
Product Update
Errata for eZ80Acclaim!®
eZ80F91 SiliconUP006109-0910
eZ80F91 MCU with Part Numbers and Date Codes 0317 and Later

The errata listed in Table 1 highlights the issues and workarounds (if available) for Zilog’s eZ80F91
product with package part numbers eZ80F91AZ050SG, eZ80F91AZ050EG, eZ80F91NA050SG, and
eZ80F91NA050EG illustrating date codes of 0317 and later, indicating assembly no earlier than the 17th
week of the year 2003. Data in this document is Preliminary Only.

Table 1. Errata to the eZ80F91 Device with Date Codes 0317 and Later

No Issue Detailed Description

1 The real time clock
(RTC) consumes
excess current when
the eZ80F91 device is
not in SLEEP mode.

When the eZ80F91 device is not in SLEEP mode, the system clock drives
the RTC control and data registers. As a result, excess current is
consumed through the RTC_VDD pin, which supplies power to the portion
of the clock tree that drives the RTC registers. This current consumption
is a function of the operating frequency. The faster the frequency, the
more power is consumed.

Workaround

To prevent the excess current consumption, design with a battery-
charging circuit for the RTC_VDD pin. As a result, the charge will remain
on the RTC battery while power is supplied to the chip.

2 WP pin functionality. Assertion of the WP pin protects the Flash Memory boot block from
memory Writes. It also protects all blocks and the information page from
Page Erases, Mass Erases, and I/O Writes.

Workarounds

The following two options are available:

(1) Do not assert the WP pin in your design.
(2) De-assert the WP pin when you are executing page erases and I/O

Writes to blocks other than Block 0 or executing a page erase or I/O
Write of the Information Page.Then re-assert the pin when you are
finished, for example, jumper block header.

3 When the RTC
oscillator is disabled,
RTC_XIN pin leakage
can exceed the 10 µA
specification.

The RTC_XIN pin can leak to a potential higher than the approximate
1.2 V due to the internal 10 M resistor. This can cause the input

leakage current to exceed the specification.

Workarounds

To prevent this excess leakage, you can perform one of the following two
actions, first being the recommended fix:

(1) Leave the RTC_XIN pin floating, if the oscillator is disabled.
(2) Ground the RTC_XIN pin, if the oscillator is disabled and not used at

all.

4 Superseded by errata
number 7.

This issue related to RTC time loss was determined to be the same as
errata No. 7. To avoid potential confusion, it is no longer detailed here.
Copyright ©2010 by ZiLOG, Inc. All rights reserved.
www.zilog.com

http://www.zilog.com

Product Update: Errata for eZ80Acclaim!® eZ80F91 Silicon
5 The Test Data Input
(TDI) pin does not
meet the 1149.1
boundary scan
specification.

TDI is an I/O pin without a pull-up resistor.
NORMAL mode, following RESET,
configures TDI as an input. An off-chip pull-
up resistor is recommended.

Workaround

Add a 10 K pull-up resistor to the TDI pin.

6 GPIO edge trigger
interrupt mapping
error.

For edge triggered interrupts (Mode 6 and Mode 9), erroneous logic
dependencies for the interrupt clearing logic exist on all port pins within
each of the specific ports. To achieve proper interrupt clearing behavior
for a particular port pin its "mirror" pin must be programmed in a similar
manner. This affects how the designer utilizes GPIO alternate function
pins with GPIO interrupt modalities of those port pins.

The definition mirrored pin refers to any PORT where for Port X, pin 0 is

mirrored to pin 7, pin 1 is mirrored to pin 6, pin 2 is mirrored to pin 5, pin 3
is mirrored to pin 4.

X is defined as Port A, B, C, or D.

For example, if PB0 is programmed as an edge triggered interrupt, the
logic dependency to clear the interrupt by writing to PB0_DR and

protecting the actual PB0_DR register value from change comes from the
mirror pin PB7 logic. This is an errata problem which causes erratic
behavior problems.

