nature of the call depends upon whether eZ80 is acting
as a master or slave.

When the eZ80® CPU is operating in MASTER mode, a specified num-
ber of bytes are read from the slave device into the buf application buffer.
The slave device address is taken from the currSlaveAddr field of the
I2C_CONFIG_t structure. The start condition, control byte and subad-
dress transmission are performed within this function. I2CRead() is a
nonblocking call and returns immediately if an error is encountered.

When the eZ80® CPU is operating in SLAVE mode, the I2CRead call
simply reads a specified number of bytes from an Rx circular queue into
the application buffer. The data received from the master is appended to
the Rx circular queue from the interrupt thread context. The circular
queue does not generate any warning if the queue is full. It simply keeps
overwriting the buffer if the data in the circular buffer is not being read.
The size of this circular buffer is configurable.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

293
Argument(s)

Return Value(s)

The following values are returned from the I2CRead() API. Other errors
are returned based on the values contained in the I2C Status register.

See Also

pDCB I2C device handle.

*buf Pointer to the receive buffer.

size Number of bytes to be received.

I2CERR_SUCCESS Indicates that the read operation is
performed successfully.

I2CERR_BUSBUSY Indicates if the I2C bus is in use.

I2CERR_INVALID_OPERATION Indicates if the I2C bus is not open.

I2CERR_FAILURE Indicates if the status is not handled
by the API.

I2CERR_TIMEOUT Indicates if the data byte transfer is
not completed within the polling
time.

I2COpen I2CClose

I2CControl I2CWrite
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

294
I2CPEEK

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "i2c.h"

Prototype
DDF_STATUS_t I2CPeek()

Description

Returns the number of bytes present in the Receive circular buffer.

Argument(s)

None.

Return Value(s)

Returns the number of bytes present in the circular buffer.

See Also

I2COpen I2CClose

I2CControl I2CWrite
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

295
Universal Serial Bus APIs

The Philips PDIUSBD12 external USB device is interfaced with the
eZ80F91 MCU to function as a USB device. Table 43 provides a quick
reference to the Universal Serial Bus (USB) device RZK APIs, each of
which is described in this section.

Table 43. Universal Serial Bus API Quick Reference

EZ80D12_init

EZ80D12_Connect ()

EZ80D12_Disconnect ()
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

296
EZ80D12_INIT

Include
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "EZ80D12_Usb.h"
#include "EZ80F91.h"
#include "zinterrupt.h"

Prototype
INT16 EZ80D12_init (void)

Description

The EZ80D12_init () API creates the interrupt thread and initializes
the PDIUSBD12 USB device.

Argument(s)

None.

Return Value(s)

See Also

1 If the USB device is initialized success-
fully.

EZ80D12DEV_ERR_THRD_
NOT_CREATED

If there is an error in creating the interrupt
thread.

EZ80D12_Disconnect ()

EZ80D12_Connect ()
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

297
EZ80D12_CONNECT ()

Include
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "EZ80D12_Usb.h"
#include "EZ80F91.h"
#include "zinterrupt.h"

Prototype
void EZ80D12_Connect (void)

Description

The EZ80D12_Connect () API initializes the PDIUSBD12 USB
device.

Argument(s)

None.

Return Value(s)

None.

See Also

EZ80D12_Disconnect ()
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

298
EZ80D12_DISCONNECT ()

Include
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "EZ80D12_Usb.h"
#include "EZ80F91.h"
#include "zinterrupt.h"

Prototype
void EZ80D12_Disconnect (void)

Description

The EZ80D12_Disconnect () API disconnects the PDIUSBD12 USB
device from host and resets initialization done in the EZ80D12_Connect
() API.

Argument(s)

None.

Return Value(s)

None.

See Also

EZ80D12_Connect ()
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

299
Watchdog Timer APIs

Table 44 provides a quick reference to the two Watchdog Timer RZK
APIs that are described in this subsection.

Table 44. Watchdog Timer API Quick Reference

wdt_init

wdt_reset
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

300
WDT_INIT

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "wdt.h"

Prototype
void wdt_init(UCHAR bWdtCtrl);

Description

The wdt_init() function can be used to control the watchdog timer
peripheral of the eZ80® device. This function configures the watchdog
timer according to the value passed by you. The time-out clock cycle
period is user-configurable. For information about watchdog timer func-
tionality, refer to the relevant product specification for the specific device
belonging to the eZ80Acclaim!® family of microcontrollers.

The operations performed when the watchdog timer times out are con-
trolled by the value of the bWdtCtrl parameter that is passed onto the
wdt_init() function.

Argument(s)

Return Value(s)

None.

bWdtCtrl Contains the value to be written into WDT control register.
For more details about #defined values, refer to the WDT.h
file.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

301
Example
void SetupRoutine(void)
{

Note:
/*
* Direct ZTP to manipulate the WDT.
* Force reset after specified cycles.
*/
wdt_init (0xC0);

}

See Also

wdt_reset
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

302
WDT_RESET

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "wdt.h"

Prototype
void wdt_reset();

Description

The wdt_reset() function can be used to reset the WDT timer even
before it times out.

Argument(s)

None

Return Value(s)

None

Example
void SetupRoutine(void)
{

Note:
/*
* Direct ZTP to manipulate the WDT.
* Force reset after specified cycles.
*/
wdt_reset ();

}

See Also

wdt_init
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

303
Flash Device Driver APIs

The APIs for different Flash devices feature a similar prototype for simi-
lar operation. The name of these APIs can be differentiated by replacing
FLASHDEV with the device name as provided in Table 45. The Flash
Device Driver APIs consider that only the equally sized blocks are
accessed and erased throughout the system operation.

Table 45 lists the Flash Device Driver RZK APIs that are described in this
subsection.

