
Copyright ©2010 by Zilog®, Inc. All rights reserved.
www.zilog.com

Application Note

AJAX Web Page Control and
Monitoring via the Internet Using the
Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810

Abstract
Today’s web users expect interactive and rich content with quick response time in their web experiences. As
web technologies have evolved to deliver rich, interactive experiences, the client has increased its processing
power and capabilities, allowing web servers to become more dynamic and responsive.

This application note describes how easy it is to implement the eZ80AcclaimPlus!TM embedded web server to
deliver web pages using asynchronous JavaScript and XML technologies (AJAX) for server communications.

The Zilog ZTP and RTZ stacks implement most of the low-level requirements for the web server so that the
focus remains on the response to AJAX requests and monitoring and controlling the hardware. The web pages
use JavaScript and cascading style sheets (CSSs) to provide dynamic web pages at the client that allow
monitoring and control of the eZ80F91 development board in the background.

Note: The source code (AN30501-SC01) associated with this application note has been tested with ZDS

II—eZ80Acclaim! 5.1.1.

Features
The following are the main features of the eZ80F91:

 Acts as a dynamic web server using ZTP and RZK on the eZ80AcclaimPlus!TM microprocessor

 Implements AJAX technologies within the web server

 Updates individual locations without reloading entire page

 Monitors and controls development board hardware via AJAX requests

Discussion
The purpose of a web server is to deliver a response to a client’s request (client-server model). Typically, with
browsers, HTTP (Hypertext Transfer Protocol) is the backbone communication protocol used. The advantage
of using HTTP is the ability to deliver many different technologies using one communication protocol. The
traditional client-server model is shown in the following figure. In this application note, the term server refers
to the eZ80F91 with the TCP/IP stack.

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 2 of 16

Web browsers have been providing increasingly richer user experiences. To accomplish this, both the browser
and web server technologies have improved. The old HTML static pages have been replaced with graphical
elements, extensive client-side scripting, dynamic client-side formatting, and so on. The web servers have
improved their abilities with server-side scripting, dynamic processing, and delivering audio and video content
in ways to keep users interested. The more demand on content from the user, the more dynamic the web server
needs to be. The clients have become extremely powerful as well. This allows extensive client-side processing,
offloading significant power from the server. One “technology” that has helped propel these capabilities is
AJAX. Although AJAX is a combination of technologies, this mixture can be a very powerful tool.

AJAX (Asynchronous JavaScript and XML) is a group of technologies that improves the exchange of data
between the web client and the web server. In a typical web application, every time information needs to be
sent to the web server (such as when a date changes or a user submits a filled-out form), the information is
sent, and the entire page is redrawn. This duplicate processing slows down the web pages. If the content of the
pages expires quickly (as is typical in a interactive web application), all the supporting files—such as the
images, libraries, style sheets, and so on—also have to be reloaded. AJAX gives the web application designer
the ability to only update sections or parts of the page without having to reload everything. This is
accomplished by a background data transfer when a web page changes. The result is fewer data transfers
(because only the data that has changed is transferred), and the data transfers are quicker. The user gains a
richer web experience. AJAX has been implemented in most Internet browsers through the
XMLHttpRequest object. The eZ80F91 web server passes the dynamic web requests from the web client to
the application for processing and client responses. It is this ability that opens the opportunity to exploit AJAX
technologies.

With AJAX, the eZ890F91 web server can uses the dynamic page capabilities of the ZTP website to send
XML documents reporting the status of the server hardware for each GET request. XML documents require
few resources to display, which allows the server to concentrate on the hardware portion of the unit and
servicing other web requests. The XML document, however, has all the information necessary for a client to
present the data to the user in a rich environment.

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 3 of 16

The web server relies heavily on the ZTP and RZK libraries that are included with Zilog Developer Studio II
(ZDS II—eZ80Acclaim! in this case). ZTP integrates a rich set of networking services with an efficient, real-
time operating system RZK (RTOS). The operating system is a compact, preemptive, multitasking,
multithreaded kernel with interprocess communications (IPC) support and soft real-time attributes.

