Z8051™ Family of 8-Bit Microcontrollers

Z8051 On-Chip Debugger
and In-System Programmer

User Manual

UMO024002-0512

Copyright ©2012 Zilog®, Inc. All rights reserved.
www.zilog.com

http://www.zilog.com

78051 On-Chip Debugger and In-System Programmer
User Manual

A Warning: DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A criti-
cal component is any component in a life support device or system whose failure to perform can be reason-
ably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2012 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8051 is a trademark or registered trademark of Zilog, Inc. All other product or service names are the
property of their respective owners.

UMO024002-0512

78051 On-Chip Debugger and In-System Programmer
User Manual

Revision History

Each instance in the Revision History table below reflects a change to this document from
its previous version.

Revision Page
Date Level Description No
May 02 Updated for improved usability. All
2012
Mar 01 Original issue. All
2012

UM024002-0512 Revision History

78051 On-Chip Debugger and In-System Programmer
User Manual

Table of Contents

ReVISION HiStoryo iii
List Of FIgUIES . . oo vi
INtrOdUCHION . . . e 1
The Z8051 ONn-Chip DebUgQerot e 2
FEatUNES .o 3

Install the Z8051 OCD Software and Documentation 3
Z8051 OCD Driver Installation i i 4
Understanding the OCD Menu Functions, 12

File MENU ... e 12
Emulation Menu 15
Break/Configure MENU 17

VIBW MBNU . e e 21
WiIndow MenU o 31

Child WiNndows o e e 34
Z8051 Basic Registers WINdOW 34

Code Disassemble Window i 37

Code DUMP WINAOW . ..ot e e e 40
XDATADUMP WINAOW . . . oo e e 44

IRAM DUMp WINdoW e e 48
SFRDUMP WINAOW 50

Watch Global Window e e e 52

Watch Local Window e e e e 54
TextFile WIndow 57

The Z8051 OCD In-System Programimero vt e e s 64
FEatUNES . e 65
Connectthe Hardware it e e e 65
APy POWET o 66
Understanding the OCD ISP Menu Functionsy 66
HexData MenU e e 66

Program MenuU 73
WiINdow MenU ... o 75

UM024002-0512 Table of Contents

78051 On-Chip Debugger and In-System Programmer
User Manual

Child WINdOWS . .. oo 79
Code DUmMp WINAOW oo 80

XData Dump WINdoW e 81
Appendix A. OCD Driver Installation on Windows Vista Systems 82
Appendix B. OCD Driver Installation on Windows XP Systems 85
CUSIOMET SUPPOI . . o ettt e e e e e e 88

UM024002-0512 Table of Contents

78051 On-Chip Debugger and In-System Programmer
User Manual

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.

UMO024002-0512

On-Chip Debugger Screen 2
Install Device Driver Dialog, Windows 7 5
Browse For Driver Dialog, Windows Vista 6
Can’t Verify Publisher Dialog, Windows Vista 7
Successfully Installed Dialog, Windows Vista 8
Unsuccessful Installation, Scenariol 9
Unsuccessful Installation, Scenario 2 oo 10
Device Manager Dialog, Windows 7 11
The OCD’sFile MeNU oo e 12
ObjectFile Dialogo 13
OpenFileDialog i e 14
Break Debug Dialogcc i 14
The OCD’s Emulation Menu i 15
The OCD’s Break/Configure Menu 17
Break Control Dialogo 18
Break BEFORE Timing Diagram i, 18
Break AFTER Timing Diagram i, 19
Peripheral Control Dialog i, 19
Z51F0811 MCU Configuration Example 20
The OCD’SVIieW MeNnu e 22
The Basic RegistersDialog 23
Code Disassembler Dialog 24
CodeDumpDialog ... e 25
XDATADuUmpDIalog 26
IRAMDUmMp Dialog ... 27
SFRDumpDIialog ... 28
Global VariablesDialog i i 28
Local Function Dialog 29
ASample TextFile 30
The OCD’s WIindow MeNnUt 31
Cascaded WINAOWS ot e 32
Tiled WINdOWSo 33
Using the Basic Registers Function, #10of6 34

List of Figures

Vi

Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.

UMO024002-0512

78051 On-Chip Debugger and In-System Programmer
User Manual

Using the Basic Registers Function, #20of6 35
Using the Basic Registers Function, #30f6 35
Using the Basic Registers Function, #40f6 36
Using the Basic Registers Function, #50f6 36
Using the Basic Registers Function, #60f 6 37
Using the Code Disassembler Function, #1of3 38
Using the Code Disassembler Function, #20f3 38
Using the Code Assembler Function, #30f3 39
Using the PC Break Toggle Function 40
Using the Code Dump Function, #1of2 41
Using the Code Dump Function, #20f2 42
The Code Dump Function’s Goto/Input Dialog 43
The Code Dump Function’s Pattern Load Dialog 43
The Code Dump Function’s Pattern Save Dialog 44
The Code Dump Function’s Pattern Fill Dialog 44
Using the XDATA Dump Function, #1of2 45
Using the XDATA Dump Function, #20f2 46
The XDATA Dump Function’s Goto/Input Dialog 46
The XDATA Dump Function’s Pattern Load Dialog 47
The XDATA Dump Function’s Pattern Save Dialog 47
The XDATA Dump Function’s Pattern Fill Dialog 48
Using the IRAM Dump Function, #1of2 49
Using the IRAM Dump Function, #20f2 50
Using the SFR Dump Function, #10f3 51
Using the SFR Dump Function, #20f3 51
Using the SFRDump Function, #30of3 52
The Watch Global Function’s Global Variables Dialog 53
Adding AGlobal Symbol 53
Editing A Global Symbol 54
The Watch Local FunctionDialog oot 55
Editing A Local Symbol 55
Example Watch Local Function, #1of2 56
Example Watch Local Function, #20f2 57
Using the Text File Function, #Lof 5 58
Using the Text File Function, #20of5 58
Using the Text File Function, #30of5 59

List of Figures

Vii

Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.