Table 45. Flash Device Driver APIs

API MT28F008B AM29LV160B AT49BV162A

Internal Flash
(F91, F92, F93
only)

FLASHDEV_Init Initializes the
Flash device

Initializes the
Flash device

Initializes the
Flash device

Initializes the
Flash device

FLASHDEV_Read Reads the num-
ber of bytes
specified
regardless of
the erasable
block boundary

Reads the num-
ber of bytes
specified
regardless of
the erasable
block boundary

Reads the num-
ber of bytes
specified
regardless of
the erasable
block boundary

Reads the num-
ber of bytes
specified
regardless of
the erasable
block boundary

FLASHDEV_Write Writes the num-
ber of bytes
specified
regardless of
the erasable
block boundary

Writes the num-
ber of bytes
specified
regardless of
the erasable
block boundary

Writes the num-
ber of bytes
specified
regardless of
the erasable
block boundary

Writes the num-
ber of bytes
specified
regardless of
the erasable
block boundary
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

304
Due to the inherent characteristics of Flash, access to the Flash device is
sequential and occurs through a synchronization object. Therefore, wrap-
per APIs are provided to perform a semaphore acquire, call the driver API,
and resume from a semaphore for all read/write/erase operations.

FLASHDEV_Erase Erases the
equally sized
blocks (Nor-
mally 128K
bytes)

Erases the
equally sized
blocks (Nor-
mally 64K
bytes).

Erases the
equally sized
blocks (Nor-
mally 64K
bytes).

Erases the
equally sized
blocks (For F91:
32K bytes, 8
blocks,
F92: 16K bytes,
8 blocks
F93: 16K bytes
4 blocks)

FLASHDEV_Close Closes the
device (Does
not disable)

Closes the
device (Does
not disable)

Closes the
device (Does
not disable)

Closes the
device (Does
not disable)

Table 45. Flash Device Driver APIs (Continued)

API MT28F008B AM29LV160B AT49BV162A

Internal Flash
(F91, F92, F93
only)

Note:
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

305
FLASHDEV_INIT

Include
#include "ZSysgen.h"
#include "ZTypes.h"

Prototype
INT FLASHDEV_Init(VOID *paddr, UINT32 num_bytes) ;

Description

The FLASHDEV_Init() API initializes the Flash device and configures
the device in the read mode.

Argument(s)

Return Value(s)

This API returns 0 when successful and a nonzero value when unsuccess-
ful.

See Also

paddr Starting address of the Flash device.

num_bytes Number of bytes that the Flash device addresses.

FLASHDEV_Read FLASHDEV_Write

FLASHDEV_Erase FLASHDEV_Close
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

306
FLASHDEV_READ

Include
#include "ZSysgen.h"
#include "ZTypes.h"

Prototype
INT32 FLASHDEV_Read(VOID *paddr, VOID *pbuf, UINT
num_bytes);

Description

This API reads the data from Flash and stores it in the specified buffer.

Argument(s)

Return Value(s)

This API returns the number of bytes read when successful and a value-
less than or equal to 0 when unsuccessful.

See Also

paddr Address in the Flash device from where the num_bytes
must be read.

pbuf Address in RAM where data read from the Flash device
must be stored.

num_bytes Number of bytes to read.

FLASHDEV_Init FLASHDEV_Write

FLASHDEV_Erase FLASHDEV_Close
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

307
FLASHDEV_WRITE

Include
#include “ZSysgen.h”
#include “ZTypes.h”

Prototype
INT32 FLASHDEV_Write(VOID *paddr, VOID *pbuf, UINT
num_bytes) ;

Description

This API writes the data from the RAM to the Flash device at the speci-
fied address.

Argument(s)

Return Value(s)

This API returns the number of bytes read when successful and a value
less than or equal to 0 when unsuccessful.

See Also

paddr Address in Flash device to which data must be written.

pbuf Address in RAM from which the data is read and written
onto the Flash device.

num_bytes Number of bytes to be written.

FLASHDEV_Init FLASHDEV_Read

FLASHDEV_Erase FLASHDEV_Close
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

308
FLASHDEV_ERASE

Include
#include "ZSysgen.h"
#include "ZTypes.h"

Prototype
INT FLASHDEV_Erase(VOID *paddr, UINT32 num_bytes);

Description

The FLASHDEV_Erase() API erases the physical block of a device
assigned with a specific address. For the logical block size of each device,
see Table 45 on page 303.

Argument(s)

Return Value(s)

This API returns 0 when successful and a nonzero value when unsuccess-
ful.

See Also

paddr Address location of the Flash device that must be erased.

num_bytes Number of bytes to be written.

FLASHDEV_Init FLASHDEV_Write

FLASHDEV_Read FLASHDEV_Close
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

309
FLASHDEV_CLOSE

Include
#include "ZSysgen.h"
#include "ZTypes.h"

Prototype
INT FLASHDEV_Close(void);

Description

The FLASHDEV_Close() API closes the device for access (It does not
disable the Flash device for accessing).

Argument(s)

None

Return Value(s)

This API returns 0 when successful and a nonzero value when unsuccess-
ful.

See Also

FLASHDEV_Init FLASHDEV_Write

FLASHDEV_Read FLASHDEV_Erase
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

310
Miscellaneous APIs

Table 46 provides a quick reference to the miscellaneous RZK APIs that
are described In this subsection.

Table 46. Miscellaneous API Quick Reference

RZKFormatError RZKSetCwd

RZKGetCurrentThread RZKGetHandleByIndex

RZKGetErrorNum RZKSystemTime

RZKGetThreadStatistics GetDataPersistence

RZKGetTimerStatistics SetDataPersistence

RZK_Reboot FreePktBuff

RZKGetCwd
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

311
RZKFORMATERROR

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

void RZKFormatError(UINT num);

Description

The RZKFormatError() API prints the error corresponding to the error
number, only if the DEBUG configuration is chosen. Refer to the RZK
Configuration chapter of the Zilog Real-Time Kernel User Manual
(UM0075) for more details.

Argument(s)

Return Value(s)

None.

Example

An error string for a specified error number is displayed on the console.

extern UINT errNum;
RZKFormatError(errNum);

See Also

num Specifies the error number

RZKGetCurrentThread RZKGetErrorNum
RZKGetThreadStatistics RZKGetTimerStatistics
RZK_Reboot
RM000619-1211 API Definitions

http://www.zilog.com/docs/software/um0075.pdf
http://www.zilog.com/docs/software/um0075.pdf

Zilog Real-Time Kernel
Reference Manual

312
RZKGETCURRENTTHREAD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

RZK_THREADHANDLE_t RZKGetCurrentThread();

Description

The RZKGetCurrentThread() API call returns the currently-running
thread handle.