The ZTP software suite provides the following features:

 Industry standard, RFC-compliant protocols
 Core protocols: IPv4, TCP, UDP, DHCP/BOOTP, ICMP, IGMP, ARP, and RARP
 Additional protocols: HTTP, TFTP, SNMP, TELNET, SMTP, DNS, TIMEP, SNTP, PPP, and HDLC
 Optional protocols: SSL server, SNMP V3, and HTTPS
 Interconnects: UART(x2), I2C, and SPI
 FTP server and client services using an embedded Flash file system supporting multiple disk volumes
 Local or remote runtime debugging OS command shell
 Dynamic memory allocation support

Hardware Architecture
The hardware used for this application note is the eZ80F91 Series Development Kit (eZ80F910300ZCOG).
The hardware includes a 5x7 LED matrix, which is monitored and controlled.

The eZ80AcclaimPlus!TM integrates a high-performance Flash core with a fast 10/100 BaseT EMAC. The
power-efficient, optimized pipeline architecture features a high-performance core that operates up to a speed of
50 MHz and offers on-chip Flash memory, SRAM, an Ethernet MAC (EMAC), and rich peripherals. The 24-
bit linear addressing capability helps simplify code development and enables the code to execute efficiently
with the TCP/IP/RZK software stack.

eZ80AcclaimPlus!TM Key Feature Summary

 50-MHz high-performance eZ80® CPU core
 On-chip 10/100BaseT Ethernet MAC
 256-KB Flash program memory with an extra 512 bytes of device configuration Flash
 16-KB total on-chip high-speed SRAM
 24-bit linear addressing
 Low-power PLL and 32-KHz on-chip oscillator
 Interfaces supported: 32-bit GPIO, UARTs (x2), I2C, SPI, and IrDA-compatible Infrared Endec
 Power management: HALT/SLEEP modes with selective peripheral power-down controls

Software Implementation
The software implementation is described in two sections:

 The server side includes everything used to produce the web server that will respond to the client’s
requests.

 The client’s script implementation provides the ability to dynamically monitor and control the remote
hardware.

Server Side
With the ZTP website stack, the server-side implementation is quite simplistic. Most of the hard details of
providing a web server are already built, so the developer can concentrate on your specific needs.

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 4 of 16

To set up the website using the ZTP and RZK stacks requires only a few steps:

1. Adjust the configuration file.

The ZTP and RZK libraries have a Conf folder that contains different configuration files that can be
modified for the particular implementation. For this application, copies of the files that will be
modified are saved into the local directory, so the originals remain unchanged. The other files have
been left in their original directory and are just included in the project.

Unmodified Configuration Files
Data_Per_Conf.c Controls configuration for data persistence
Emac_conf.c Defines the EMAC driver and settings
eZ80eval.c Provides generic routines for putch/getch on console
ez80Hw_Conf.c This has the initialization of the hardware for RZK.
F91PhyInit.c Physical implementation for the F91 Ethernet port (hardware specific)
Get_heap.asm Default heap handling procedures
Rtc_conf.c Configuration for the Real Time Clock
Shell_conf.c Configuration for the Shell application. You can remove, add, and

change the shell functionality through this file.
Tty_conf.c Configuration for the TTY devices
Uart_conf.c Configuration for the UART devices
ZTPuserDetails.c User details for login details

Modified Configuration Files
ZTP_Config.c This contains the DHCP, IP, and other interface settings and must be

modified for local networks.
RZK_conf.c Configuration file for RZK and subcomponents

2. Add the initialization routines.

Main.c contains only the main() function that C programmers will recognize. The function is used
to set up the RZK functionality, initialize any hardware and devices, create the application entry
thread, and then start the RZK scheduler to run the threads.

The meat of the application setup is in the appentry.c file. The ZTPAppEntry() function is a
predefined name for a user function that is called from RTZ’s CreateZTPAppThread() call. This
function is designed to initialize all services that are threaded, such as timers, application threads, and
network stacks. The ZTPAppEntry() function initializes the network stack by calling the
networkInit() function. The networkInit() function handles the initialization of network
interface tables and DHCP and then starts the web server by calling http_init(). Any other
initializations—such as console devices, shell applications, and so on—are completed here as well.