In the above example, the problem is that PB0_DR itself can be altered
and might change the mode of operation for the port pin PB0. To correctly
set up the logic dependencies, the mirrored pin must be placed in the
same mode as its counterpart. As the functionally of these port pins need
to be mirrored in order to correct the logic dependency, the alternate
function assignments of these ports would not work correctly.

To use the SPI alternate function modality (for example, SPI alternate
function pins PB2, PB3, PB6, and PB7) you will not be able to use the
"mirror" port pins PB5, PB4, PB1, and PB0 for mode 6 and Mode 9

interrupt and vice versa. Any Port pin configured with Mode 6 or Mode 9
(an edge triggered interrupt) exhibits this behavior and affects the
alternate function modality. The mirror mapping affects all Ports,
specifically within the respective port pin pairs 0 and 7, 1 and 6, 2 and 5,
and 3 and 4.

This design flaw in no way affects the IVECT
address for the GPIO interrupts.

(continued)

Table 1. Errata to the eZ80F91 Device with Date Codes 0317 and Later (Continued)

No Issue Detailed Description

Warning:

Note:

Note:
UP006109-0910 Page 2 of 10

Product Update: Errata for eZ80Acclaim!® eZ80F91 Silicon
(continued from previous page)

Workaround

Below is an example setup:

PB0 Input, falling edge interrupt

PB1 Input, dual edge interrupt

PB2 Input, falling edge interrupt

PB3 Input, falling or rising edge interrupt, depending on hardware
configuration

PB4 Input (not used)

PB5 Input, falling edge interrupt

PB6 Input, dual edge interrupt

PB7 Input, falling edge interrupt – This could be Rising, Dual, or even left
floating (OPEN connection)

Using the above example, if PB0 is Input, falling edge interrupt, then PB7
must be a separate input, EDGE MODE interrupt. In this example, PB7 is
setup as a falling edge interrupt the same way as PB0.

This additional separate input interrupt signal connected to PB7 could be
rising, falling, dual, or you can leave it unconnected (OPEN) as well. You
must not use PB7 for GPIO I/O or LEVEL sensitive interrupts. This same
thought process is applicable to all Port bits pairs, specifically bits 0 and 7,
1 and 6, 2 and 5, and 3 and 4.

7 The RTC loses large
amounts of time at
spurious intervals.
This loss of time may
vary between software
compiler runs.

The RTC clock divider counter can potentially be reset anytime the eZ80®
internal address bits [7:0] transition to or through the hex value 0xED
while the internal I/O WRITE_ENABLE (IOWR) signal is asserted (Active
Low).

Workaround

This RTC problem can be triggered by any eZ80 CPU instruction that
causes an I/O Write operation (such as OUT0) to any I/O mapped register
or location. If the last byte of the I/O Write operation resides at the
address location xxxxEC, the next available address is then 0xED and
the I/O WRITE_ENABLE signal may deactivate during the address
transition. If this does happen, the RTC clock divider counter gets reset.
To avoid this problem you have to shift these instructions down with a
NOP instruction to avoid the last byte of the I/O instruction landing on the
0xEC address.

There are 17 instructions that can be affected:

(continued)

Table 1. Errata to the eZ80F91 Device with Date Codes 0317 and Later (Continued)

No Issue Detailed Description
UP006109-0910 Page 3 of 10

Product Update: Errata for eZ80Acclaim!® eZ80F91 Silicon
(continued from previous page)

out0 (n),a

outd2r

otdm

otdmr

otdr

otdrx

oti2r

otim

otimr

otir

otirx

out (bc),a

out(n),a

outd

outd2

outi

outi2

You must iterate through the following 4-step sequence until all the I/O
instructions are located at a safer address location. The steps in the
sequence below use the OUT0 instruction as an example. This instruction
is 3 bytes long. Therefore, the starting address for an OUT0 to cause the
RTC problem would be 3 bytes back from address xxxxEC = xxxxEA.
The following assembly code snippet might look like this:

ld A, 02

OUT0 (%4D), A

After the linker process, assume that the same code snippet can be found
in the hex file search as follows:

0003E8 3E ; This is the ld A,02 instruction.