Argument(s)

None.

Return Value(s)

Returns the current running thread handle.

Example

The handle of the current running thread is stored in hCurrHandle.

RZK_THREADHANDLE_t hCurrHandle;
hCurrHandle = RZKGetCurrentThread();

See Also

RZKFormatError RZKGetErrorNum

RZKGetThreadStatistics RZKGetTimerStatistics

RZK_Reboot
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

313
RZKGETERRORNUM

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

RZK_STATUS_t RZKGetErrorNum();

Description

The RZKGetErrorNum() API call returns the error number for any
recently-called API function of the current thread, provided that errors are
not directly returned by that API. For example, the RZKCreateTh-
read() API returns a handle; therefore, if an error occurs while creating
the thread, the error can be obtained by calling RZKGetErrorNum(). The
same logic applies for all create calls. For noncreate calls, if a handle is
not returned, errors are logged into the thread control block of the current
thread, which can be retrieved by the RZKGetErrorNum() API.

Argument(s)

None.

Return Value(s)

Returns the error number for the recent API call by current thread.

Example

The error number that is set in the current TCB is retrieved after creation
of an object or allocation of memory using region or partition APIs.

RZK_STATUS_t nErrNum;
nErrNum = RZKGetErrorNum();
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

314
See Also

RZKFormatError RZKGetCurrentThread

RZKGetThreadStatistics RZKGetTimerStatistics

RZK_Reboot
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

315
RZKGETTHREADSTATISTICS

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThreadStatistics.h"

Prototype

Description

The RZKGetThreadStatistics() API returns the statistics of the
specified thread through RZK_THREADSTATISTICS_t structure. Statis-
tics such as the total time run, actual time run and number of times the
thread is blocked. This structure is filled only if RZK_STATISTIC (with
DEBUG option enabled) is defined. See Table 65 on page 354 for mem-
bers of the RZK_THREADSTATISTICS_t structure.

Argument(s)

RZK_STATUS_t RZKGetThreadStatistics(

RZK_THREADHANDLE_t hThread,

RZK_THREADSTATISTICS_t *pThreadStatistics

hThread The thread handle whose statistics is to be
obtained.

pThreadStatistics Pointer to the RZK_THREADSTATISTICS_t
structure where the thread statistics are
stored.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

316
Return Value(s)

Example

The statistics of a thread with a handle that is stored in hThread are
retrieved. The API execution status is stored in the status variable.

extern RZK_THREADHANDLE_t hThread;
RZK_THREADSTATISTICS_t threadStats;
RZK_STATUS_t status;
status = RZKGetThreadStatistics(hThread,
&threadStats);

See Also

RZKERR_SUCCESS Indicates that the API is executed
successfully.

RZKERR_INVALID_HANDLE Indicates if the thread handle passed
is invalid (NULL/deleted handle/
wrong handle).

RZKERR_INVALID_ARGUMENTS Indicates if pointer to the statistics
structure is invalid.

RZKFormatError RZKGetCurrentThread

RZKGetErrorNum RZKGetTimerStatistics

RZK_Reboot RZK_THREADSTATISTICS_t
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

317
RZKGETTIMERSTATISTICS

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZTimerStatistics.h"

Prototype

Description

The RZKGetTimerStatistics() API returns the statistics of the spec-
ified software timer through the RZK_TIMERSTATISTICS_t structure.
This function works only if RZK_STATISTIC (with the DEBUG option
enabled) is defined. See Table 66 on page 355 for members of the
RZK_TIMERSTATISTICS_t structure.

Argument(s)

RZK_STATUS_t RZKGetTimerStatistics(

RZK_TIMERHANDLE_t *hTimer,

RZK_TIMERSTATISTICS_t *pTimerStatistics);

hTimer The timer handle for which the statistics must
be retrieved.

pTimerStatistics The pointer to the RZK_TIMERSTATISTICS_t
structure where the timer statistics is required to
be stored.
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

318
Return Value(s)

Example

The statistics of a previously-created software timer with a handle that is
stored in hTimer are retrieved. The API execution status is stored in the
status variable.

extern RZK_TIMERHANDLE_t htimer;
RZK_TIMERSTATISTICS_t timerStats;
RZK_STATUS_t status;
status = RZKGetTimerStatistics(htimer,

&timerStats);

See Also

RZKERR_SUCCESS Indicates that the API is executed
successfully.

RZKERR_INVALID_HANDLE Indicates if the thread handle passed
is invalid (NULL/deleted handle/
wrong handle).

RZKERR_INVALID_ARGUMENTS Indicates if pointer to the statistics
structure is invalid.

RZKFormatError RZKGetCurrentThread

RZKGetErrorNum RZKGetThreadStatistics

RZK_Reboot RZK_TIMERSTATISTICS_t
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

319
RZK_REBOOT

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype
void RZK_Reboot ();

Description

The RZK_Reboot() API stores the current program counter (PC) onto
the stack and completely reboots the system by placing 000000 at the PC.

Argument(s)

None.

Return Value(s)

None.

See Also

RZKFormatError RZKGetCurrentThread

RZKGetErrorNum RZKGetThreadStatistics

RZKGetTimerStatistics
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

320
RZKGETCWD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype
RZK_STATUS_t RZKGetCwd
(
 RZK_THREADHANDLE_t hThread,
 CHAR *pFsDir
)

Description

The RZKGetCwd() API returns the working directory of the thread han-
dle passed as a parameter.

Argument(s)

Return Value(s)

On successful execution, the API returns RZKERR_SUCCESS; otherwise,
it returns an error. Through pFsDir, it returns the address of the working
directory string.

See Also

hThread The thread handle from which a working directory must be
obtained.

pFsDir A pointer to the address of the working directory.

