
AN021204-0813
Abstract

This application demonstrates how to configure the eZ80F91 MCU to enable communica-
tion through an Ethernet cable. Data is transferred from one eZ80F91 device to another
eZ80F91 device, and vice versa. The HyperTerminal emulation program (or similar soft-
ware) aids the application by displaying data received via the Ethernet and acquiring data
to send to the eZ80F91 device at the other end of the Ethernet cable. The application dis-
cussed in this document follows the IEEE 802.3 frame format.

The source code file associated with this application note, AN0212-SC01.zip, is available
for free download from the Zilog website. This source code has been tested with version
5.2.1 of ZDS II for eZ80Acclaim! MCUs. Subsequent releases of ZDS II may require you
to modify the code supplied with this application note.

Throughout this document, the term development board is used to denote a board from
one of the following three eZ80 development kits:

• eZ80F91 Development Kit (eZ80F910300ZCOG): eZ80 Development Platform
(99C0858-001G) with an eZ80F91x150MODG Module (99C0879-001G)

• eZ80F91 Modular Development Kit (eZ80F910200KITG): eZ80 Modular Develop-
ment Board (98C0945-001G) with an eZ80F915005MODG Module (99C0942-001G)
or an eZ80F916005MODG Module (99C0942-002G)

• eZ80AcclaimPlus! Development Kit (eZ80F910300KITG): eZ80AcclaimPlus! Devel-
opment Board (99C1322-001G)

Features

Zilog’s eZ80F91 MCU features an on-chip Ethernet Media Access Controller (EMAC)
unit with a fully-functional 10/100 Mbps Media-Independent Interface (MII). This EMAC
contains the following blocks:

• Central clock and reset module

• Host memory interface and transmit/receive arbiter

• FIFO buffer and DMA control blocks for transmit and receive

• 802.3x media access control block

• MII interface management

Note:
AN021204-0813
Application Note
Ethernet Frame Transmission
Using the eZ80F91 MCU
 Page 1 of 21

http://www.zilog.com/docs/ez80acclaim/appnotes/an0212-sc01.zip
http://www.zilog.com/index.php?option=com_product&task=dev_tool_detail&DevToolKit=eZ80F910200KITG
http://www.zilog.com/index.php?option=com_product&task=dev_tool_detail&DevToolKit=eZ80F910300ZCOG
http://www.zilog.com/index.php?option=com_product&task=dev_tool_detail&DevToolKit=eZ80F910300KITG

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
The eZ80F91 MCU offers the following main features:

• Single-cycle instruction fetch in a high-performance, pipelined eZ80 CPU core

• 10/100 BaseT ethernet media access controller with Media-Independent Interface
(MII)

• 256 KB Flash memory

• 16 KB SRAM (8 KB user and 8 KB Ethernet)

• Low-power features including Sleep and Halt modes, plus selective peripheral power-
down control

• Two Universal Asynchronous Receivers/Transmitters (UARTs) with independent
Baud Rate Generators (BRGs)

• Serial Peripheral Interface (SPI) with independent clock rate generator

• I2C with independent clock rate generator

• IrDA-compliant infrared encoder/decoder

• Glueless external peripheral interface with 4 chip selects, individual wait state genera-
tors, an external WAIT input pin; supports Z80-, Intel-, and Motorola-style buses

• Fixed-priority vectored interrupts (both internal and external) and interrupt controller

• Real-time clock with separate VDD pin for battery backup and selectable on-chip
32 kHz oscillator or external 50/60 Hz input

• Four 16-bit counter/timers with prescalers and direct input/output drive

• Watchdog Timer with internal oscillator clocking option

• 32 bits of general-purpose input/output (GPIO)

Discussion

Computer networking is an essential part of today’s technology. Such networks allow
computers and other electronic devices to share information to one another. The Internet is
the most popular example of computer networking; it connects millions of computers
around the world. On a smaller scale, a Local Area Network (LAN) connects many
devices that are in close proximity, such as in office buildings. The most dominant type of
LAN architecture is the Ethernet, which is a networking standard that defines the physical
and data link layers of the OSI Model discussed later in this document.

The OSI Model
The Open System Interconnection (OSI) model illustrates how network protocols and
equipment should communicate with each other. It consists of seven layers arranged from
the lowest layer to the highest layer.

The upper three layers describe application-specific functions such as data formatting and
connection management. The Hypertext Transfer Protocol (HTTP) and the Simple Mail
AN021204-0813 Page 2 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
Transfer Protocol (SMTP) are examples of data that reside in the upper layers of the OSI
Model. The lower four layers describe network-specific functions such as addressing and
routing. The Transmission Control Protocol and Internet Protocol (TCP/IP) and the Ether-
net are examples of data that reside in the lower layers of the OSI Model.

The OSI Model is illustrated in Figure 1; each layer is defined in Table 1.