After the initializations are all completed, the application exits. When the application exits, the control
returns to main(), which calls the RZK_KernelStart() function. This function starts the
scheduling and handles all the threads. There is no return from this function because the application
itself is strictly event driven, so no loop is needed. The kernel takes care of handling the events and
running the threads as necessary.

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 5 of 16

3. Define the website.

The website definition is nothing more than a list of web page names that the server will send to the
client in response to the GET request. The information is in the website.c file.

There are two sections of the website information:

 The mime type table is used when the web server is serving pages from a file system.
 The web page table contains all the web pages that a client could request. The format is type,

request address, mime, reference.

The web page type can either be static or dynamic:

 If it is static, the mime type is put in the header, and the reference page is sent in response to
the GET request with the indicated address.

 The dynamic page type is where the extensibility exists. On response to a GET request for that
address, the mime type is filled in the header, and the request structure is passed to the
function reference. Nothing is sent to the client; the function that is being called is responsible
for that. This allows one to craft the response in any way that makes sense (as long as it
follows the HTTP protocol rules).

That is all there is to setting up a web server with the ZTP/RZK stack.

Handling the Dynamic Page

AJAX offers the ability of offloading the real work for display to the user with two dynamic page requests:
 update.ajax

The update.ajax request calls the updateRequest() function. This function prepares an XML
document defining the server, server type, and the status of all of the hardware. The function then
sends the XML document out to the client.

 command.ajax
The command.ajax request calls the commandRequest() function. This function expects
parameters to be included. Clients send parameters by appending ? to the name and using
key=value strings, separated by the & sign. A typical request would look like the following:

command.ajax?command=2&val=0

The commandRequest() function parses the command and value and then sets the hardware
accordingly. It builds an XML page with the server information and the new status of the item request
and returns that data to the client.

Because XML pages are just text files that are made up of tags – values – end tags, very little
processing is necessary. The sprintf functions (located in the ajaxrequest.c file) do most of
the work.

The extensions used here are just an example; it doesn’t matter which extensions are used as long as the
extensions match.

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 6 of 16

Specific Implementation Details

Main.c
The Main() function calls the RZK_KernelInit() function to initialize the kernel. Then, the function
calls other functions to initialize all the hardware being used:

1. The Serial 0 device (RTZ library call) is initialized.
2. The TTY device (RTZ library call) is initialized.
3. The hardware (discussed in the hdwareif.c section on page 6) is initialized.
4. The EMAC device (RTZ library call).

Then, the function calls the CreateZTPAppThread() function to initialize the application stacks (see step
2 on page 4). Finally, the function calls the RZK_KernelStart() function to start the scheduling and
thread processing.

AppEntry.c
This file handles the application entry initialization functions.

The ZTPAppEntry() function handles the initialization of stacks, threads, and timers. First, the function
calls the networkInit() function to initialize the network stacks. Then, the function calls the
InitMatrixTimer() function (discussed in the hdwareif.c section on page 6) to start the timer for the
LED Matrix output. Then, the function opens the serial port and assigns the TTY device. The
shell_init() function (RTZ library call) is called to start the shell application on the TTY device. At this
point, everything has been initialized, so the function exits with an “OK” return code.

The networkInit() function initializes the network stacks. First, the function initializes the network
interface tables through the nifDriverInit() function (RTZ library call). Then, if DHCP is enabled, the
function calls the DHCP_Init() function (RTZ library call) to initialize DHCP and get an address. The
SpiderZInit() function is called to keep track of IP addresses; then the nifDisplay() function (RTZ
library call) is called to display the IP address on the console. Now that the network stack is initialized, the
function can call the http_init() function (RTZ library call) function. This function initializes the web
server stack and starts the web server with the following information:

 http_defmethods
These are default methods to be called on the receipt of requests (referenced from http.h).

 httpdefheaders
These are the default headers (referenced from http.h).

 website
This is the definition of the website in a variable structure defined in website.c.

 port number to listen on

The OpenSerialPort() function opens the serial port and assigns it to the TTY device. The device
capabilities structure is allocated, and the handle for the device is the CONSOLE (defined in the
RZK_Conf.c file). The device is then opened through the call to RZKDevOpen() with the resulting device
structure stored in the TTYDevID variable.