RZKFormatError RZKGetCurrentThread
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

321
RZKGetErrorNum RZKGetThreadStatistics

RZKGetTimerStatistics RZK_Reboot
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

322
RZKSETCWD

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype
RZK_STATUS_t RZKSetCwd
(
 CHAR *pFsDir
)

Description

The RZKSetCwd() API sets the working directory of the current thread.

Argument(s)

Return Value(s)

On successful execution, the API returns RZKERR_SUCCESS; otherwise,
it returns an error. Through pFsDir, it sets a working directory in the han-
dle of the current thread.

See Also

pFsDir A pointer to the working directory.

RZKFormatError RZKGetCurrentThread

RZKGetErrorNum RZKGetThreadStatistics

RZKGetTimerStatistics RZK_Reboot
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

323
RZKGETHANDLEBYINDEX

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype
RZK_STATUS_t RZKGetHandleByIndex
(
 UINT nIndex,
 RZK_THREADHANDLE_t *hThread
)

Description

The RZKGetHandleByIndex() API gets the thread handle of the speci-
fied index.

Argument(s)

Return Value(s)

On successful execution, the API returns RZKERR_SUCCESS; otherwise,
it returns an error. Through hThread, it returns the working directory in
the thread’s handle that corresponds to the index value.

See Also

nIndex The index passed.

hThread The thread handle that is returned.

RZKFormatError RZKGetCurrentThread

RZKGetErrorNum RZKGetThreadStatistics

RZKGetTimerStatistics RZK_Reboot
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

324
RZKSYSTEMTIME

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype
TIME_t RZKSystemTime ();

Description

This function returns the time elapsed from the boot time in seconds.

Argument(s)

None.

Return Value(s)

Time in terms of number of seconds elapsed after bootup.

Example
void SetupRoutine(void)
{

Note:
/*
* Direct ZTP to manipulate the WDT.
* Force reset after specified cycles.
*/
RZKSystemTime ();

}

See Also

RZKGetCurrentThread RZKGetErrorNum

RZKGetThreadStatistics RZKGetTimerStatistics
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

325
GETDATAPERSISTENCE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "DataPerStruct.h"

Prototype
INT8 GetDataPersistence(PDATA_PER_t p_data_per) ;

Description

This function returns the data present in the appropriate nonvolatile
device that is used to store values that are intended to remain persistent
despite reboots of the calling device.

Argument(s)

Return Value(s)

Returns RZKERR_SUCCESS when data is read successfully; any other val-
ues indicate an error.

See Also

p_data_per Pointer to the DATA_PER_t structure where the data that
is read from the nonvolatile memory device must be
stored.

SetDataPersistence
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

326
SETDATAPERSISTENCE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "DataPerStruct.h"

Prototype
INT8 SetDataPersistence(PDATA_PER_t p_data_per) ;

Description

This function writes data that is intended to remain persistent to a nonvol-
atile memory device, despite reboots of the calling device.

Argument(s)

Return Value(s)

Returns RZKERR_SUCCESS when data is read successfully; any other val-
ues indicate an error.

See Also

p_data_per Pointer to the DATA_PER_t structure where the data that
is read from the nonvolatile memory device must be
stored.

GetDataPersistence
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

327
RZKSETFSDATA

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

RZK_STATUS_t RZKSetFSData(UINT32 uldata);

Description

The RZKSetFSData() API sets the file system’s error in the current
thread’s thread control block (TCB).

Argument(s)

The uldata value to be written to the current thread’s thread control
block (TCB).

Return Value(s)

See Also

RZKERR_SUCCESS API returned successfully.

RZKGetFSData
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

328
RZKGETFSDATA

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

UINT32 RZKGetFSData();

Description

The RZKGetFSData() API gets the file system’s error from the current
thread’s thread control block (TCB).

Argument(s)

None.

Return Value(s)

UINT32 value is returned by the current thread’s TCB.

See Also

RZKSetFSData
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

329
RZKTHREADLOCKFORDELETE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

void RZKThreadLockForDelete();

Description

The RZKThreadLockForDelete() API locks a thread from deletion.

Argument(s)

None.

Return Value(s)

None.

See Also

RZKThreadUnLockForDelete
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

330
RZKTHREADUNLOCKFORDELETE

Include
#include "ZSysgen.h"
#include "ZTypes.h"
#include "ZThread.h"

Prototype

void RZKThreadUnLockForDelete();

Description

The RZKThreadUnLockForDelete() unlocks a thread for deletion.

Argument(s)

None.

Return Value(s)

None.

See Also

RZKThreadLockForDelete
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

331
FREEPKTBUFF

Include
#include "Zsysgen.h"
#include "Ztypes.h"
#include "ZThread.h"
#include "ZDevice.h"
#include "EtherMgr.h"

Prototype
void FreePktBuff (void *ptr);

Description

The FreePktBuff() API releases the memory for the packet, which is
allocated by the EmacRead() API.

Argument(s)

Return Value(s)

None.

See Also

*ptr Pointer to the packet to be released.

EmacOpen EmacClose

EmacWrite EmacRead
RM000619-1211 API Definitions

Zilog Real-Time Kernel
Reference Manual

332
Appendix A. RZK Data Structures

This section defines the RZK data types, structures, enumerators, con-
stants and macros and lists the RZK data types in the EMAC and RTC
data structures.

RZK Data Types

Table 47 defines the RZK data types.

Table 47. RZK Data Types

Data Type Definition

UINT32 Unsigned int 32-bit

COUNT_t Unsigned int

TICK_t Unsigned int

TIME_t Unsigned long

RZK_STATE_t Unsigned int

RZK_STATUS_t Unsigned int

RZK_NAME_t Unsigned char

UCHAR Unsigned char

RZK_THREAD_PRIORITY_t Unsigned char

RZK_OPERATIONMODE_t Unsigned int

RZK_PREEMPTION_t Unsigned int

RZK_EVENT_t Unsigned int

RZK_MASK_t Unsigned int

RZK_MESSAGE_PTR_t Unsigned char pointer

CADDR_t Unsigned char pointer

RZK_INTERRUPT_NUM_t Unsigned int
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

333
EMAC Data Structure

The following code defines how Ethernet packets are structured.