Figure 1. The OSI Model

Table 1. OSI Model: Layer Definitions

Application Works along with the application software in implementing necessary actions requested
by the data it received.

Presentation Responsible for translating data to/from the application layer from/to a standard format
understood by the other lower levels.

Session Responsible for establishing, maintaining, and ending communication with a remote
system.

Transport Responsible for the dispatch and classification of data sent and received.

Network Responsible in identifying if the received frame has reached its destination or if the frame
requires to be forwarded.

Data Link Responsible in checking for transmission errors and formats data bits into frames. The
data link layer is composed of two sub-layers - the Media Access Control (MAC) and the
Logical Link Control (LLC). The MAC is responsible for controlling how other devices on
the network gain access to the data it carries. While the LLC is responsible for controlling
frame synchronization and flow control.

Physical Responsible in transmitting/receiving data over the network communications media.
Cables, connectors, hubs and repeaters are examples of standard network devices that
function at the physical layer.
AN021204-0813 Page 3 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
Ethernet IEEE 802.3 Frame Format

The Ethernet IEEE 802.3 frame defines the frame formats that reside in the physical and
data link layers of the OSI Model. The upper five layers of the OSI Model are compiled
into the data field of the Ethernet frame format.

An IEEE 802.3 frame consists of a 14-byte header, 46–1500 bytes of data, and an optional
4-byte cyclic redundancy check. The 14-byte header is further subdivided into three parts:
a source address, a destination address, and a length field. Figure 2 illustrates this IEEE
802.3 frame format.

A discussion of the implementation of the upper five layers of the OSI Model is beyond
the scope of this application note. For the sake of simplicity, the characters entered by the
user in the HyperTerminal window can be used as the contents of the data field portion of
the Ethernet frame shown above.

eZ80F91 MCU EMAC
The eZ80F91 MCU EMAC can be viewed in functional blocks, as shown in Figure 3.

Figure 2. IEEE 802.3 Frame Format

Figure 3. Ethernet Connectivity Blocks on the eZ80F91 MCU
AN021204-0813 Page 4 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
EMAC Registers

Table 2 provides descriptions of the EMAC registers available with the eZ80F91 MCU.
To learn more, refer to the EMAC section of the eZ80F91 Product Specification (PS0192).

Table 2. eZ80F91 MCU Registers for EMAC

Register Description

EMAC Test Register
EMAC_TEST

Enables/disables several modes for testing the
functionality of the EMAC block.

EMAC Configuration Register 1
EMAC_CGF1

Controls padding, autodetection, cyclic redundancy
checking, full-duplex or half-duplex modes, field length
checking, maximum packet ignores, and proprietary
header options.

EMAC Configuration Register 2
EMAC_CFG2

Controls the functionality of the back pressure and late
collision data from the descriptor table.

EMAC Configuration Register 3
EMAC_CFG3

Controls preamble length and value, excessive deferment,
and the number of retransmission tries before a packet is
aborted.

EMAC Configuration Register 4
EMAC_CFG4

Controls pause control frame functionality, back pressure,
and receive frame acceptance.

EMAC Station Address Register
EMAC_STAD0
EMAC_STAD1
EMAC_STAD2
EMAC_STAD3
EMAC_STAD4
EMAC_STAD5

The 48-bit station address is represented by
{EMAC_STAD_5, EMAC_STAD_4, EMAC_STAD_3,
EMAC_STAD_2, EMAC_STAD_1, EMAC_STAD_0}. It is
used as the source address when transmitting frames, and
compared to destination address when receiving frames.

EMAC Tx Pause Timer Value Register
EMAC_TPTV_L
EMAC_TPTV_H

Inserted into an outgoing pause control frame as the pause
timer value upon asserting a TPCF; e.g., a TPCF is bit 2 of
EMAC_CFG4.

EMAC Interpacket Gap Register
EMAC_IPGT

Represents the interpacket gap between back-to-back
packets used in full-duplex and half-duplex modes.

EMAC Non-Back-to-Back IPG Register
EMAC_IPGR1
EMAC_IPGR2

Represents the optional carrier sense window referenced
in the IEEE 802.3/4.2.3.2.1 carrier reference.

EMAC Max Frame Length Register
EMAC_MAXF_L
EMAC_MAXF_H

Determines the maximum length of a frame that can be
received.

EMAC Address Filter Register
EMAC_AFR

Works as a filter to control Promiscuous Mode and to
control multicast and broadcast messaging.
AN021204-0813 Page 5 of 21

http://www.zilog.com/docs/ez80acclaim/ps0192.pdf

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
EMAC Hash Table Register
EMAC_HTBL_0
EMAC_HTBL_1
EMAC_HTBL_2
EMAC_HTBL_3
EMAC_HTBL_4
EMAC_HTBL_5
EMAC_HTBL_6
EMAC_HTBL_7

Represents the hash table matrix that is used as an option
to select between different multicast addresses. If a
multicast address is received, the first six bits of the CRC
are decoded and added to a table that points to a single bit
within the hash table matrix. If the selected bit = 1, the
multicast packet is accepted; otherwise, the multicast
packet is rejected.