UMO024002-0512

78051 On-Chip Debugger and In-System Programmer
User Manual

Text File Child Window e 60
Code Disassembler Child Window, 61
Using the Text File Function, #4of5 62
Using the Text File Function, #50f5 63
Example On-Chip Debugger ISP Screen oo 64
OCD Hardware ISP Pin Assignment (Bottom View) 65
The OCD ISP’sFile Menu e 67
Device SelectDialogoovii 68
Fill BufferDialog e 69
FileOpenDialog ... e e 70
OCDISP Dialog . ..ot 71
Select Device ToRead Dialog 72
Most Recently Used Files 73
The OCD ISP’sProgram Menut 73
Configuration Dialog 75
The OCD ISP’SWindow Menu 76
Open CODE Dump ChildWindow i, 76
Open XData Dump Child Window 77
Cascading ChildWindows i i 78
Tiled Child WIindows e 79
CODE Dump Child Windowo 80
XData Dump ChildWindow i 81
Found New Hardware Dialog, Windows Vista 82
Install Device Driver Dialog, Windows Vista 83
Couldn’t Find Driver Dialog, Windows Vista 84
The Found New Hardware Wizard Welcome Screen 85
The Found New Hardware Wizard’s Browse Screen 86

List of Figures

viii

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Introduction

The 28051 On-Chip Debugger (OCD) and In-System Programmer (ISP) applications have
been developed to support Zilog’s Z8051 8-bit MCUSs. This document describes how to set
up and use the Z8051 OCD and ISP programs with your Z8051 Development Kit.

UM024002-0512 Introduction

78051 On-Chip Debugger and In-System Programmer
User Manual

The Z8051 On-Chip Debugger

The 28051 On-Chip Debugger enables a development PC to communicate with your target
Z8051-based MCU. The OCD interface is used to connect the development PC and the Z8051
MCU. The OCD controls the Z8051 MCU?’s internal debugging logic, including emulation, step
run, monitoring, etc., and can read or change the value of the Z8051 MCU’s internal memory
and 1/0 peripherals.

The Z8051 OCD supports emulation and debugging at the maximum frequency of the MCU
and can support In-System Programming (ISP), thereby eliminating the requirement for an
expensive emulator system.

The Z8051 OCD Debugger works with the Microsoft Windows XP, Vista (32/64) and
Windows 7 (32/64) operating systems.

See the example On-Chip Debugger Screen shown in Figure 1.

Figure 1. On-Chip Debugger Screen

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

Features

The key features of the Z8051 On-Chip Debugger are:

Supports Zilog’s 8-bit Z8051 Family of MCUs

Loads HEX and map/symbol files

Allows symbolic debugging

Supports the internal code memory of the target MCU

Supports In-System Programming-only tools

Displays code space using a disassembler

Supports line assembly functions

Toggles Program Counter (PC) breakpoints

Supports the display and modification of RAM, SFR, registers, etc.
Displays code, XDATA area using dump format

Device autodetect:

— Device configuration is not required

Operating frequency:

— Supports the maximum frequency of the target MCU

Operating voltage:
— Supports the entire voltage range of the target MCU

Clock source:
— Supports all X,y internal/external RCs, etc.

Display emulation clock:
— Counts and displays executed machine cycles

Emulation and debugging:
— Supports free run, step run, autostep run, etc.

Save and load the development environment

Install the Z8051 OCD Software and Documentation

The 28051 On-Chip Debugger (OCD) interface is the interface by which your PC will
communicate with the Z8051 MCU to download and execute code. In addition to the
OCD, software such as development tools and sample applications will be installed.

UMO024002-0512

The Z8051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

} Note: If you have already installed the Z8051 software and documentation from the CD-ROM
following the procedure on the paper insert in your kit (FL0138 or FL0139), skip this sec-
tion and proceed to the Z8051 OCD Driver Installation section, below.

Observe the following procedure to install the Z8051 On-Chip Debugger software and
documentation on your computer.

1. Ensure that the OCD interface hardware is not connected to your PC.

2. Insert the Z8051 Software and Documentation CD into your computer’s CD-ROM
drive. The setup program launches automatically. If the setup program does not launch
automatically, open Windows Explorer, browse to your CD-ROM drive, and double-
click the file labeled Z8051_<version_number>.exe.

} Note: In this filename, <version_number> refers to the version number of the OCD Software
and Documentation release. For example, this version number may be 1.0.

3. Follow the on-screen instructions to complete the OCD software installation.

Z8051 OCD Diriver Installation

The driver programs for the Z8051 On-Chip Debugger are copied during the software and
documentation installation. In the following procedure for PCs running Windows 7 32-
and 64-bit operating systems, ensure that the target side of the OCD will remain uncon-
nected while you install these drivers.

} Note: If you are running Windows Vista, see Appendix A on page 82 to install your device driv-
ers. If you are running Windows XP, see Appendix B on page 85.

1. Connect the OCD hardware to the USB port of your PC by connecting the A (male)
end of one of the two USB A (male)-to-Mini-B cables with the host PC’s USB port.
Connect the Mini-B end to the OCD device.

2. After the PC detects the new hardware, it will display the Installing device driver soft-
ware dialog shown in Figure 2.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 2. Install Device Driver Dialog, Windows 7

IMPORTANT NOTE: If you should encounter the scenarios presented in Figures 6 or 7, right-click your
mouse on ZILOG OCD I/F (highlighted in Figure 6) or Unknown device (highlighted in Figure 7) and
select Update Driver Software...

3. Select Browse my computer for driver software (advanced) to display the dialog
shown in Figure 3, which prompts you to key in or browse for the location of the . inf
file. Depending on the type of computer you use (32- bit or 64-bit), use the Browse
button to navigate to one of the following paths, then click the Next button.

— On 32-bit machines, use the following path:
<Z8051 Installation>\Z8051 <version_number>\device drivers\OCD USB\x32

— On 64-bit machines, use the following path:
<Z8051 Installation>\Z8051_<version_number>\device drivers\OCD USB\x64

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 3. Browse For Driver Dialog, Windows Vista

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

4. When Windows prompts you whether to install or not install, as shown in Figure 4,
click Install this driver software anyway and wait until the installation is completed
(Windows may prompt you more than once).

Figure 4. Can’t Verify Publisher Dialog, Windows Vista

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

5. When the installation is complete, the screen shown in Figure 5 will appear. Click
Close to exit the OCD driver installation.

Figure 5. Successfully Installed Dialog, Windows Vista

) Note: On some installations, the Found New Hardware screen shown in Figure 5 may also dis-
play the text string, Zilog Z8051 USB OCD - No Firmware. This occurrence is hormal
and can be disregarded.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 6. Unsuccessful Installation, Scenario 1

UMO024002-0512 The 28051 On-Chip Debugger

UMO024002-0512

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 7. Unsuccessful Installation, Scenario 2

The Z8051 On-Chip Debugger

10

6.