/* Ethernet Packet Structure */
typedef struct ETH_PKT {/* complete structure of
 Ethernet packet*/
 QUEUE_NODE_t link; /* pointers to link the packet

 /* to the queue */
UINT32 ethPktNextHop ; /* input() uses this */
UINT8 ifNum ; /* Interface Number */
UINT16 PPPoEField;
UINT16 ethPktOrder ; /* byte order mask (for

 /* debugging) */

RZK_HANDLE_t void pointer

RZK_THREADHANDLE_t void pointer

RZK_MESSAGEQHANDLE_t void pointer

RZK_SEMAPHOREHANDLE_t void pointer

RZK_EVENTHANDLE_t void pointer

RZK_TIMERHANDLE_t void pointer

RZK_PARTITIONHANDLE_t void pointer

RZK_REGIONHANDLE_t void pointer

RZK_PTR_t void pointer

UINTRMASK unsigned int

RZK_LENGTH_t unsigned int

FNP_THREAD_ENTRY void (*ThreadCleanupFn)(void);

FNP_TIMER_FUNCTION void (*TimerFn)(void);

RZK_FNP_ISR void (*IsrHandler)(void);

Table 47. RZK Data Types (Continued)

Data Type Definition
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

334
UINT16 ethPktLen ; /* length of the packet */
UINT8 wlanHdr[22]; /* WLAN HEADER */
ETH_HEADER_t ethPktHeader ; /* the ethernet header */
UINT8 ethPktData[ETHPKT_DLEN]; /*data in the packet */
} ETH_PKT_t;

/* ethernet header*/
typedef struct ETH_HEADER {
 ETH_ADDR ethDst; /* destination host address*/
 ETH_ADDR ethSrc; /* source host address */
 UINT16 ethType; /* Ethernet packet type */
} ETH

UART Data Structure

The following code defines the UART data structure.

typedef enum { PAREVEN, PARODD, PARNONE } serparity;

typedef struct serialparam {
 UINT32 baud;// The Baud rate value. Eg 57600,

// 9600
 UINT16 databits;// Number of data bits. Eg 7, 8
 UINT16 stopbits;// Number of stop bits. Eg 1, 2
 serparity parity;// Parity setting. One of the

// values in serparity enumeration
 UINT16 settings;// Other Control settings, e.g.,

// SERSET_RTSCTS, SERSET_SYNC
}SERIAL_PARAMS;

RTC Data Structure

The following code defines the TIME data structure.

typedef struct TIME{
 UCHAR sec ;/* Seconds */
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

335
 UCHAR minutes ;/* Minutes */
 UCHAR hrs ;/* Hours */
 UCHAR dayOfMonth ;/* Day of the month */
 UCHAR dayOfWeek ;/* Day of the week */
 UCHAR mon ;/* Month */
 UCHAR year ;/* Year */
 UCHAR cent ;/* Century */
}TIME ;

Data Persistence Data Structure

The data persistence structure provides values for predefined variables
and provides an option for storing customer-defined values into nonvola-
tile memory, where values are required to be stored despite reboots. The
DATA_PER_t.c_userdata structure member is used to store user data.
You can store data in this structure member.

typedef struct {
UINT8 c_EmacAddr[6] ;
UINT8 c_IsDhcpEnabled ;
UINT32 ul_IPAddr ;
UINT32 ul_NetMask ;
UINT32 ul_GateWay ;
UINT8 c_userdata[128] ; // User data

} DATA_PER_t, *PDATA_PER_t ;

RZK Enumerators

Table 48 lists the RZK enumerators.

Table 48. RZK Enumerators

RZK_EVENT_OPERATION_et

RZK_RECV_ATTRIB_et

RZK_ERROR_et
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

336
RZK_EVENT_OPERATION_ET

This enumerator governs event operations, as shown in the code sample
below.

typedef enum
{

EVENT_AND, /* event operation is ANDed with
/* the existing value*/

EVENT_OR /* event operation is ORed with
/* the existing value*/

} RZK_EVENT_OPERATION_et;
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

337
RZK_RECV_ATTRIB_ET

This enumerator governs receiving order attributes, as shown in the code
sample below.

typedef enum
{

RECV_ORDER_FIFO, /* receiving attribute is FIFO */
RECV_ORDER_PRIORITY, /* receiving attribute is

 /* PRIORITY */
} RZK_RECV_ATTRIB_et;
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

338
RZK_ERROR_ET

This enumerator governs RZK errors. RZK error codes are stored in
RZK_ERROR_et enumerators or in RZK_STATUS_t data type variables.
See Table 68 on page 338 for a list of error conditions.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

339
RZK Constants

Table 49 provides a quick reference to the RZK constants that are
described in this section.

Table 49. RZK Constants

RZK_OPERATIONMODE_t

RZK_STATE_t

RZK_EVENT_OPERATION_et
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

340
RZK_OPERATIONMODE_T

This data type is used for thread operation mode variables. Table 50 lists a
combination of the values stored in variables of type
RZK_OPERATIONMODE_t.

Table 50. RZK_OPERATIONMODE_t Values

Stored Variable
Hex
Values Definition

#define RZK_THREAD_ROUNDROBIN 0x01 Round robin time slice enabled to
perform round-robin scheduling.

#define RZK_THREAD_AUTOSTART 0x02 Starts thread at creation time.

#define RZK_THREAD_PREEMPTION 0x04 Current thread can be preempted.

#define RZK_THREAD_REGISTER 0x10 Runs the thread as a register
thread.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

341
RZK_STATE_T

This data type is used for object state variables. Table 51 lists a combina-
tion of values stored in variables with data type RZK_STATE_t for thread
objects.

Table 51. RZK_STATE_t Values: Thread Objects

Stored Variable
Hex
Value Definition

#define THREAD_CREATED 0x01 Thread is created.

#define THREAD_BUSY 0x02 Thread control block is busy
updating with data.

#define THREAD_RUNNING 0x08 Thread is running (ready to run).