Hdwareif.c
This file has the development-board-specific hardware functions. By keeping the hardware separate, it will be

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 7 of 16

easier to reuse the rest of the files with other hardware.

The InitHardware() function initializes all the hardware. Because the relay and LCD text are emulated,
variables are set up here to hold them. The LED matrix is initialized with all LEDs off. Any hardware
initialization—such as setting pins and functions—are added here.

The Set_LED() function sets the LED array value.

The Set_Relay() function sets the relay variable. Because the relay is emulated, there is no hardware to
set. Instead a message is displayed on the console to reflect that the state of the relay has changed.

The LCDPrintString() function “prints” a string on the LCD. Because the printing is emulated, the
function stores the string and displays the string on the console.

LED Matrix Functionality
On the development board, there is a matrix of 35 LEDs arranged in a 5x7 format. The rows (anodes) and
columns (cathodes) are controlled by two D-type flip-flops. Because all of the columns are wired together,
only one “column” can be active at time. By turning on each row quickly, it looks like all of the rows are on.

The row flip-flop address is at 0x800000, and the column flip-flop is at 0x800001. By setting these to the
masked values, the correct LEDs are lit in the specific column. There are seven rows of LEDs in each column.
The bit representation of what is to be on and off is stored in the Led[column] variable. A timer is used to
set both the column and the row values on the flip-flops as fast as possible. The tick value in the
RZK_conf.c file is adjusted to 5 ms. This prevents the flicker you get from the default 10-ms tick. If the
tick is too fast, there can be stability issues because of more thread switching. If the tick is too slow, the LEDs
on the matrix flicker.

The MatrixTimer() function sets the flip-flops. Each time the function is called, the CurCol variable is
incremented so that the function will rotate through the five columns. The function sets the bit to the correct
position for the current column and then inverts it. The function sets the MATRIX_ROW value to the LED array
variable specified by CurCol (the order is in reverse order, so CurCol needs to be subtracted from 4 to keep
it aligned). Then, the function sets the MATRIX_COL port. CurCol is incremented and checked to see if the
value has exceeded the maximum count. If it has, CurCol is reset to 0.

The InitMatrixTimer() function sets up the timer through the RZKCreateTimer() function. This
function requires the type of timer (“RZKappTimer”), the function to call when the timer is reached, the initial
delay in ticks, and the timeout period in ticks (how long the timer to be set for). Then, the function initializes
CurCol to 0 and enables the timer.

Website.c
This contains all the variables for the website. The pages located in the website folder of the project will be
compiled to a variable with the format of filename_ext. This format allows references to be created to
external variable that will be used in the website. The website is an array of pages with the type, request name,
content type, and data to send. If the page is the HTTP_PAGE_STATIC type, the referenced variables are sent
when the web server receives a request for that page. If the page type is HTTP_PAGE_DYNAMIC, the page
calls either the updateRequest() or commandRequest() function to send the data. These functions are
located in the ajaxrequest.c file.

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 8 of 16

Ajaxrequest.c
The updateRequest() function is called when a browser has requested the /update.ajax page from
the server. The function allocates space for the response. This is a multithreaded application, allowing multiple
requests at any time, so, to save the stack space, space is allocated from the heap. The XML document is then
built for the response:

1. Header
2. Address
3. Server type
4. Variables and tags
5. Footer

The content header length is set to the size of the XML document that was built (in bufcount); the reply is sent
with the HTTP200 OK response and the data. The WriteFinalOut function is used because the
__http_write() is a “defined” function with a return if there is an error. After the message is sent, the
function deletes the temporary files reports the results.