EMAC MII Management Register
EMAC_MIIMGT

Used to control the external PHY attached to the MII. A
rising edge on bit 7 causes EMAC_CTLD control data to be
transmitted to an external PHY if the MII is not busy.
Similarly, a rising edge on bit 6 causes status to be read
from the external PHY via EMAC_PRSD if the MII is not
busy.

EMAC PHY Configuration Data Register
EMAC_CTLD_L
EMAC_CTLD_H

These registers are loaded with data to be sent via the
MDIO pin to the PHY. The PHY is selected by setting the
EMAC_FIAD. The register inside of the PHY is selected by
setting EMAC_RGAD. When bit 7 of EMAC_MIIMGT sees
a rising edge, it causes data to be transferred from
EMAC_CTLD to the PHY.

EMAC PHY Address Register
EMAC_RGAD

Used to select a specific register inside the external PHY.

EMAC PHY Unit Select Address Register
EMAC_FIAD

Used to select the external PHY.

EMAC Transmit Polling Timer Register
EMAC_PTMR

Used to set the value after which the EMAC checks the
transmit descriptor table in EMAC memory to determine if it
owns any of the packets in EMAC shared memory.

EMAC Reset Control Register
EMAC_RST

Used to reset EMAC functionality.

EMAC Tx Lower Boundary Pointer Register
EMAC_TLBP_L
EMAC_TLBP_H

Sets the start of transmit buffer in EMAC shared memory.

EMAC Boundary Pointer Register
EMAC_BP_L
EMAC_BP_H
EMAC_BP_U

Sets the start of the receive buffer (i.e., end of transmit
buffer + 1) in EMAC shared memory.

EMAC Rx High Boundary Pointer Register
EMAC_RHBP_L
EMAC_RHBP_H

Must be set to the end of the receive buffer + 1 in EMAC
shared memory.

EMAC Rx Read Pointer Register
EMAC_RRP_L
EMAC_RRP_H

Points to the address location from which the next receive
packet must be read. Must be initialized to the EMAC_BP
value.

Table 2. eZ80F91 MCU Registers for EMAC (Continued)

Register Description
AN021204-0813 Page 6 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
EMAC Shared Memory

The eZ80 CPU features 8 KB of internal RAM for general-purpose use, and 8 KB of inter-
nal RAM for EMAC use. Each can be enabled or disabled, and can altogether be relocated
anywhere within the address space. When enabled, general-purpose RAM occupies
addresses in the range {RAM_ADDR_U, E000h} to {RAM_ADDR_U, FFFFh}, while
EMAC RAM occupies addresses in the range {RAM_ADDR_U, C000h} to
{RAM_ADDR_U, DFFFh}. When using the EMAC, it is mandatory to at least enable
EMAC RAM and set RAM_ADDR_U.

The EMAC shared memory (or EMAC RAM) is used by both the eZ80 CPU and the on-
chip EMAC unit. This memory is divided into two parts: the transmit buffer and the
receive buffer. The bounds of these two buffers are defined by three registers, as follows.

EMAC Buffer Size Register
EMAC_BUFZ

Used to control the size of buffers in EMAC shared
memory and the level at which a pause control frame is to
be transmitted.

EMAC Interrupt Enable Register
EMAC_IEN

Used to enable the interrupts related to the EMAC.

EMAC Interrupt Status Register
EMAC_ISTAT

Used to determine the status of multiple interrupts. It is
cleared by writing 1 into the selected bit.

EMAC PHY Read Status Data Register
EMAC_PRSD_L
EMAC_PRSD_H

The status read by the EMAC from the external PHY is
stored in this register.

EMAC MII Status Register
EMAC_MIISTAT

The current state of the PHY is stored in this register.

EMAC Receive Write Pointer Register
EMAC_RWP_L
EMAC_RWP_H

A read-only register that reports the current RxDMA
receive write pointer. This pointer is initialized to
EMAC_TLBP whenever the EMAC is reset.

EMAC Tx Read Pointer Register
EMAC_TRP_L
EMAC_TRP_H

A read-only register that reports the current TxDMA
transmit read pointer. This pointer is initialized to
EMAC_TLBP whenever the EMAC is reset.

EMAC Rx Blocks Left Register
EMAC_BLKSLFT_L
EMAC_BLKSLFT_H

A read-only register that reports the number of buffers
remaining in Rx EMAC shared memory.

EMAC FIFO Data Register
EMAC_FDATA_L
EMAC_FDATA_H

Allows the writing and reading of the FIFO during
EMAC_TEST.