0003E9 02

0003EA ED ; This is the OUT0 (%4D), A instruction.

0003EB 39

0003EC 4D

0003ED 3E ; This is the start of another LD
instruction.

To move the OUT0 last byte away from address 0x0003EC, perform the
following sequence:

(1) Post-process the complete software build so that the addresses for
the executable code are resolved.

(2) Search for the first OUT0 instruction that starts with address location
xxxxEA.

(3) If the instruction traces back from the hex address through the map
file to the C or .asm function, return to the source code and add a
NOP instruction just before the OUT0 instruction. If an assembly
source code, just add a NOP instruction. If C source code, just add
the in-line ASM statement _asm("\tNOP\n");.

(4) Recompile, link, and re-inspect the hex output file, starting at step 2.

Table 1. Errata to the eZ80F91 Device with Date Codes 0317 and Later (Continued)

No Issue Detailed Description
UP006109-0910 Page 4 of 10

Product Update: Errata for eZ80Acclaim!® eZ80F91 Silicon
8 The UART is
continually
interrupting; the user
cannot clear the
interrupt.

The root cause of this issue has been duplicated with certain signal
conditions after which a software instruction was executed to clear the
receive FIFO. The signals involved were from bit 0 of the ISR, and the
trigger counter with RXFIFO enabled and RXINTERRUPT disabled.

Workarounds

To prevent this error condition from occurring, you can perform one of the
following two actions:

(1) Do not enable the transmit or receive FIFO if it is not required. The
Receive FIFO was the initial problem; however, both the TX and RX
FIFOs are affected. Set bit 0 (FIFOEN) of the UART0_FCTL (0x0C2h)
or UART1_FCTL (0x0D2h) registers to a value of zero.

(2) If you are using either the transmit or receive FIFOs, mask off the
following two bit locations to avoid changing the default bit value of
zero. If bit 0 (FIFOEN) of the UART0_FCTL (0x0C2h) or
UART1_FCTL (0x0D2h) registers is set to 1, then mask off bit 1 (CLR-
RxF) and bit 2 (CLRTxF) so that any Write accesses to the
UART0_FCTL (0x0C2h) or UART1_FCTL (0x0D2h) registers will not
alter this default zero value.

(3) To correct this error condition when the UART Rx interrupt occurs but
there is no Rx data detected, you can clear the condition in software
by putting the UART in loopback mode and then transmitting a single
character. The following is an example of this workaround:

//=====================workaround=====================

/*
* Check for ‘stuck’ Fifo
*/

if((Iir == SD_IIR_RX_INT) && ((Lsr & LSR_DR) ==))
{

UINT32 Mcr;

/*
* To clear this condition, put the Uart in loopback
* mode and send a character
*/

Mcr = BSP_RD32 (pUART->Base|UART_REG_MCTL);
BSP_WR32(pUart->Base|UART_REG_MCTL, Mcr |
MCTL_LOOP);
BSP_WR32(pUart->Base|UART_REG_THR, ‘Z’);

/*
* Wait for the character to hit the Rx fifo
*/

Lsr = BSP_RD32(pUart->Base | UART_REG_LSR);
while(!(Lsr & LSR_DR))
{

Lsr = BSP_RD32(pUart->Base | UART_REG_LSR);
}

(continued)

Table 1. Errata to the eZ80F91 Device with Date Codes 0317 and Later (Continued)

No Issue Detailed Description
UP006109-0910 Page 5 of 10

Product Update: Errata for eZ80Acclaim!® eZ80F91 Silicon
(continued from previous page)

/*
* Ignore any data trapped in the Rx fifo
*/

while(Lsr & LSR_DR)
{

Lsr = BSP_RD32(pUart->Base | UART_REG_RBR);
Lsr = BSP_RD32(pUart->Base | UART_REG_LSR);

}

/*
* Return to normal operation
*/

BSP_WR32(pUart->Base|UART_REG_MCTL, Mcr |
MCTL_LOOP);

/*
* Record this event
*/

StuckRxCount++;
}

//==================normal handling===================

9 The timer misses timer
End-of-Count (EOC).

The root cause for the eZ80F91 timer to lose track of timer EOC has been
traced to an internal signal within the timer block that is preventing timer
EOC. This issue affects only the timer functions of the eZ80F91 MCU. No
other eZ80Acclaim!® devices are affected.