The commandRequest() function is called when a browser has requested the /command.ajax page
from the server. The syntax of the command is command=x&val=x, and the browser needs to parse it. The
http_find_argument() function identifies what is on the right side of the equals sign. The helper
function atoi() returns the integer for the command. The same procedure is used to get the val. From here
is it just a matter of using a switch statement to figure out which command and set the appropriate hardware
and create an XML fragment. At this point, XML response can be built. Space is allocated for the response and
then the XML document is built for the response:

1. Header
2. Address
3. Server type
4. XML fragment that was created when the hardware was set
5. Footer
The content header length is set to the size of the XML document built (in bufcount). The reply is sent
with the HTTP200 OK response and the data. The WriteFinalOut function is used because the
__http_write() is a “defined” function with a return if there is an error. After the return occurs, the
function deletes the temporary files reports the results.

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 9 of 16

main.c

RZK Libraries

appentry.c

hdwareif.c ajaxrequest

website.c

ZTP Libraries

RZK Configuration Files:

DataPer_conf.c
emac_conf.c
ez80eval.c

ez80HW_conf
F91PhyInit.c

get_heap.asm
rtc_conf.c

RZK_conf.c
shell_conf_mini.c

tty_conf.c
uart_conf.c

ZTP Configuration Files:

ZTPConfig.c
ZTPuserDetails.c

Functions Calling Functions

Definitions only

Arrow Legend

Figure 1. Server-Side Block Diagram

Client Side
As you can see, there is not much work for the web server to provide the information. With AJAX, that boring
XML document is transformed from a bunch of strings to a graphical presentation and dynamic interactions.
The majority of the work is on the client-side pages. These consist of the main.htm page, the
ajaxappnote.css file, and the ajaxappnote.js file.

The dynamic requests are handled by a functionality built into most web browser called the

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 10 of 16

XMLHttpRequest object. To send a request, without reloading the entire page, you create a new
XMLHttpResponse() object.
If you do not want to wait for a reply, set a function in the onrreadystatechange property of the object.
Call the open method with the command (typically GET or POST), with the page to access, and a Boolean
value that specifies if you are in a hurry or not. If you specify true, it will return immediately and call the
function in the onreadystatechange property when it receives a response. If you specify false, it will
block until a response is received then continue processing. The readyState property defines the state of
the request. If the readyState == 4, it has received a response and the properties: status; responseXML;
responseText are valid.

Note: If the status does not equal 200, the text can contain the HTML error page from the server.

The first section of ajaxappnote.js has the implementation for the request process. Because there can be
multiple servers and multiple updates, pending requests are held in an array. When the requests are finished,
they are removed from the array.

The main.htm file is a standard HTML document:

 The <HEAD> has some basic JavaScript functions.
 The <BODY> is what is actually displayed to the client.

Within the body, there are numerous <div> sections. These define the layout of how the page is actually
presented to the user. Assigning IDs to the different divisions, tables, and items allows dynamic control of how
the page looks at any time. Each of these elements can also be assigned event handlers to be executed on an
event. For example, when a user clicks on an image, the event is onclick, and the handler is defined as a
function. These, too, can be dynamically assigned and removed.

An HTML document follows what is called the Document Object Model (DOM). The DOM is what gives the
ability to modify elements. The document is defined by nodes and childNodes, forming a tree type document.
You can “walk the tree” by getting the nodes, nodelists, childNodes, and so on, or you can get the element by
searching for its ID. You can explore the capabilities of the DOM by reading are references listed in the
“References” section on page 14. Most current browsers support the DOM handling. You will see many DOM
requests in the JavaScript source. Anything that starts with “document” is referencing the DOM.

The ajaxappnote.js file contains the dynamic page handling functions in JavaScript. JavaScript is an
object-oriented procedure language that allows programmers to create new objects with specific functions and
properties. Because these are objects, there can be multiple instances at any time. This application uses two
types of objects:

 Navigation Object
In this implementation, there is only one Navigation Object; its role is to control the “tabs” at the top
of the page that specifies the servers that the page is monitoring.

 Server Objects
The Server Objects are the servers that are being monitored.