#define THREAD_BLOCKEDSUSPEND 0x10 Thread is suspended because of
blocking on a resource or timed
suspend.

#define THREAD_TIMEDBLOCK 0x40 Thread is in timed block because
of blocking on a resource.

#define THREAD_INFINITESUSPEND 0x80 Thread is suspended infinitely.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

342
Table 52 lists the combination values stored in variables of type
RZK_STATE_t for objects other than thread objects.

Table 52. RZK_STATE_t Values: Nonthread Objects

Stored Variable
Hex
Value Definition

#define OBJECT_CREATED 0x01 Object is created; common for all
objects.

#define OBJECT_BUSY 0x02 Object control block is busy updat-
ing with data; common for all
objects.

#define OBJECT_RECV_PRIORITY 0x04 Object’s receiving method is of
PRIORITY type; not for events
and event groups.

#define OBJECT_FULL 0x08 Object is full.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

343
RZK_EVENT_OPERATION_ET

Table 53 lists the macros defined for use with Event object APIs with the
enumerator type RZK_EVENT_OPERATION_et.

Additional RZK Macros

Table 54 lists the additional macros used by RZK.

Table 53. RZK_EVENT_OPERATION_et Macros

Macro Hex Value

EVENT_AND 0x00

EVENT_OR 0x01

EVENT_XOR 0x02

EVENT_CONSUME 0x04

Table 54. Additional RZK Macros

Stored Variable Hex Value Definition

#define MAX_INFINITE_SUSPEND ((unsigned int)(–1)) Maximum time for the Infi-
nite Suspend.

#define MAX_OBJECT_NAME_LEN 8 Maximum length of an
object's name.

#define RZK_TRUE 1 Macro definition for com-
mon TRUE.

#define RZK_FALSE 0 Macro definition for com-
mon FALSE.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

344
Semaphore Macro

Table 55 lists the macro defined for semaphores.

Table 55. The RZK_PRIORITY_INHERITANCE Macro

Stored Macro Hex Value Definition

#define
RZK_PRIORITY_INHERITANCE

0x80 Priority Inheritance is supported.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

345
RZK Objects

Table 56 offers a quick reference to the RZK parameter structures that are
described in this section.

Table 56. RZK Objects Quick Reference

RZK_THREADPARAMS_t

RZK_SCHEDPARAMS_t

RZK_MESSAGEQPARAMS_t

RZK_SEMAPHOREPARAMS_t

RZK_EVENTGROUPPARAMS_t

RZK_TIMERPARAMS_t

RZK_PARTITIONPARAMS_t

RZK_REGIONPARAMS_t

RZK_THREADSTATISTICS_t

RZK_TIMERSTATISTICS_t

RZK_CLOCKPARAMS_t
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

346
RZK_THREADPARAMS_T

Table 57 lists the members of the thread parameter structure
RZK_THREADPARAMS_t.

Table 57. RZK_THREADPARAMS_t Structure Members

Data Type Member Name Description

RZK_NAME_t szName[MAX_OBJECT_NAME
_LEN]

The name of the thread; available
only if DEBUG configuration is
chosen. In NON_DEBUG configu-
ration, the contents of this mem-
ber have no meaning.

RZK_STATE_t uState Specifies the state the thread is in.
See RZK_STATE_t for contents
required to be stored in the
RZK_STATE_t data type.

UCHAR uBankSelector Specifies the count of the register
bank. Ignore for the eZ80® family
of processors.

RZK_
OPERATIONMODE_t

uOperationMode Specifies the mode of operation,
such as round-robin or priority.
See RZK_OPERATIONMODE_t
for contents required to be stored
in the RZK_OPERATIONMODE_t
data type.

TICK_t tQuantum Specifies the (round-robin) Time
slice for the thread.

RZK_THREAD_
PRIORITY_t

cPriority Specifies the thread’s priority.

RZK_EVENT_t eEventsReceived Specifies the events received by
the thread.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

347
RZK_SCHEDPARAMS_T

Table 58 lists the members of the scheduler parameter’s structure,
RZK_SCHEDPARAMS_t.

Table 58. RZK_SCHEDPARAMS_t Structure Members

Data Type Member Name Description

TICK_t tTimeSlice Specifies the default (round-robin) time slice for round-
robin scheduler.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

348
RZK_MESSAGEQPARAMS_T

Table 59 lists the members of the message queue parameter’s structure,
RZK_MESSAGEQPARAMS_t.

Table 59. RZK_MESSAGEQPARAMS_t Structure Members

Data Type Member Name Description

COUNT_t uQueueLength Length of queue

COUNT_t uMaxMessageSize Maximum size of each message

COUNT_t uNumThreads Number of threads waiting to post
and receive

COUNT_t uMessageSpaceLeft Specifies the number of free mes-
sage slots.

RZK_STATE_t uState Specifies the state of the message
queue.

RZK_MESSAGE_PTR_t pStart Pointer to Start position of Mes-
sage Queue Area
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

349
RZK_SEMAPHOREPARAMS_T

Table 60 lists the members of the semaphore parameter’s structure,
RZK_SEMAPHOREPARAMS_t.

Table 60. RZK_SEMAPHOREPARAMS_t Structure Members

Data Type Member Name Description

COUNT_t uInitialCount Specifies the initial count of the semaphore.

COUNT_t uDynamicCount Specifies the dynamic count of the counting
semaphore.

COUNT_t nNumThreads Specifies the number of threads waiting on the
semaphore.

RZK_STATE_t uState Specifies the state of the semaphore.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

350
RZK_EVENTGROUPPARAMS_T

Table 61 lists the members of the event group parameter’s structure,
RZK_EVENTGROUPPARAMS_t.

Table 61. RZK_EVENTGROUPPARAMS_t Structure Members

Data Type Member Name Description

RZK_EVENT_t eEventsReceived Specifies the events received on the
EventGroup object.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

351
RZK_TIMERPARAMS_T

Table 62 lists the members of the timer parameter’s structure,
RZK_TIMERPARAMS_t.

Table 62. RZK_TIMERPARAMS_t Structure Members

Data Type Member Name Description

TICK_t tInitialDelay Specifies the initial delay.