UMO024002-0512

78051 On-Chip Debugger and In-System Programmer
User Manual

If Zilog 28051 USB OCD appears in the Device Manager (as highlighted in Figure 8),
the OCD driver software has been successfully installed.

Figure 8. Device Manager Dialog, Windows 7

The Z8051 On-Chip Debugger

11

78051 On-Chip Debugger and In-System Programmer
User Manual

Understanding the OCD Menu Functions

This section describes the operation of the File, Emulation, Break/Configure, View, Win-
dow menus.

File Menu

The File menu enables you to perform basic commands in the debugger environment. Its
two commands, Load Hex and Save Hex, are described in this section.

®* The Load Hex command is used to load user code to the target MCU’s code space.

®* The Save Hex command is used to save the contents of the target MCU’s code space
to a file on your computer.

The OCD’s File menu is shown in Figure 9.

Figure 9. The OCD’s File Menu

Observe the following procedure to load a user hex code file to the target MCU’s code
space.

1. Runthe Z8051 OCD software. From the Start menu, navigate to All Programs —
Zilog 28051 Software and Documentation <version_number> — Zilog Z8051
OCD <version_number>.

} Note: For a free download of the latest version of the OCD software, visit the Zilog website and
navigate via the Tools and Software menu to Software Downloads.

2. From the File menu of the Debugger, select Load Hex. The Object File dialog box
appears, as shown in Figure 10.

UMO024002-0512 The 28051 On-Chip Debugger

12

http://www.zilog.com/

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 10. Object File Dialog

3. The Hex file name panel, located on the left side of the Object File dialog, displays 16
banks. If you are using the Z8051 MCU’s LINEAR ADDRESS Mode, you are not
required to select additional banks; LINEAR ADDRESS Mode uses only Bank 0.

Click the Browse button for Bank 0 to display the Open File dialog shown in
Figure 11.

UMO024002-0512 The 28051 On-Chip Debugger

13

4.

UMO024002-0512

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 11. Open File Dialog

In the Open File dialog, select the hex file that you wish to load into the memory space
of the target MCU, and click OK.

If previous PC breakpoints exist in the debugger environment, the Break Debug dialog
box will appear, as shown in Figure 12. Click Yes if you wish to remove these break-
points, or No if you prefer to retain them.

Figure 12. Break Debug Dialog

The Z8051 On-Chip Debugger

14

78051 On-Chip Debugger and In-System Programmer
User Manual

6. The debugger will automatically search for map and symbol files associated with the
hex file and load these files to memory.

7. After the map/symbol files are loaded into memory, the debugger resets the target
MCU and moves the MCU?’s program counter to 0000h.

8. Save the current debugging environment to the hard drive of your development PC
and exit the Debugger by selecting Exit from the File menu.

Emulation Menu

The Emulation menu, shown in Figure 13, lists the controls for starting or stopping an
emulation routine. Use the Emulation menu to control the flow of code execution for
debugging purposes.

Figure 13. The OCD’s Emulation Menu

The remainder of this section describes the features of the Emulation menu.

Reset & Go

This menu selection starts an emulation from the 0000h address upon a reset of the target
MCU, and functions in a manner similar to a Power-On Reset. Emulation continues until a
breakpoint occurs or the user stops the emulation process. The Reset & Go menu is dis-
abled (greyed out) in the Emulation menu during emulation.

UMO024002-0512 The 28051 On-Chip Debugger

15

78051 On-Chip Debugger and In-System Programmer
User Manual

Go From

The Go From menu selection starts emulation from a user-specified address, and is used to
debug each software module. The user is prompted to enter an emulation start address, as
follows:

® Using LINEAR ADDRESS Mode, enter a 20-bit address directly.

® Using BANKED ADDRESS Mode, enter 4 bits of bank and 16 bits of address. Each
bank size is smaller than or equal to 64 KB.

The Go From function is disabled (greyed out) in the Emulation menu during emulation.

Go

The Go function begins emulation from the current address, which can be characterized
as:

® The last known (stopped) address that was held in the Program Counter from a previ-
ous emulation session
® The point at which a break occurs, such that:

— If abreak occurs before the breakpoint, the current address is the PC breakpoint
address

— If a break occurs after the breakpoint, the current address is the next execution
address of the PC breakpoint address

® |f the target MCU was reset, the reset address is 0000h.

The Go function is disabled (greyed out) in the Emulation menu during emulation.

Step

The Step function is used to debug each instruction flow and process one step at a time;
the target MCU program flow will execute only one instruction at a time, then halt.

If the MCU receives a CALL instruction, it executes a Step run into the subroutine. If
MCU is in STOP Mode, the Step run is ignored. The Step function is disabled (greyed out)
in the Emulation menu during emulation.

Step Over

The Step Over function is used to check main program flow when each subroutine had
been tested already. This function is similar to the Step function, with the exception of its
subroutine call. If the MCU receives a CALL instruction, the debugger assumes the CALL
and its subroutine to be one instruction, even if the subroutines are nested.

UMO024002-0512 The 28051 On-Chip Debugger

16

78051 On-Chip Debugger and In-System Programmer
User Manual

If the Step Over function reaches a PC breakpoint condition, emulation is halted. This
function is disabled (greyed out) in the Emulation menu during emulation.

Step Auto

Using the Step Auto function, a step run is executed every 100ms; execution will continue
unless the user halts it. This function is disabled (greyed out) in the Emulation menu dur-
ing emulation.

Break

Using the Break function, emulation is halted immediately, even if the MCU is in STOP
Mode. This function is disabled (greyed out) in the Emulation menu during emulation.
Reset

The Reset function releases a hardware reset signal to the target MCU, which is then rein-
itialized. Emulation is not halted when the MCU is emulating; however, this function has
no effect when the target MCU is idle. The Reset function is enabled in the Emulation
menu whether an emulation is running or is idle.

Break/Configure Menu

The Break/Configure menu, shown in Figure 14, lists PC breakpoint control, device con-
figuration and hardware test functions.