Server Object

There are two different types of server objects:
 Generic (undefined type)
 F91DEVPlatform

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 11 of 16

Each of these has exactly the same prototype definitions, so that they can be used interchangeably. To add
more server types, you just copy the prototype definitions, attach a new name, and modify the specifics. This
allows you to monitor and control different types of servers. When a page is first loaded, it only has the IP
address of the server delivering the page, but it has no idea of the type to display (this is information in the
XML document from both the command and update requests), so it creates a generic server. The display
functionality requests the server object to run the display. This allows the generic server to display its page
(which is nothing), or the F91DEVPlatform to display its specific page. This means that it is the same display
call for any type of page. All processing of the XML document is also done by the server. When the generic
server gets the XML document from the request, it can get the server type and turn itself into the correct type
of server object and display the information appropriately.

The Navigation Object (NavObject) controls the data area and tabs. When a user adds a server, a new page is
created through the NavObject. When a user clicks on a tab to activate it, the NavObj is responsible for
showing the correct data in the data window, making the selected tab the foreground tab, and setting the other
tab as a background tab. It is also responsible to update the server status on the left status area.

The JavaScript section of Main.htm contains basic functionality needed for the page. This includes an
Init_Page() function that centers the page, creates a NavObj, creates a generic server for the current page,
and sends an UpdateRequest for the server. At this point, the page just handles events.

Cascading Style Sheets (CSSs)

The ajaxappnote.css file contains the specific “class” styles that allow you to dynamically change the
look by modifying or changing the style “class”. Example: The style class .ledon specifies a background
image of ledon.png. The .ledoff class specifies a background image of ledoff.png. To reflect the
change of turning on a LED, there is an onclick event handler assigned to the table cell that has a style class
name associated to it of ledon. When the onclick event is triggered, the event handler requests the
command (through the XMLHttpRequest object) and changes the class associated with that cell from
ledoff to ledon. The item is updated and the background image ledon.png is now displayed. You can
also assign style items dynamically by accessing the DOM element’s style property and setting its value. This
capability allows a boring XML file to be displayed in a graphical way.

Putting it All Together
Now that you have an understanding of the basic parts, here is the process of how the page works:

1. The browser sends a request to the web server for “\”.
2. The web server sends main.htm.
3. The browser parses the file and requests the ajaxappnote.js file and the images.
4. The browser finishes loading and calls the Init_Page() function. The function initializes

everything and issues an update request
5. The web server passes the update request to the updateRequest() function that returns an XML

document that describes the current state of the hardware.
6. The browser passes this XML document to the server object, which parses and draws the data area by

using DOM commands and style classes to present a graphic view of the status.

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 12 of 16

Setup
Use the following procedure to install the source code:

1. Launch the ZDS II program.
2. Select Tools>Options.
3. Click on the File Types.
4. Verify that the .js and .css files are associated with the web files project folder. If they are not

included, click on the Associated File Types text box and add the following at the end:
.js;*.css

5. Extract the zipped source code file into the following directory:
Program Files\Zilog\ZDSII_eZ80Acclaim!_x.x.x\ZTP\ZTPx.x.x_lib\ZTP\SamplePrograms

6. Open the project F91_DevPlatform.zdsproj file.
7. If you are not using DHCP, adjust the ZTPConfig.c file to reflect the Default IP address and

Default Gateway; set b_use_dhcp to FALSE.
8. Rebuild all. There should be no warnings or errors. If there are, verify the following:

 Verify that the files were extracted to the ZTP\ZTPxxx_lib\ZTP\SamplePrograms
directory.

 Verify that the file types for web files include .css and .js files.

Procedure
1. Connect a network cable
2. Connect a serial cable between the development platform and the com port on your PC.
3. Launch HyperTerminal and connect using 57600 Baud, 8 databits, no parity, 1 stop bits, and no flow

control.
4. With the USB Smart Cable connected to the development platform, select Debug>Go. This will

download the code and start the execution. The HyperTerminal shows the initialization of the network
and displays the network address.

5. In a web browser connected to the same network that the server is attached to, type the following in
the address box:
http://xxx.xxx.xxx.xxx/
(where the xxx.xxx.xxx.xxx is the IP address specified on the HyperTerminal output). The
application is displayed on the browser as shown in the following figure.