TICK_t tPeriod Specifies the period.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

352
RZK_PARTITIONPARAMS_T

Table 63 lists the members of the partition parameter’s structure,
RZK_PARTITIONPARAMS_t.

Table 63. RZK_PARTITIONPARAMS_t Structure Members

Data Type Member Name Description

COUNT_t uNumOfBlocks Specifies number of blocks in a partition.

COUNT_t uBlockSize Specifies size of each memory block.

COUNT_t nBlocksUsed Specifies number of memory blocks used.

RZK_STATE_t uState Specifies the state of the partition.

RZK_PTR_t pMemory Pointer to memory area for each block.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

353
RZK_REGIONPARAMS_T

Table 64 lists the members of the region parameter’s structure,
RZK_REGIONPARAMS_t.

Table 64. RZK_REGIONPARAMS_t Structure Members

Data Type
Member
Name Description

COUNT_t uUnitSize Specifies the initial count of the region.

UINT_t uRnDelete Specifies the number of threads waiting on the
region.

RZK_STATE_t uState Specifies the state of the region.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

354
RZK_THREADSTATISTICS_T

Table 65 lists the members of the thread statistics parameter’s structure,
RZK_THREADSTATISTICS_t.

Table 65. RZK_THREADSTATISTICS_t Structure Members

Data Type Member Name Description

TICK_t tTotalTimeRun Specifies the total time the thread executed.

TICK_t tActualTimeRun Specifies the time the thread executed.

COUNT_t nNumTimesBlocked Specifies number of times the thread is blocked.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

355
RZK_TIMERSTATISTICS_T

Table 66 lists the timer statistics parameter’s structure,
RZK_TIMERSTATISTICS_t.

Table 66. RZK_TIMERSTATISTICS_t Structure Members

Data Type
Member
Name Description

TICK_t tJitter Specifies the Jitter value.

TICK_t tDrift Specifies the Drift value.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

356
RZK_CLOCKPARAMS_T

Table 67 lists the members of the clock parameter’s structure,
RZK_CLOCKPARAMS_t.

Table 67. RZK_CLOCKPARAMS_t Structure Members

Data Type Member Name Description

UINT uCurr_Year Year

UINT uCurr_Month Month

UINT uCurr_Date Date

UINT uCurr_Hour Hour

UINT uCurr_Minute Minute

UINT uCurr_Seconds Seconds
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

357
Appendix B. RZK Error Conditions

This appendix contains all RZK error constants. When an error occurs,
you must pass one of these constants to the error handling function, RZK-
FormatError(), which prints the error. The error values can be stored
either in RZK_STATUS_t data type or in RZK_ERROR_et data type.

Table 68 lists the values for error conditions that can occur while using
RZK.

Table 68. Values for Error Conditions

Error Value

RZKERR_SUCCESS 0

RZKERR_INVALID_HANDLE* 1

RZKERR_INVALID_ARGUMENTS* 2

RZKERR_INVALID_OPERATION* 3

RZKERR_CB_UNAVAILABLE* 4

RZKERR_QUEUE_EMPTY 5

RZKERR_OBJECT_DELETED 6

RZKERR_TIMEOUT 7

RZKERR_INVALID_SIZE 8

RZKERR_OBJECT_IN_USE 10

RZKERR_INVALID_STACK 11

RZKERR_INVALID_PRIORITY 12

RZKERR_QUEUE_FULL 13

RZKERR_SCB_UNAVAILABLE 14

RZKERR_OUT_OF_MEMORY 15

Note: *These errors are returned only when the DebugPI or De-
bugNPI libraries are used.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

358
RZKERR_CB_BUSY 16

RZKERR_FATAL 17

RZKERR_PREEMPTION_DISABLED 18

RZKERR_INVALID_ERROR_NUMBER 19

RESERVED 20–30

RZKERR_SEM_NOTOWNED 31

RESERVED 32–39

RZKERR_USER_ERROR 251

Table 68. Values for Error Conditions (Continued)

Error Value

Note: *These errors are returned only when the DebugPI or De-
bugNPI libraries are used.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

359
Appendix C. Interrupt Handling

Each peripheral device that generates an interrupt contains an entry in the
Interrupt Vector Table. RZK provides an API to install the handler for
these interrupts; see the RZKInstallInterruptHandler API definition on
page 194.

The RZKInstallInterruptHandler() API employs the following
syntax:

RZKInstallInterruptHandler(ISR Routine, interrupt
offset in vector table)

To improve RZK’s interrupt latency, RZK v1.2.1 and later contains an
interrupt model that supersedes the model employed by RZK v1.0.0. The
application developer must follow this new model so that performance
improves and interrupt handling behaves as expected.

RZK v1.2.1 and later versions do not work with the RZK v1.0.0 interrupt
model. If you are using RZK v1.0.0 for your applications, you must
change your code so that RZK operates correctly. The instructions that fol-
low alert the reader to the newer interrupt model in greater detail. To
install the interrupt handler in versions of RZK that are subsequent to
v1.1.0, see the RZKInstallInterruptHandler() API.

RZK contains specific prologues and epilogues to manage interrupts. All
interrupt service routines must use these prologues and epilogues, as stip-
ulated in the follow instructions.

1. Create a thread for handling each of the interrupts, and pass
RZK_THREAD_PREEMPTION | RZK_THREAD_INTERRUPT as uOp-
erationMode. A thread used for interrupt handling cannot be an
autostart thread.

Note:
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

360
2. Call the RZKInstallInterruptHandler function to install user-
specific prologue code into a user-specified interrupt location.

3. As soon as the required interrupt fires, the prologue function you
installed is called.

4. The format of the prologue function must adhere to the following
sequence:

a. PUSH the relevant registers.

b. Disable the device interrupt for which this current prologue is
executing. This device interrupt remains disabled until the ISR
completes its task.

c. Call the RZKIsrProlog routine.

d. Call the RZKResumeInterruptThread API to resume the infi-
nitely-suspended interrupt thread that you created previously.

e. If the interrupt thread’s priority is higher than the current thread’s
priority, call the RZKIsrEpilog function to change the context
to that of an interrupt thread . Otherwise, control is returned to the
prologue.

f. POP the relevant registers and return from the prologue routine.