Break/Configure

Clear ALL break

Break BEFORE

R Peripheral control

Chip configuration

H/W test to repair

Figure 14. The OCD’s Break/Configure Menu

Clear ALL Break

The Clear ALL Break function immediately clears all PC breakpoints. This menu is dis-
abled (greyed out) in the Break/Configure menu during emulation.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

18

Break BEFORE (AFTER)

The Break BEFORE (AFTER) function prompts the user to select a PC breakpoint event
either before or after execution. When selecting this menu option, the Break Control dia-
log box appears, prompting the user to choose one of these two conditions; see Figure 15.

Figure 15. Break Control Dialog

Selecting Break before execution causes a PC breakpoint when the PC reaches the PC
breakpoint address; however, a PC breakpoint position will not be executed, as illustrated
in the timing diagram shown in Figure 16.

PC Break >< PC+1 >< PC+2 >< PC+3 ><
>< PC

Fetch
signal

o
of

operand =]

of

operan
d

Break
detect

Handl

Figure 16. Break BEFORE Timing Diagram

Selecting break after execution causes a PC breakpoint to occur when the PC reaches the
PC breakpoint address, and a PC breakpoint position is executed, as illustrated in the tim-
ing diagram shown in Figure 17.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

19

PC Break >< PC+l >< PC+2 >< PC+3 ><
PC

Fetch
signal

o
ot

opera
nd

of
of

operand

Break
detect

Handl

Figure 17. Break AFTER Timing Diagram

This Break BEFORE (AFTER) function is disabled (greyed out) in the Break/Configure
menu during emulation.
Peripheral Control

Selecting the Peripheral Control function from the Break/Configure menu prompts the
user to determine whether the target MCU’s internal peripheral functions should continue
to operate or remain idle, as shown in Figure 18. These peripherals are always running
during emulation by default.

Figure 18. Peripheral Control Dialog

The purpose of the Peripheral Control function is to tell the OCD whether the peripherals
should be stopped or continuously run during Break (Debug) Mode. All peripherals,

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

including the PLL and ADC functions, will be stopped when selecting Stopped concur-
rently. The Peripheral Control menu selection is disabled (greyed out) in the Break/Con-
figure menu during emulation.

} Note: The Peripheral Control function does not control each peripheral individually.

Chip Configuration

The Chip Configuration function is used to configure the target MCU’s 1/0 pin function,
oscillation method, code protection, etc. Each device series features different configura-
tions. If a configuration changes, the user must turn off power to the target MCU, then
power it on again. As a result, configurations can be influenced when power rises to oper-
ational voltage.

The Configuration dialog box shown in Figure 19 offers an example configuration for the
Z51F0811 device.

Figure 19. Z51F0811 MCU Configuration Example

The Chip Configuration menu selection is disabled (greyed out) in the Break/Configure
menu during emulation.

UMO024002-0512 The 28051 On-Chip Debugger

20

78051 On-Chip Debugger and In-System Programmer
User Manual

Hardware Test to Repair

The Hardware Test to Repair function is used for OCD emulator testing and repairing. Its
subfunctions are not available to the user.

View Menu

The View menu, shown in Figure 20, supports the opening of child windows. The Debug-
ger offers the following nine types of child windows:

® MCS51 basic registers

® Code disassembly

® Code dump

* XDATA dump
®* IRAM dump
® SFRdump

® Watch Global
® Watch Local
® Textfile

UMO024002-0512 The 28051 On-Chip Debugger

21

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 20. The OCD’s View Menu

Each of the View menu’s functions are described in this section.

Toolbar

The Toolbar menu selection displays or hides the debugger’s toolbar. This toolbar is
located on the upper left side of the debugger frame. The toolbar displays frequently used
menu buttons for the user’s convenience.

Emulation Toolbar

This menu selection displays or hides the emulation toolbar, which is located to the right
of the main toolbar described above. The emulation toolbar displays frequently used emu-
lation control menu buttons for the user’s convenience.

Window Open Bar

This menu selection displays or hides the window open bar, which is located to the right
side of the emulation toolbar described above. The window open bar displays menu but-
tons that can be used to open child windows.

UMO024002-0512 The 28051 On-Chip Debugger

22

78051 On-Chip Debugger and In-System Programmer
User Manual

Status Bar

This menu selection displays or hides the status bar, which is located at the bottom of the
debugger frame. The status bar displays simple help features, the emulation clock count,
etc.

Z8051 Basic Registers

This menu selection opens a window that displays the Z8051 Series’ basic registers. If this
window is already open, selecting the Z8051 Basic Registers option will cause this win-
dow to appear at the top-most level of the debugger frame. See Figure 21.

Figure 21. The Basic Registers Dialog

The Z8051 Basic Registers menu selection is disabled (greyed out) in the View menu dur-
ing emulation.

Code Disassembly

This menu selection opens a window which displays the memory spaces containing disas-
sembled code. If this window is already open, selecting Code Disassemble from the
View menu will cause this window to appear at the top-most level of the debugger frame.
See the example in Figure 22.

UMO024002-0512 The 28051 On-Chip Debugger

23

78051 On-Chip Debugger and In-System Programmer

[=r Code disassembler

Bank#|00 - Goto

0_0oos3
0_0oo0s
0_o0oe
0_0oo7?
0 0oo9
0_0ooge
0_0ooD
0 _0oo0F
0_oao1in
0_no11
0_0o1z
0_n0o14
0_0ole
0_0o1?
0_oo149
0_0o01BE
0 001Dl

n nn:n
4

0201B4 LJMP
7BFF MOY
E4 CLR
FD MOov
7F01 MOW
aB0a MO
8409 MO
8904 MOY
EF Moy
14 DEC
600F JZ
14 DEC
6011 JZ
14 DEC
6013 JZ
2403 ADD
7012 JHZ
750080 MOV

annm STHP

mn

== Een o)

PC | 00000 Change

001BA
R3. #0FF
&

R5. A
R7 . #001
0og. R3
009, R2
004 R1
4. E7

il

noozz2

il

nooz?

il

nooz2c
A, #003
ooo2yE
0aD, #0820
nnn=w

Figure 22. Code Disassembler Dialog

User Manual

24

The Code Disassemble menu selection is disabled (greyed out) in the View menu during
emulation.

Code Dump

This menu selection opens a window which displays the contents of code memory in a
dumped format. If this window is already open, selecting Code Dump from the View
menu will cause this window to appear at the top-most level of the debugger frame. See
the example in Figure 23.