RAM Control Register
RAM_CTL

Enables or disables internal RAM.

RAM Address Upper Byte Register
RAM_ADDR_U

Defines the upper byte of the address for internal RAM.

Table 2. eZ80F91 MCU Registers for EMAC (Continued)

Register Description
AN021204-0813 Page 7 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
Transmit Lower Boundary Pointer (EMAC_TLBP). Defines the start address of the
transmit buffer.

Boundary Pointer (EMAC_BP). Defines the start address of the receive buffer.

Receive High Boundary Pointer (EMAC_RHBP). Defines the end address of the receive
buffer + 1.

Figure 4 illustrates how these three buffers are used to divide eZ80F91 MCU internal
EMAC RAM.

The eZ80 CPU and the on-chip EMAC uses this area of internal RAM exclusively as a
storage medium for packets to be transmitted and for packets received. These Tx and Rx
buffers are further subdivided into packet buffers with configurable buffer sizes of 32, 64,
128, or 256 bytes, as defined by EMAC_BUFZ. Each packet buffer can be accessed using
the following four pointers.

Transmit Write Pointer. Defines the address of the next available packet buffer in the Tx
buffer into which the software can place a new packet that is waiting for transmission. Ini-
tially, this pointer must be set equal to the value of EMAC_TLBP. This pointer,
_asEMAC_twp, is defined by software because it is only relevant within the context of the
software, which is responsible for using and updating this pointer value as it adds packet
buffers into the Tx buffer.

Transmit Read Pointer (EMAC_TRP). Defines the address of the current packet in the
Tx buffer that is waiting to be transmitted by the EMAC. When EMAC_RST[SRST or
HRRTN] are set, this pointer is reset to the value of EMAC_TLBP. A copy of this pointer,
_asEMAC_trp, is maintained by the software.

Receive Write Pointer (EMAC_RWP). Defines the address of the next available packet
buffer in the Rx buffer into which the EMAC can place newly-received packets. When
EMAC_RST[SRST or HRRTN] are set, this pointer is reset to the value of EMAC_TLBP.
A copy of this pointer, _asEMAC_rwp, is maintained by the software.

Figure 4. EMAC Shared Memory Organization
AN021204-0813 Page 8 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
Receive Read Pointer (EMAC_RRP). Defines the address of the current packet in the Rx
buffer that is waiting to be read by software. Initially, this pointer must be set equal to the
value of EMAC_BP. A copy of this pointer, _asEMAC_rrp, is maintained by the soft-
ware.

A packet buffer consists of two major blocks, the descriptor table and the Ethernet packet,
as shown in Figure 5. The block containing the Ethernet packet (or Ethernet frame) fol-
lows a standard format defined by the IEEE 802.3 specification. A brief overview is dis-
cussed in the Ethernet IEEE 802.3 Frame Format section on page 4.

The block containing the descriptor table describes the packet it handles. It contains three
entries: the next pointer (np), the packet size (pktsz), and the packet status (stat), as
shown in Figure 6. np is a 24-bit pointer to the start of the next packet, pktsz contains the
number of bytes of data in the Ethernet packet, and stat contains the status of the packet.
The packet status definitions for stat are different for transmit and receive packets.

Table 3 describes the status of all transmit descriptors. The most important bit in the trans-
mit descriptor status is TxOwner, bit 15. This bit must be written by software to start/stop
EMAC transmission of the affected packet. While preparing data to be transferred, this bit

Figure 5. Contents of a Packet Buffer

Figure 6. Descriptor Table Entries
AN021204-0813 Page 9 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
must be set to 0 (i.e., Host owns). Setting this bit to 0 signals the EMAC that the packet
is not yet ready for transmission. To start transmission, this bit must be set to 1 (i.e., EMAC
owns). Setting this bit to 1 signals the EMAC that the packet can already be sent out. The
remainder of the bits reflect packet status upon transmission; there is no requirement for
software to modify these bits. When the EMAC has completed transmitting a packet, it
automatically updates the value of its transmit descriptor status.

Table 4 describes the status of all receive descriptors. This field is written by the EMAC
when the packet has been completely written into the receive buffer.

Table 3. Transmit Descriptor Status

Bit Name Description

15 TxOwner 0 = Host (eZ80) owns; 1 = EMAC owns.

14 TxAbort 1 = Packet aborted (not transmitted).

13 TxBPA 1 = Back pressure is applied.

12 TxHUGE 1 = Packet size is greater than maximum frame length.

11 TxLOOR 1 = Type/length field out of range (larger than 1518 bytes).

10 TxLCError 1 = Type/length field is not a Type field and it does not match the actual
data byte length of the Ethernet packet.