5. The interrupt thread’s entry point function that you created must
adhere to the following format:

Interrupt Thread entry function ()
 {

while (1)
{
ISR (); // The function that gets executed

// for every interrupt
// Call RZKDisableInterrupts API of RZK.
// Enable device-specific interrupt here. This
// was disabled when the device-specific
// interrupt was fired.
// Call RZKSuspendInterruptThread () API here.
// Details about this API are described in a
RM000619-1211

// separate function under Thread APIs.
Call RZKEnableInterrupts API of RZK.
}

 }

6. Application program users can utilize the RZKDisablePreemption
and RZKRestorePreemption APIs to minimize system latency and
to protect certain blocks of code. Usage of these two APIs is preferred
over using the RZKDisableInterrupts and RZKEnableInter-
rupts APIs due to the reduced latency they offer.

7. The stack size of RZK’s timer interrupt can be configured using the
RZK_Conf.c file using the macro RZK_SYSTIMERSTACK_SIZEH.

8. A RETI instruction is executed when a call to the RZKIsrEpilog
API is made. It is not necessary to insert the RETI instruction into the
ISR.

9. The RZKIsrEpilog API must be the final API called in an ISR, just
prior to restoring the registers.

10. Ensure that interrupts remain disabled when the RZKIsrProlog or
RZKIsrEpilog calls are made. Additionally, ensure that interrupts
remain disabled while saving and restoring registers.

11. The stack size of the idle thread is 256 bytes by default. The idle
thread stack can become corrupted when the idle thread is running,
and a large number of variables are created in the ISRs of the inter-
rupts that occur – or even when many interrupts occur together
(nested interrupts). Therefore, sufficient idle thread stack space must
be allocated. Idle thread stack size can be configured in RZK by
changing the value of the RZK_STACK_SIZEH macro in the
RZK_Conf.c file.

12. Use the APIs provided by RZK, namely RZKEnableInterrupts()
and RZKDisableInterrupts(), to enable and disable interrupts in
the C routines. EI and DI instructions can be used directly in assem-
bly routines; however, ensure that every DI is provided with a match-
ing EI.

Zilog Real-Time Kernel
Reference Manual

362
13. Ensure that the timer register value does not exceed 16 bits.

14. Interrupts must be enabled (using EI) before calling the interrupt han-
dler to enable nested interrupts.

15. By default, TIMER0 is used by RZK to handle system interrupts.
This timer can be changed by the application developer by setting
either 1 or 2 or 3 in the HWTIMER_TO_USE macro located in the
RZK_Conf.c file.
RM000619-1211

Zilog Real-Time Kernel
Reference Manual

RM000619-1211 Customer Support

363

Customer Support

To share comments, get your technical questions answered, or report
issues you may be experiencing with our products, please visit Zilog’s
Technical Support page at http://support.zilog.com.

To learn more about this product, find additional documentation, or to dis-
cover other facets about Zilog product offerings, please visit the Zilog
Knowledge Base at http://zilog.com/kb or consider participating in the
Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine
whether a later edition exists, please visit the Zilog website at http://
www.zilog.com.

http://support.zilog.com
http://zilog.com/kb
http://zilog.com/forum
http://www.zilog.com
http://www.zilog.com

	Zilog Real-Time Kernel Reference Manual
	Revision History
	Table of Contents
	Introduction
	About This Manual
	Intended Audience
	Manual Organization
	Related Documents
	Manual Conventions
	Safeguards

	Zilog Real-Time Kernel
	Real-Time Response
	Why RZK?
	Application Development
	Application Initialization in the ZDS II Environment

	RZK Architecture
	Resource Queue Manager
	Scheduler
	Time Queue Manager
	Threads
	Static Creation
	Thread-Switching Time
	Preemption
	Yield
	Time Slicing
	Autostart

	Timers
	Interprocess Communication Mechanisms
	Message Queues
	Semaphores
	Event Groups

	Memory Management
	Interrupts
	Application Interrupt Lockout

	Device Driver Framework
	Device Driver Table
	How to Write a Device Driver Using DDF
	Sample Device Drivers That Use DDF

	RZK APIs
	RZK API Summary
	Kernel Startup
	Thread Control
	Thread Communication
	Thread Synchronization
	Software Timer
	Memory Management
	Interrupt Management
	Device Driver Framework
	Miscellaneous APIs

	Board Support Package APIs
	Ethernet Media Access Control APIs
	Wireless Local Area Network APIs
	Universal Asynchronous Receiver/Transmitter APIs
	Real-Time Clock APIs
	Serial Peripheral Interface APIs
	Inter-Integrated Circuit APIs
	Universal Serial Bus Device APIs
	Watchdog Timer APIs
	Flash Device Driver APIs

	RZK APIs and Context Switching
	API Definitions
	Standard Data Types
	Include Files
	API Definition Format
	RZK API Quick Reference
	Kernel Start-Up APIs
	Thread Control APIs
	Scheduler APIs
	Message Queue APIs
	Semaphore APIs
	Event Group APIs
	Software Timer APIs
	Clock APIs
	Partition APIs
	Region APIs
	Interrupt APIs
	Device Driver Framework APIs
	Ethernet Media Access Control APIs
	Wireless Local Area Network APIs
	Universal Asynchronous Receiver/Transmitter APIs
	Real-Time Clock APIs
	Serial Peripheral Interface APIs
	Inter-Integrated Circuit APIs
	Universal Serial Bus APIs
	Watchdog Timer APIs
	Flash Device Driver APIs
	Miscellaneous APIs

	Appendix A. RZK Data Structures
	RZK Data Types
	EMAC Data Structure
	UART Data Structure
	RTC Data Structure
	Data Persistence Data Structure
	RZK Enumerators
	RZK Constants
	Additional RZK Macros
	Semaphore Macro

	RZK Objects

	Appendix B. RZK Error Conditions
	Appendix C. Interrupt Handling
	Customer Support