UMO024002-0512

The Z8051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

[C1 CODE : Bank_0 004B - Page CS SDSF [& |3

Bank#[00 Goto Pattern Load Save | Fil ‘
0 01 2 3 4

s 6 7T 8 98 A B C D E F

0_ 0000 02 01 BA 7B FF E4 FD 7F 01 BB 08 B84 0% 8% 04 EF
010 14 &0 OF 14 &0 11 14 &0 13 24 03 70 12 75 0D &0
020 80 0D 75 0D CO 30 03 75 0D 94 80 03 73 0D D4 ED
0 0030 25 0D F5 0D C2 00 F5 OE 12 01 80 E4 F5 OB AB 08
0 0040 AR 09 A9 OA 85 0B 82 75 &3 00 12 Mo 2 F5 0C &0
|| 11 D2 00 85 OC OE 12 01 &0 05 OB E5 OB C3 94 40
0a0 40 DC 22 C2 88 C2 B89 C2 B8nh 12 01 5F 7F 2 2 01

) RS TF 20 12 01 AS TF 80 12 01 A8 12 01 20 7F CO

00 12 01 &% 12 01 RO FF 10 12 01 A9 7F 00 7E 10 12
|| 01 &3 E4 12 01 A8 T7F &0 12 01 A9 C2 00 75 QE 01
0 00RO 12 01 &0 C2 00 75 OE 28 02 01 80 75 A0 FF 75 38
0_00BO FF 12 00 &3 7B FF 7A 01 7% 3B E4 FD FF 12 00 085

0 0020 7R 01 79 44 12 00 03 12 01 5F 7B FF 7R 01 79 4D
E4 FD FF 12 00 08 7 01 79 56 12 00 03 12 01 5F
30 D2 BB 01 OC E5 &2 2% F5 &2 E5 83 3A F5 83 EO
0 _00FO 22 50 06 E3 25 82 E6 22 BE FE 06 E® 25 82 F&

Fr]
o

Figure 23. Code Dump Dialog

The Code Dump menu selection is disabled (greyed out) in the View menu during emula-
tion.

XDATA Dump

This menu selection opens a window which displays the contents of XDATA memory in a
dumped format. The term XDATA refers to the external data memory contained in Z8051
Series devices. If this window is already open, selecting XDATA Dump from the View
menu will cause this window to appear at the top-most level of the debugger frame. See
the example in Figure 24.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer

XDATA - Bank_0 OOCF : Page CS 0096

Load

Save |

User Manual

Bank#|00 - Goto Pattern
01 2 3 4

3 6 7T

8

8 A

B C

0_ 0000 12 34 50 00 00 00 0O 0O
0 0010 00 00 00 00 00 00 00 00
0 0020 00 00 00 00 00 OO0 00 00
0 0030 00 00 00 00 00 OO0 0O 00
0 0040 00 00 Q0 OO 00 00 00 00
0_0050 00 00 00 00 00 OO0 OO0 00
0_ 0080 00 00 00 00 00 OO0 00 00
0 0070 00 00 00 00 00 OO0 00 00
0_ 0080 00 00 00 00 00 OQ 00 00
0 0080 00 00 00 OO0 OO0 OO OO OO0
0 00RO OO0 OO0 Q0 OO 00 OO0 00 00
0_00BO 00 00 00 00 00 00 00 00
0_00C0 00 00 00 00 00 OO0 00 00
0_0o0Do 00 00 00 00 00 OO0 00 00
0 _00EQ 00 00 00 00 00 00 00 00
0 _00FO 00 00 00 00 00 00 0O 00

Figure 24. XDATA Dump Dialog

aa
aa
aa
oo
an
an
i}
oo
oo
oo
an
an
oo
aa
aa
oo

aa
oo
aa
oo
aa
aa
aa
aa
aa
oa
aa
aa
aa
oo
aa
oo

aa
oo
oo
g}
aa
aa
o0
0o
0o
[}
an
aa
aa
oo
oo
oo

0o
0o
0o
o]
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o

aa
aa
aa
aao
aa
aa
aa
aa
aa
aao
aa
aa
aa
aa
aa
aao

00 00 00
00 00 o0
00 00 00
a0 a0 oo
a0 a0 oo
o0 oo oo
00 00 00
00 00 o0
00 00 00
a0 a0 oo
a0 oo oo
o0 oo oo
00 00 00
00 00 o0
00 00 00

The XDATA Dump menu selection is disabled (greyed out) in the View menu during emu-
lation.

IRAM Dump

This menu selection opens a window which displays the contents of IRAM memory in a
dumped format. The term IRAM refers to the internal data memory contained in Z8051
Series devices. If this window is already open, selecting IRAM Dump from the View menu
will cause this window to appear at the top-most level of the debugger frame. See the
example in Figure 25.

UMO024002-0512

The Z8051 On-Chip Debugger

26

78051 On-Chip Debugger and In-System Programmer
User Manual

27

iT; IRAM : 0CS o =& |
Pattern Save

0 1 2 3 4 5 6 7 &4 8 A B C D E F
0o0od EC BB FB E3 B7 4R 52 00 18 B2 F4 &2
0010 4D 95 B3 EC EB 66 ED A9 E1 &3 BB 08
0020 DF 02 AC 01 30 80 4B 20 4C 81 FA BaA
0030 55 53 C1 80 73 9A 22 10 8B DC 40 &4
0040 D9 A6 F9 CO CO D9 21 42 75 39 F&
o050 2 2% Bi 62 12 66 82 D1 11 7C 73
00&e0 €2 C9 A3 F4 C3 CB 00 AC OE D7 C1
0070 DO E3 &2 E9 56 D2 E9 94 20 FC 7TF

0ogo 00 C2 &0 6F FB 5B E3 51 12 A7 B3
000 OB EE 00 i 71 7B 35 6D 1F E6 34 26
00a0 DD 7F BD) B& EB 2F ED BE4 1D 5D C5
00BO 44 &0 20 ¢ 49 C7 55 S5E 29 3F 76 65 T7E DD 77 EF
00Co AD 0& 26 i Mo F4 3E 82 91 32 4B F9 Be 1E F5
pood 7F C1 ES FF B B& RE 7F 43 2E RO B7 2D DD DA
00ED E5 BE C1 FF FC CF D5 43 3C 27 76 4E 5F 38 BS
00F0 E7 1E B2 BE BE BS BF EO0 3F E1 &9 77 5E CD ED

Figure 25. IRAM Dump Dialog

The IRAM Dump menu selection is disabled (greyed out) in the View menu during emula-
tion.