The timer EOC is blocked when three conditions are met during the
execution of user software, as follows.

(1) The lower 8 bits of the internal eZ80þaddress bus are equal to the
specific timer control register (TMRx_CTL) where x = 0, 1, 2, or 3. 
The internal data bus value is odd, meaning that bit 0 is equal to 1.

(2) The specific timer block in which the control register address identified
in the first condition above has timed out (generated a
time-out EOC).

If all of the above internal conditions are met, the timer EOC is missed.

How the internal data bus is driven depends on the current instruction.
For the LD A,n instruction, the internal data bus is driven with immediate
data. If the LD A,01 instruction is placed at an address where the lower 8
bits are equal to the timer control register address 01, the
HoldTimerEnable signal is asserted as the 01 is being fetched. If the timer
is about to time out, the timer EOC is missed.

If the fetched data value is an even number, the problem is
not visible, and the timer EOC is not missed.

(continued)

Table 1. Errata to the eZ80F91 Device with Date Codes 0317 and Later (Continued)

No Issue Detailed Description
UP006109-0910 Page 6 of 10

Product Update: Errata for eZ80Acclaim!® eZ80F91 Silicon
(continued from previous page)

Additionally, a timer configured for SINGLE PASS mode will fail to stop
and instead will reload and continue counting after an occurrence above
three conditions. If the conditions do not occur at the subsequent EOC,
the timer will correctly stop.

All timer functions that utilize the EOC to determine their result are
affected. The input capture, event count, and output capture work
correctly since they do not rely on the timer EOC signal.

Workaround

To prevent this error from occurring (and the only way to guarantee that
you do not miss any timer EOC), use two timers programmed to run in
synchronization so that their time-out EOC occur at the same time. The
key element is to ensure that these timer EOC occur at the same time and
on the same interval.

As a result, you are guaranteed that, if the first timer has met all three
conditions, the second timer will not have met the first condition, and
therefore does not miss an EOC, and vice versa. Any other method that
results in removing one of the three conditions above will ensure that the
you will not miss any timer EOC, but the task becomes painful and user-
code-dependent due to selectable wait states, etc.

For example, you can determine missed timer EOC using timer 3 code for
timer 3 usage and look for out instructions that provide an odd value on
the data bus. Once this code has been located, the you can move the
timer code by using a NOP instruction.

Assume you use a timer 3 and has written the following ASM code
segments:

;******** Init Timer3 ********************
 ld hl,250 * (CPU_Freq / 1000) / 4000
 out0 (TMR3_RR_L),l
 out0 (TMR3_RR_H),h
 ld a,%07
 out0 (TMR3_CTL),a;Timer0 Enable
 ld a,%01
 out0 (TMR3_IER),a;Timer0 Int. Enable
 ei
 jp testproc
...
testproc:
 ld a,%01
..

(continued)

Table 1. Errata to the eZ80F91 Device with Date Codes 0317 and Later (Continued)

No Issue Detailed Description
UP006109-0910 Page 7 of 10

Product Update: Errata for eZ80Acclaim!® eZ80F91 Silicon
(continued from previous page)

The assembly listing for this code could be similar to the following:

A 40 ;******** Init Timer3

000084 21350C00 A 41 ld hl,250 * (CPU_Freq / 10
000088 ED2977 A 42 out0 (TMR3_RR_L),l
00008B ED2178 A 43 out0 (TMR3_RR_H),h
00008E 3E07 A 44 ld a,%07
000090 ED3974 A 45 out0 (TMR3_CTL),a
000093 3E01 A 46 ld a,%01
000095 ED3975 A 47 out0 (TMR3_IER),a
000098 FB A 48 ei
000099 C3 72 04 00 A 49 jp testproc
...
...
000471 A 68 testproc:
000471 3E01 A 69 ld a,%01

Two key items to be aware of are:

(1) The address in the software is 0471, which is close to
TMR3_CTL(0x0074h).