9 TxCrcError 1 = Packet contains an invalid CRC. This flag is set when CRCEN=0 and
the last 4 bytes of the packet are not the valid CRC.

8 TxPktDeferred 1 = Packet is deferred.

7 TxXsDfr 1 = Packet is excessively deferred.

6 TxFifoUnderrun 1 = TxFIFO has underrun.

5 TxLateCol 1 = Late collision has occurred.

4 TxMaxCol 1 = Maximum collisions have occurred.

3:0 TxNumberOfCollisions This field contains the number of collisions that occurred while transmit-
ting the packet.

Table 4. Receive Descriptor Status

Bit Name Description

15 RxOK 1 = Packet received.

14 RxAlignError 1 = Odd number of nibbles received.

13 RxCrcError 1 = The CRC is in error.

12 Rx:LongEvent 1 = A long or dropped event has occurred.

11 RxPCF 1 = The packet is a pause control frame.

10 RxCF 1 = The packet is a control frame.

9 RxMcPkt 1 = The packet has a multicast address.

8 RxBcPkt 1 = The packet has a broadcast address.

7 RxVLAN 1 = The packet is a VLAN packet.
AN021204-0813 Page 10 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
Hardware Architecture
Two eZ80F91 MCU development boards are connected together by a crossover cable. To
act as user interface, each of these boards is connected to a PC running HyperTerminal
over an RS232 cable. If no COM port is available, a USB-to-serial cable can also be used
with the eZ80F910300KITG hardware instead of the RS232 cable. Figure 7 shows a block
diagram of the connections used in this application, which has been developed and tested
using three development boards provided by Zilog. Therefore, the source code that sup-
ports this application can be used in any of these development boards and in any combina-
tion.

6 RxUOpCode 1 = Unsupported Op Code is indicated in the Op Code field of the
Ethernet packet.

5 RxLOOR 1 = The type/length field is out of range (larger than 1518 bytes).

4 RxLCError 1 = The type/length field is not a Type field and it does not match the
actual data byte length of the Ethernet packet.

3 RxCodeV 1 = A code violation is detected.

2 RxCEvent 1 = A carrier event is previously seen.

1 RxDvError 1 = A rxdv event is previously seen.

0 RxOVR 1 = Receive overrun has occurred.

Figure 7. System Block Diagram

Table 4. Receive Descriptor Status (Continued)

Bit Name Description
AN021204-0813 Page 11 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
eZ80F91 MCU Development Boards
As indicated in the preceding note, three development boards are available for the
eZ80F91 MCU, represented by part numbers eZ80F910300ZCOG, eZ80F910200KITG,
and eZ80F910300KITG. Each of these development boards contains a number of periph-
eral devices, including memory and connectors, to aid developers in evaluating the
eZ80Acclaim! and eZ80AcclaimPlus! family of devices for a number of applications. A
console port on each of these development boards can be used to connect a serial cable to
a computer to provide a user interface via the HyperTerminal program.

eZ80F910300ZCOG

The eZ80F910300ZCOG Development Board provides a general-purpose platform for
evaluating the capabilities and operation of the eZ80F91 MCU. This development board
contains two primary boards: the eZ80 Evaluation Platform (99C0858-001G) and the
eZ80F91 Module (99C0879-001G or 99C1380-001G). The main features of the
eZ80F910300ZCOG Development Board relevant to this application include:

• 512 KB SRAM via CS2

• 512 KB SRAM via CS1

• 1 MB Flash memory via CS0

• An eZ80F91 device operating at 50 MHz, with 256 KB of internal Flash memory and
8 KB of internal SRAM

• An RS232 console connector with an interface circuit for UART0

• On-chip Ethernet Media Access Controller (EMAC)

• An Ethernet port and AMD NetPHY AM79C874 (when using the 99C0879-00xG
module)

• An Ethernet port and IDT PHY ICS1894 (when using the 99C1380-001G module)

eZ80F910200KITG

The eZ80F910200KITG Development Board provides a set of tools for designing an
application based on the eZ80F91 MCU. This development board contains two primary
boards: the eZ80Acclaim! MDS adapter board (98C0945-001) and the eZ80F91 Mini
Ethernet Module (99C0942-001G). The main features of the eZ80F910200KITG Devel-
opment Board relevant to this application include:

• 128 KB SRAM via CS1

• An eZ80F91 device operating at 50 MHz, with 256 KB of internal Flash memory and
8 KB of internal SRAM

• An RS232 console connector with an interface circuit for UART0

• On-chip Ethernet Media Access Controller (EMAC)

• An Ethernet port and Micrel PHY KS8721
AN021204-0813 Page 12 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
eZ80F910300KITG

The eZ80F910300KITG Development Board provides a general-purpose platform for cre-
ating a design based on the eZ80F91 MCU. The main features of the eZ80F910300KITG
Development Board relevant to this application include:

• 512 KB SRAM via CS1

• 512 KB SRAM via CS2

• 8 MB Flash memory via CS0

• An eZ80F91 device operating at 50 MHz, with 256 KB of internal Flash memory and
8 KB of internal SRAM

• A USB interface that provides power to the board and a connection to the MCU’s
UART0 block

• An on-chip Ethernet Media Access Controller (EMAC)

• An Ethernet port and IDT PHY ICS1894

Software Implementation
This application utilizes the EMAC peripheral to enable Ethernet connectivity on the
eZ80F91 MCU. Data transmission over the Ethernet medium can be divided into the fol-
lowing three main blocks, each of which is described below.