SFR Dump

This menu selection opens a window which displays the contents of the SFR peripherals in
a dumped format. The term SFR refers to the special function registers contained in Z8051
Series devices. If this window is already open, selecting SFR Dump from the View menu
will cause this window to appear at the top-most level of the debugger frame. See the
example in Figure 26.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer

User Manual

28

%4 SFR: 0AB o] @ |-
Pattern Eefreshl Save
0 1 2 3 4 5 & 7 & 9% A B C D E F
gogo 02 07 00 OO0 OO0 00 D9 00 O3 OO0 04 87 FB 00 00 DF
oogo o4 00 00 OO 00 Q0 OO0 00 00 00 BF O1 FO 00 00 00
o0 Co 00 00 00 00 00 OO0 00 OO0 00 00 OO0 00 Q0 00
00 00 00 00 00 00 00 OO0 00 00 7F T7F 00 00 00 00
00 00 00 00 OO0 00 00 OO0 00 OO0 00 00 00 00 Q0 00
goco 00 00 00 00 00 00 42 00 00 OO0 00 00 3F 3F 01 FF
OO0OEC0 00 00 00 OO0 00 B0 FF OO0 OO0 OO 00 O3 80 00 00 00
0o0F0 Q0 00 00 00 00 Q0 OO0 00 00 00 03 CO &0 08 00 00

Figure 26. SFR Dump Dialog

The SFR Dump menu selection is disabled (greyed out) in the View menu during emula-

tion.

Watch Global

This menu selection opens a window that displays global variables. If this window is
already open, selecting Watch Global from the View menu will cause this window to
appear at the top-most level of the debugger frame. See the example in Figure 27.

[HL Global variables = =])
| Add symbol | Remove symbol |

Type | Attribute | Mame Value | Address -
BIT BIT LCD E 0 0x88.2

BIT BIT LCD RS 1 0x88.0

BIT BIT LCD_RwW 1 0x88.1 E
unsigned char DATA RO_ic 0x0 0x98

unsigned char DATA RO_port 02 0x80 A
BIT BIT RO3 0 0x80.3
unsigned char DATA Rl_ic 0x0 OxAD 7

4|

T

Figure 27. Global Variables Dialog

The Watch Global menu selection is disabled (greyed out) in the View menu during emu-

lation.

UMO024002-0512

The Z8051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

Watch Local

This menu selection opens a window that displays local variables. If this window is
already open, selecting Watch Local from the View menu will cause this window to
appear at the top-most level of the debugger frame. See the example in Figure 28.

L1 Local function() - LCD_BUSY [|- (3]
Type | Aftribute Mame Value | Address |
BIT BIT test 0 0x20.1

int DATA i Ox1060 06

Figure 28. Local Function Dialog

The Watch Local menu selection is disabled (greyed out) in the View menu during emula-
tion.

Text File

This menu selection opens a window which displays the contents of a text file.

If a selected text file is already open, selecting Text File from the View menu will cause
the window containing the text file to appear at the top-most level of the debugger frame;
otherwise, selecting Text File will open a new window. See the example text file in
Figure 29.

UMO024002-0512 The 28051 On-Chip Debugger

29

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 29. A Sample Text File

The Text File menu selection is disabled (greyed out) in the View menu during emulation.

UMO024002-0512 The 28051 On-Chip Debugger

30

78051 On-Chip Debugger and In-System Programmer
User Manual

Window Menu

The Window menu, shown in Figure 30, can be used to modify the arrangement of child
windows or to directly select a child window.

Window

Cascade
Tile

Close

1 Basic registers

2 CODE : Bank_0 0000 : Page CS 0200
3 XDATA : Bank_0 0000 : Page C5S 0096
4 [RAM - 000

5 STARTUP.AS1

& Code disassembler

7 main.c

8 SFR - 080

Figure 30. The OCD’s Window Menu

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

Cascade

This menu selection arranges opened child windows in a stepped visual sequence, as
shown in Figure 31.

Figure 31. Cascaded Windows

UMO024002-0512 The 28051 On-Chip Debugger

32

78051 On-Chip Debugger and In-System Programmer
User Manual

Tile

This menu selection arranges opened child windows in a partitioned display, as shown in
Figure 32.

E= Code disassembler [= =] XDATA : Bank_0 0000 : Page CS 0096 [o)l= =]
Bank#|00 Goto | PC | 00000 Change Bank#|00 ¥ Goto Pattern Load Save Fill

0_01B4& 787F HOw RO, ¥07F - 0 1 2 3 4 5 6 7 & % A B C D E F

0_01EC E4 CIR & > =
0_01ED F6 HOV @R, & 12 34 50 00 00 00 00 00 00 00 00 OQ 00 0O Q0 Q4

00 00 00 00 00 00 00 00 0O OO0 OO0 OO0 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 004 dd
00 00 00 00 OO0 00 OO0 00 OO0 00 OO0 00 00 00 00 00
00 00 00 00 00 00 00 00 0O OO0 00 00 00 00 04 dd

0_01BE DSFD DJHNZ RO, 001ED
0_01C0D 758120 MOV 081, #020
0_01C3 0Z004B LIJKF 000AB

P

m

g—gigg gg NOP 00 00 00 00 OO 00 OO 00 OO0 00 OO0 00 00 OO0 00 00
iChicy @ i N 00 00 00 00 00 00 00 00 00 00 0O 00 00 00 00 00
- 00 00 00 00 OO 00 OO0 00 OO0 00 OO0 00 00 OO0 00 OO0
9 n C 00 00 00 00 00 00 00 00 00 00 00 40 00 40 00 00 52
17 RAM - 0C8 [=]= |[5=7] | B CODE : Bank_0 0000 : Page CS SDSF (==& [=]