(2) The LD a, %01 instruction in bringing in an odd data byte. One
solution in this case is for you is to insert a NOP instruction at address
000471, thereby pushing the testproc statement down 1 byte to the
following:

000471 A 68 testproc:
000471 00 A 69 NOP
000472 3E01 A 70 ld a,%01

10 The infrared encoder/
decoder (endec)
receiver misses bits
when configured for
low data rates and the
incoming signals are
only 1.6 µs.

The endec samples the incoming IR pulses, using the baud rate clock
divided by 16. This sampling rate can be insufficient to capture the
incoming pulses when they use a short-pulse format and low-data rates.
This short pulse, 1.6 µs, is within IrDA specifications; however, not all
transmitters use this particular signalling format. When the external
transmitter is sending 3/16 IR pulses, the endec on the eZ80F91 device
receive the data properly.

11 GPIO Port B and Port
C pins draw current
when input voltage
exceeds one diode
drop above the supply
voltage.

For the 5 V input-tolerant GPIO pins, when the input voltage exceeds
approximately 4.0 V (for a 3.3 V supply voltage), current is drawn by the
input pin.

Workaround

For GPIO pins that toggle at low frequencies, a 10 K resistor can be
placed between the GPIO pin and the external driver. This placement
limits the current into the pin to about 150µA. For higher frequencies, a
1 K resistor should be used; the resulting input current to the pin is
limited to about 1.5 mA.

Table 1. Errata to the eZ80F91 Device with Date Codes 0317 and Later (Continued)

No Issue Detailed Description
UP006109-0910 Page 8 of 10

Product Update: Errata for eZ80Acclaim!® eZ80F91 Silicon
12 A pulse on the Serial
Clock (SCL) line while
the I2C bus is idle and
the Serial Data (SDA)
line is held High
causes the I2C to lock.

A pulse on the SCL line prior to a START condition or after a STOP
condition causes the I2C to lock up. This situation occurs irrespective of
the I2C Control Register ENAB settings (I2C_CTL). When this situation
occurs, an I2C Software Reset does not unlock the I2C bus.

Workarounds

To prevent lock-up, it is possible to completely disable the I2C block prior
to any bus activity using the Clock Peripheral Power-Down Register 1
(CLK_PPD1) before setting ENAB in the I2C Control Register.

In the event that lock-up of the I2C block occurs, then after the SCL line is
released, another device on the bus can issue a STOP condition by
pulsing the SDA line. As a result, the I2C should unlock.

Another option is to initiate an overall SYSTEM RESET of the eZ80F91
device to reset the I2C block.

13 Disable of PLL when
selected as system
clock source.

If the PLL is selected as the system clock source, the PLL can be
disabled by the eZ80 CPU. As a result, the system clock stops. The
eZ80F91 will not respond to RESET pin assertion without a system clock.
If the system clock source is disabled, the eZ80F91 can only be reset by a
WDT reset, a POR reset, or a RTC SLP_WAKE.

Table 1. Errata to the eZ80F91 Device with Date Codes 0317 and Later (Continued)

No Issue Detailed Description
UP006109-0910 Page 9 of 10

Product Update: Errata for eZ80Acclaim!® eZ80F91 Silicon
DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY

ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2010 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, eZ80Acclaim! and ZNEO are 
trademarks or registered trademarks of Zilog, Inc. All other product or service names are the property of
their respective owners.

Warning:Warning:
UP006109-0910 Page 10 of 10

	Product Update
	Errata for eZ80Acclaim!® eZ80F91 Silicon
	eZ80F91 MCU with Part Numbers and Date Codes 0317 and Later