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 13 of 16

6. Click on any of the 35 LEDs. The corresponding LEDs light up on the development board.
7. Make an H with the LEDs. Click on all the LEDS down one side, then the other, and a single line

between them. An “H” is displayed on the LCD Matrix.
8. Click on the relay of the output. The HyperTerminal window displays the relay status.
9. Close the browser.
10. Launch a new instance of the browser.
11. Direct the address bar to the same address as before.
12. When the page loads, an “H” displays on the browser page, and the relay is set to its previous setting.
13. If you have another browser on a different computer, try it. You can access it with multiple machines.

As you change something on one machine by clicking on the Update button, it will update that status
of the current machine. If you have multiple units running the server software, you can type in the
address to add a server. This will create a security violation, which you can allow in your browser
preferences.

Summary
The eZ80AcclaimPlus!TM microcontroller can be used for building rich Internet-enabled products that are
controlled over an Internet or intranet using web pages. This application note demonstrates how AJAX and

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 14 of 16

JavaScript can be used to develop a modern web page to control or monitor devices over the Internet. To
exploit XML technologies and rich user experiences, explore the power of XML with transforms, schemas,
and so on. Although this application is a simplistic implementation, the building blocks with AJAX and the
eZ80AcclaimPlus!TM microcontroller allow you to develop rich user experiences that are limited only by your
imagination!

Zilog has a technical forum on the Zilog.com website. This is an excellent place to suggest features or
capabilities you would like to see in future application notes.

References
 RM0041 Zilog TCPIP Software Suite Programmer’s Guide Reference Manual
 RM0040 Zilog TCPIP API Reference Manual
 RM0006 Zilog Real-Time Kernel Reference Manual
 UM0075 Zilog Real-Time Kernel Users Manual
 UM0144 Zilog Developer Studio II
 PS0272 eZ80F91 Ethernet Module Product Specification
 PS0192 eZ80F91 MCU Product Specification

Web Development References
 http://www.w3schools.com/
 http://www.tizag.com/
 http://www.microsoft.com/express/Web/
 http://www.w3.org/DOM/
 HTML 4 for the World Wide Web, (Forth or Fifth) edition by Elizabeth Castro
 JavaScript: The Missing Manual by David Sawyer McFarland
 Ajax in 10 Minutes by Phil Ballard
 JavaScript & AJAX for Dummies by Andy Harris
 XML Developer’s Guide by Fabio Arciniegas

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 15 of 16

Appendix A—Flowcharts

The following is a flowchart of the server functions in the AJAX web server application.

Start

RZK_KernelInit()
Init_Serial0_Device()

Init_TTY_Device()
InitHardware()

Init_EMAC_Devic()
CreateZTPAppThread()

nifDriverInit()

Is DHCP
enabled?

DHCP_Init()

SpiderZInit()
nifDisplay()
http_init()

InitMatrixTimer()
RZKDevOpen(TTYM)

shell_init()

RZK_KernelStart()

Y

N

GET
/update.ajax

request

GET
/command.ajax

request

Parse Command parameter
Parse Value parameter

Set Hardware
Build XML Packet

Add tag with hardware status
Replay with HTTP200 OK

Send XML Document Back

Build XML Packet
Add tags with hardware state

Reply with HTTP200 OK
Send XML document back

Matrix Timer
triggered

prepare column value
from CurCol value

Output Row
value from
Led Array

Output
column
value

Increment CurCol

Is CurCol >
max?

CurCol = 0

Done

 AJAX Web Page Control and Monitoring via the Internet Using the Zilog® eZ80AcclaimPlus!TM
Embedded Web Server

AN030501-0810 Page 16 of 16

Warning: DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE
PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for use
provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical
component is any component in a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2010 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN
ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR
OTHERWISE. The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering.

eZ80AcclaimPlus! is a trademark and eZ80 and eZ80Acclaim! are registered trademarks of Zilog, Inc. All
other product or service names are the property of their respective owners.