Pattern Save Bank# (00 Goto Pattern Load | Save ‘ Fill |

o 1 2 3 4 5 68 7 8 9 A B C D E F o 1 2 3 4 5 6 7 8 9 A B C D E F
12 34 FB E3 BT 4A 42 00 1& 92 F4 62 10 04 AE 01 - 2 01 BA 7B FF E4 FD 7F 01 8B 08 8A 09 89 OA EF -
4D 95 8B E& EB 66 ED A9 E1 &3 BR 08 FF 30 FD 42 4 60 OF 14 €0 11 14 &0 13 24 03 70 12 75 0D &0
3F 22 2C OB 30 B0 43 20 44 81 FE FA 81 = 0 0D 75 OD CO 80 08 75 0D 94 80 03 75 0D D4 ED =
54 53 C1 80 77 98 22 10 AB DC 40 &6 28 3 5 0D F5 0D C2 00 F5 OE 12 01 80 E4 FS 0B 4B 08 3
D9 B2 99 99 CO CO [A 09 A9 OR 85 0B 82 75 83 00 12 00 E2 FS OC &0
32 68 BA D4 62 12 04 1 D2 00 85 OC OE 12 01 80 05 OB ES OB C3 94 40
Cz C9 A3 33 F4 83 :H] 0 DC 22 CZ 88 C2 89 C2 8A 12 01 SF 7F 20 12 01
90 &3 42 2L ED 56 EQ 9 TF 20 12 01 A9 7F 20 12 01 &9 12 01 R4 TF CO
0 00 E2 00 B2 GF FB 59 E3 33 82 5 2 01 B9 12 01 A0 7F 10 12 01 A% 7F 00 7E 10 12 5
£2 SFR - 080 == =] 5 Basic registers =] =[]
Pattern Save RO R1 R2 R3 R4 RS R6 R7
0 1 2 3 4 5 6 7 8 9 A B CDE F ¥ reg#o [12 [34 [FB [E3 [B7 [4a [42 [oo
00 07 00 00 00 00 D9 00 7B 00 04 &7 BB 00 00 DF
I~ Reg #1
05 00 00 00 00 00 00 00 00 00 8F 01 FO 00 00 00 = 1 |92 |F4 |62 |10 |04 |4 |O1
00 CO 00 00 00 00 OO0 00 OO0 00 00 00 00 00 0O 00 " Reg#2 |40 |95 |8 [E8 |EB |66 |ED |9
00 00 00 00 00 00 00 00 00 00 7F 7F 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 [Reg#3 |E1 |83 |BA |08 |FF |30 |FD |42
00 00 00 00 00 00 42 00 00 00 00 00 3F 3F 01 FF
00 00 00 00 00 B0 FF 00 00 00 00 03 80 00 00 00 CY AC F0 RSL RSO OV F1 PA
00 00 00 00 00 00 OO0 00 OO 00 03 CO &0 02 00 00 PsW olololololololo

Figure 32. Tiled Windows

Close

This menu selection closes the top-most child window appearing in the debugger frame.

Windows 1, 2, 3, Etc.

This menu selection assigns a sequential number (e.g., 1, 2, 3...) to each child window in
the order in which it is opened. Users can directly select any open child window by its
number. In Figure 30 on page 31, for example, selecting 6 from the Window menu will
display the Code Disassembler window as the top-most window in the Debugger screen.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

Child Windows
Child windows are secondary windows that are displayed within the main OCD window.

Z8051 Basic Registers Window

The Z8051 Basic Registers window allows users to edit the contents of the Z8051 Series
registers. Figure 33 shows an example Z8051 Basic Registers window.

= Basic registers =] = @

RO R1 R2 R3 R4 R5 Ro R7T

" Rea#t [[52 [F4 [e2 [1 [0% [22 [01
~reg#2 [|85 [[e5 |5 [e6 |0 [A%
~reg#3 [£1 [83 [oA [0 |FF [[P0 [%2
CY AC FO RS51 RSO OV F1 P&

Psw ool ofof|ofofofo]

ACC 00 DFTR 0000

B loo
cp IF | Cancel |

Figure 33. Using the Basic Registers Function, #1 of 6

Edit

The Modify button is disabled (greyed out) by default. Changing the value of a register
enables the Modify button. New register values are downloaded to the target MCU upon
clicking the Modify button.

In Figure 34, the current register bank is highlighted in the red area. Users can change reg-
ister banks by selecting or deselecting any of the registers in this current register bank.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer

o] ® &S

&5 Basic registers

CY AC FO RS1 RS0 OV F1 PA
PSW ol o|of[o]o|]o]of o

acc [oo perm [oooo
5P IF Madify | Cancel |

User Manual

Figure 34. Using the Basic Registers Function, #2 of 6

In Figure 35, the RO-R7 registers are highlighted in the red area. These registers map to
the same area as IRAM addresses in the range 00h—1Fh. Users can change these values by

entering 8-bit hexadecimal formats.

& Basic registers

=nEcn =)

RO

R3 R4 R5 RS R7

UMO024002-0512

v R [[[[5 [57 [& [2 [
™ res 1| [[52 [F# [e2 [[o% [% [o1
e 2| [[55 [[5 [5 [[0 [5
I reg 3| e [s5 [om [[[[P0 [
CY¥ AC FO RS1 RS0 OV F1 PA

ew o] o] oo o]ofolol

ACC I oa DPTR. 0000

5p I o7 Madify | Cancel |

Figure 35. Using the Basic Registers Function, #3 of 6

The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

36

In Figure 36, the red area highlights the Program Status Word (PSW), in which bit units
can be changed.

E=mi=n =
R1 R2 R3 R4 R5 Ra R7
WLFFWFFWWW
MReg#t [15 [52 [Fa [62 [[oa [[or
" Reg#2 [® [o5 [a8 |8 [e8 [6s [0 [mo
FMﬂFEWWFWWW

=] Basic registers

R51 RS0 OV F1 PA 1

cy FO
PSW JJD|D|D|D|D|D|

acc [oo pem | oooo
B [oo
cp IH | Cancel |

Figure 36. Using the Basic Registers Function, #4 of 6

In Figure 37, the red area highlights the Accumulator (ACC), the B Register (B) and the
Stack Pointer (SP) registers. Enter a number in n 8-bit hexadecimal format to change any
of these values.

£5] Basic registers

e =

[Reg #1

| Req #3

PSW

V¥ Reg =0

WWWFFWWW
|18 [92 [F4 [62 |10 Jo4 [aE [o1

Reg#2 [[95 |88 [Es |8 [es [ED [A9

FEEEFWWW
CY FO R51 RS0 OV Fl1 PA

JJDIDIDIDIDIDI

0oon

DFTR.

| Cancel |

Figure 37. Using the Basic Registers Function, #5 of 6

UMO024002-0512

The Z8051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

In Figure 38, the red area highlights the DPTR Register which displays, and can be edited
by, entering numbers in the 16-bit hexadecimal format. If the target MCU features more
than two DPTRs, the DPTR field in this dialog shows the currently selected register. If
each DPTR resides at a different address, Zilog recommends using the SFR window
instead.