• Ethernet Initialization

• Ethernet Frame Transmission

• Ethernet Frame Reception

Ethernet Initialization

To enable Ethernet functions in the eZ80F91 MCU, three items must be initialized: the
EMAC, the EMAC shared memory, and the external PHY. Ethernet initialization is per-
formed by the sETH_Init() routine. This routine requires two parameters: a pointer to
the location where MAC address is stored, and a pointer to the function to be executed
when EMAC Rx interrupt occurs. After initialization, frame Ethernet transmission and
reception can be performed. To initialize the Ethernet, sETH_Init() performs the fol-
lowing sequence of steps:

1. Initialize EMAC RAM that can be used by the EMAC shared memory later. This
application reserves internal RAM address starting at FFC000h up to FFE000h for
EMAC shared memory.

2. Place the EMAC into a reset state (EMAC_RST = 0x3Fh) to temporarily disable
EMAC operation caused by the EMAC data lines.

3. Set up an EMAC Station Address which will be the device MAC address, and which
must be unique for each device. For demonstration purposes, this application uses a
fixed MAC address (00:90:23:AB:CD:EF) defined by aucMAC_Address[6] in the
main.c file.
AN021204-0813 Page 13 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
4. Specify an EMAC buffer size (EMAC_BUFSZ) to determine the size of buffers stored
in EMAC shared memory. This application sets buffer size to the minimum value (32
bytes) to maximize the use of this shared memory. This value can be changed by mod-
ifying the value of the bufSize element of MAC_F91Config struct.

5. Set the transmit pause timer value (EMAC_TPTV) to 1400h to set pause duration
when EMAC buffers are full.

6. Locate boundary pointers EMAC_TLBP, EMAC_BP, EMAC_RHBP, and
EMAC_RRP within the shared memory and create pointers to these addresses.

7. Set the transmit polling timer value (EMAC_PTMR) to 1 to reflect the minimum time
between successive polls of the EMAC shared memory.

8. Disable EMAC test modes by setting EMAC_TEST to zero.

9. Configure EMAC functionality by writing to the EMAC configuration registers.

10. Set the Address Filter (EMAC_AFR) Register to allow broadcast and multicast
addresses. Although multicast addresses are allowed in this application, hash table
entries (EMAC_HTBL) must still be configured by the user to fully support multicast
addresses.

11. Specify the maximum frame length for frames to be received in EMAC_MAXF.

12. Reenable EMAC operation by setting EMAC_RST = 0x00.

13. Set the MII management clock to enable external PHY access.

14. Initialize the external PHY. The external PHY initialization is handled by the
sPHY_Init() routine . To initialize the external PHY, perform the following steps .

a. Inform the EMAC of the address of the external PHY attached to it by setting the
EMAC PHY unit select address, EMAC_FIAD, to the address of the external
PHY. A discussion of this external PHY addressing can be determined in its corre-
sponding data sheet.

b. Determine if the PHY is detected and is correct by reading the values stored in the
PHY_ID1_REG and PHY_ID2_REG registers of the external PHY. Values read
from these registers must correspond to the values specified in the PHY’s corre-
sponding data sheet.

c. Reset the PHY by writing to PHY_CREG.

d. Determine if autonegotiation is enabled by reading PHY_SREG.

e. Establish a link according to user-defined options in the MAC_F91Config.mode
file if Autonegotiation Mode is disabled.

15. Clear the Interrupt Status (EMAC_ISTAT) Register to ensure that there are no pending
interrupts to be executed.

16. Enable the EMAC Tx and Rx interrupts.
AN021204-0813 Page 14 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
Ethernet Frame Transmission

Ethernet frame transmission is the process by which the MCU sends a data packet to
another device via the Ethernet medium. This transmit process consists of the following
steps:

1. Generate a frame for transmission. The Ethernet packet is defined by _tETH_PKT.
Table 5 lists the information that is stored in a typical Ethernet packet.

For this application, the data field of the Ethernet frame, ep_data[], can come from a
user input via the HyperTerminal. If the length of this user input is less than the minimum
length allowed (ETHPKT_MINDLEN), a series of x characters are appended to the data
field. This step is handled by the SendData() routine found in the main.c file.

2. Determine if the generated frame is within the total maximum length limits of a frame,
as illustrated in Figure 2. In essence, the total frame length must be less than or equal
to ETHPKT_MAXDLEN + ETH_HLEN, or 1514 bytes. This determination is per-
formed in the sETH_TransmitPkt() routine found in the emac.c file. If the gener-
ated frame exceeds the maximum size allowed for an Ethernet packet, the frame can
be rejected, and no further processing will occur.

3. Predetermine the location of the next packet in EMAC shared memory. This next
packet pertains to a frame which can immediately follow the current frame that can be
added to memory in succeeding steps.

4. Set the status of the next packet to HOST OWNS to prevent the EMAC from sending
it.

5. Generate entries for the Tx buffer descriptor of the current frame. These entries can
fill up the descriptor table portion of the Tx packet buffer presented in Figure 5 on
page 9.

6. Copy the Ethernet packet into the Tx buffer of the EMAC shared memory. This data
can fill up the Ethernet packet portion of the Tx packet buffer presented in Figure 5.

7. Enable EMAC interrupts.

8. Start transmitting the frame by setting the status of the current frame to EMAC
OWNS.

Table 5. Information of Ethernet Packet

Packet Description

ep_order Byte order mask for debugging.

ep_len Total length of the packet, in bytes, from eh_dst up to ep_data.

eh_dst Destination address (see Figure 2).

eh_src Source address (see Figure 2).

eh_type Length of ep_data, in bytes (see Figure 2).

ep_data[] Ethernet data field (see Figure 2).
AN021204-0813 Page 15 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
9. Update the transmit write pointer, _asEMAC_twp, to the value of the predetermined
location of the next packet acquired in Step 3.

10. As soon as Step 8 is performed, the EMAC takes control toward handling the remain-
der of the operation. When the EMAC completed transmission, it updates the frame
by writing to the status field of the current Tx buffer descriptor (see Table 3 on page
10). Next, a Transmit Done (TX_DONE_STAT) interrupt occurs. Other transmitter-
related interrupts include the transmit control frame (TX_CF_STAT) and transmit
state machine error (TXFSMERR_STAT) interrupts. This application only handles the
TX_DONE_STAT interrupt. In the interrupt routine, perform the following steps:

a. Clear TX_DONE_STAT by writing 1 to the EMAC_ISTAT Register.

b. Verify that the current frame was transmitted by checking TxAbort (bit 14) of the
status field in the Tx buffer descriptor. If the packet is not transmitted, the applica-
tion must handle this transmission, usually by resending the packet. For this appli-
cation, further processing stops when a packet is aborted.

Ethernet Frame Reception

Ethernet frame reception is the process by which the MCU receives a data packet from
another device via the Ethernet medium. Frame reception starts when the EMAC receives
a frame from the Ethernet. The EMAC handles the process of storing this received data in
EMAC shared memory. When a complete packet has been transferred into memory, the
EMAC generates a Receive Done (RX_DONE_STAT) interrupt. Other interrupts include
the Receive Pause, Receive Overrun, and Receive Control packets. Each interrupt source
must be handled according to application requirements. For this application, only the
Receive Done interrupt is being handled, and is therefore enabled.

The interrupt routine handles these received packets by observing the following steps:

1. Ensure that a new packet has already been added to memory.

2. Clear the RX_DONE_STAT interrupt by writing a 1 to the EMAC_ISTAT Register.

3. Process the data packet received. For this application, the received data packet is
decoded and displayed in HyperTerminal. This process is performed by the
ETH_ReceivePkt() routine in emac.c.

4. Update the Receive Read pointer, _asEMAC_rrp, to point to the next available packet
buffer in EMAC shared memory.

5. Update the EMAC Receive Read Pointer Register, EMAC_RRP, to point to the next
available packet buffer in EMAC shared memory. EMAC_RRP and _asEMAC_rrp
must always be synchronized together.

Testing/Demonstrating the Application
Observe the following procedure to test/demonstrate the Ethernet Frame Transmission
application.

1. Set up hardware connections as shown in Figure 7 on page 11. If using a single PC,
connect both development boards to the PC using two serial cables (or USB-to-serial
AN021204-0813 Page 16 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
cables), then open two HyperTerminal applications. HyperTerminal settings must be
57600 bps, 8 data bits, 1 stop bit, and no parity.

2. In ZDS II – eZ80Acclaim!, open the AN0212.zdsproj project file.

3. From the Build menu, select Set Active Configuration; the Select Configuration Dia-
log will appear. Choose the appropriate build configuration for the development board
you are working with. Table 6 lists the available development boards and the appropri-
ate build configurations for each board. For the application to run without ZDS II,
select the appropriate release configuration. The debug configuration loads the code
into the RAM area only; therefore, the application cannot run when removed from
ZDS II.

When using the eZ80F91x150MODG module together with the eZ80F910300ZCOG
evaluation platform, use the ICS1894_phy.h header file instead of the
AMD79C874_phy.h header file. To learn more, refer to the Zilog application note titled
Porting RZK/ZTP Applications to the eZ80F91x150MODG Module (AN0362).

4. Click Rebuild All, then download the code.

5. Repeat steps 3 and 4 to configure the second development board.

6. Reset both boards. Each of the HyperTerminal applications will display a welcome
message, as shown in Figure 8.

Table 6. Build Configurations for Each Development Board

Development Board Build Configuration

eZ80F910300ZCOG Debug_DevPlatform_RAM

Release_DevPlatform_FLASH

eZ80F910200KITG Debug_ModDevKit_RAM

Release_ModDevKit_FLASH

eZ80F910300KITG Debug_300KITG_RAM

Release_300KITG_FLASH

Note:
AN021204-0813 Page 17 of 21

http://www.zilog.com/docs/appnotes/AN0362.pdf

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
7. On Board #1, enter any string in the HyperTerminal window and press the Enter key
on your keyboard. As a result, Board #2 should be able to receive and display data in
its HyperTerminal window.

Figure 8. Hyper Terminal Welcome Message

Figure 9. HyperTerminal Window for Board #1
AN021204-0813 Page 18 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
8. Repeat Step 7, but this time, enter a string in the HyperTerminal window of Board #2.
The HyperTerminal window for Board #1 should display the received data.

Equipment Used

The tools used to create and test this application are:

• ZDS II – eZ80Acclaim! v5.2.1

• Two eZ80F91 development boards

• One or two USB SmartCables

• Crossover cable

• Two RS232 cables (or USB-to-serial cables)

Summary

The Ethernet Frame Transmission application discussed in this document demonstrates
how to use the eZ80F91 MCU to send and receive data across the Ethernet medium. By
using the Ethernet IEEE 802.3 frame format, the basic principles of a number of TCP/IP
protocols such as UDP, PPP, etc are introduced.

Figure 10. HyperTerminal Window for Board #2
AN021204-0813 Page 19 of 21

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
References

The documents listed below are associated with the eZ80F91 MCU; each is available free
for download from the Zilog website.

• eZ80F91 Product Specification (PS0192)

• eZ80F91 ASSP Product Specification (PS0270)

• eZ80F91 Modular Development Kit (eZ80F910200KITG) User Manual (UM0170)

• eZ80F91 Development Kit (eZ80F910300ZCOG) User Manual (UM0142)

• eZ80F91 Development Kit (ez80F910300KITG) User Manual (UM0244)

• Zilog Developer Studio II – eZ80Acllaim! User Manual (UM0144)

• Porting RZK/ZTP Applications to the eZ80F91x150MODG Module Application Note
(AN0362)

• eZ80Acclaim!/eZ80AcclaimPlus! Ethernet Modules Product Specification (PS0306)

The following documents are published externally, and are available on their respective
websites.

• IEEE 802.3 Standard

• AMD AM79C874 PHY Datasheet

• Micrel KS8721 PHY Datasheet

• IDT ICS1894 PHY Datasheet
AN021204-0813 Page 20 of 21

http://www.micrel.com/index.php/en/products/lan-solutions/phys/article/25-ksz8721bl.html
http://www.zilog.com/docs/ez80acclaim/ps0192.pdf
http://www.zilog.com/docs/ez80acclaimplus/PS0270.pdf
http://www.zilog.com/docs/ez80acclaim/devtools/um0170.pdf
http://www.zilog.com/docs/ez80acclaim/devtools/um0142.pdf
http://www.zilog.com/docs/devtools/um0244.pdf
https://www.idt.com/document/1894-40-datasheet
http://www.zilog.com/docs/devtools/um0144.pdf
http://support.amd.com/us/Embedded_TechDocs/22235_am79c874_revK.pdf
http://standards.ieee.org/about/get/802/802.3.html
http://www.zilog.com/docs/PS0306.pdf
http://www.zilog.com/docs/appnotes/AN0362.pdf
http://www.zilog.com/docs/appnotes/AN0362.pdf

Ethernet Frame Transmission Using the eZ80F91 MCU
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2013 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

eZ80 is a trademark or registered trademark of Zilog, Inc. All other product or service names are the
property of their respective owners.

Warning:
AN021204-0813 Page 21 of 21

http://support.zilog.com
http://www.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

	Application Note:Ethernet Frame Transmission Using the eZ80F91 MCU
	Abstract
	Features
	Discussion
	The OSI Model
	eZ80F91 MCU EMAC
	Hardware Architecture
	eZ80F91 MCU Development Boards
	Software Implementation
	Testing/Demonstrating the Application

	Summary
	References
	Customer Support