£5] Basic registers =R~

RO R1 RZ2 R3 R4 R3 RG6 RY

reg#1 [[52 |74 [e2 [m [0 [22 [o1
reor2 [[55 [[[[[© [
reoss [£1 [o5 [o8 [[[[[2

CY AC FO0 RS51 R50 OV F1 PA

PSW o] o|lo]o]|of]o]olof
acc |oo [DP’I‘R 0000]

B [0

cp IH | Cancel |

Figure 38. Using the Basic Registers Function, #6 of 6

Code Disassemble Window

The Code Disassemble window displays the contents of code memory by using a disas-
semble format. All operand values must be entered in hexadecimal format. Figure 39
shows an example Code Disassembler window.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer

E=r Code disassembler [| [| [eER]
Bank#|00 Goto PC | 00000 Change
0_ooos 2Bos HOW nos ., R3 -
0_000B 82409 HOW nog ., R2

0_000Dr 8904 HOW 004, K1

0_00o0F EF Hov A R7

0_opio 14 DEC A

0_0011 e00OF JZ nQoozz2

0_oo13 14 DEC A

0_0014 6011 JZ Qooz27

0_001e 14 DEC A

0_0017 e013 JZ noozc

0_0019 2403 ADD A #003

0_001B 7012 JHZ QoozE

0_001D 750D80 HOW ooon, #080

0_ooz0 go0ob SIME 0002F

0_opz2 750DCO0 MOW noD, ¥0C0 hd

4 L

Figure 39. Using the Code Disassembler Function, #1 of 3

2

User Manual

If map/symbol files are already loaded, the affected source lines are highlighted by boxes,
as shown in Figure 40. Double-click any of these highlighted boxes to open its source file
and move to the appropriate address line.

I=r Code disassembler = ==
Bank#|00 - Goto PC | 00000 Change
0 0009 | 2aB0OS HOW nos . R3 -
0_000B B2A09 HOW no9 ., K2
0_0000 8904 Hov 004, E1
0 000F | EF MW A& R7
o_ooio0 14 DEC A
0_0011 e0O0OF JZ nQoonzz2
0_oo13 14 DEC A
0_0014 e011 JZ Qooz7
0_00le 14 DEC A
0_0017 e013 JZ noozc
0_0019 2403 ADD A, #0073
0_001B 7012 JHZ QoOo2F
0 0010 | 750080 MOV oon, #0380
0_0020 &0oD SIME 0002F
noD, #0C0 -

0 002 | 750DC0 MOw
4

L

Figure 40. Using the Code Disassembler Function, #2 of 3

UMO024002-0512

The Z8051 On-Chip Debugger

38

78051 On-Chip Debugger and In-System Programmer
User Manual

Line Assemble

The Line Assemble function supports a line assembly function in which users can change
the code space with assembly language. This function can directly change the target MCU
code space, but it does not change the source program file.

With your mouse, move the cursor to a line that you wish to change, and right-click to
open an edit field for the contents of that line, as shown in Figure 41. Change the contents
of the line by entering an instruction, operand, etc., in hexadecimal format.

I=r Code disassembler = ==
Bank#|00 - Goto PC | 00000 Change
0 0009 | 2aB0OS HOW nos . R3 -

0_000E 8a09 MOy 009 k2
0_000D 8904 MOy 004 E1

0 _000F | EF MOow A R7
0_0010 14 DEC !
0_0011 e0OF JZ noozz
0_0013 14 LEC A
0_0014 k011 JZ nooz?
0_001le 14 DEC A

0_0017 6013 JZ ooozc
0_0019 2403 ADD A, #003

0_001E 7013 THT nnnaw

WD | MOV 00D, £0380 Modify ||
0_0020 —sooo SJNE OOOZE

0 0022 | 750DC0 MOV noD, #0C0 -
]] I

Figure 41. Using the Code Assembler Function, #3 of 3

PC Break Toggle

The target MCU’s internal Program Counter (PC), sets or clears all PC breakpoint settings.
The PC breakpoint count differs in each device in the Z8051 Series; normally, eight break-
points can be set. In Figure 42, the red line represents a program counter breakpoint in the
line, and the blue line represents the current program counter.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

E=r Code disassembler (o[- [eESa]
Bank# |00 - Goto PC | OO016F Change
0_0l1sE 07 THC @Rl -
0_01sF

0_0170

0_0171

00173
0_0174 BS0OFS SIJMP 0016B

0 0176 | ED Moy 4 RS

n_n0177

0_017a

0_0174 1C DEC R4
0_017B ED MoV ARG
0_017C 4c OEL A R4

0_0170 70ES JHZ 00167

0 017F | 22 RET
0 0180] 12010F LCALT 0010F -
Fi Il I

Figure 42. Using the PC Break Toggle Function

To set or clear a PC breakpoint, set your cursor on a selected line and double-click the
mouse’s left button.

Code Dump Window

Code dump windows display each 8-bit segment of code memory in the hexadecimal for-
mat and supports the editing of this data. Each 256-byte page resides at an address in the
range xx00—xxFFh, in which xx is the number of the page.

The upper side of the Code Dump window displays the address of the current cursor posi-
tion and the checksum of the current page. The current page number is displayed as a
watermark in the center of this window. In Figure 43, for example, the page number is 00.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

I CODE : Bank_0 005A : Page CS 5D5F [& |3

Bank# /00 Goto Pattern Load Save | Fil ‘

0 1 2 3 4 5 6 7 & 9 A B C D E F

0 0000 02 01 BA 7B FF E4 FD 7F 01 BB 08 BA 09 B9 0& EF
0 0010 14 &0 OF 14 &0 11 14 &0 13 24 03 70 12 75 0D 80
0 0020 80 oD 75 0D CO 80 08 75 OD 94 80 03 75 0D D4 ED
0 0030 25 OD F5 0D C2 00 F5 OE 12 01 &0 E4 F5 OB AB 08
0 0040 22 09 AS 0OR 85 0B 82 75 83 00 12 00 E2 F5 OC &0
0 0050 11 D2 00 &5 OC OE 12 01 B8O 05 Me E5 0B C3 94 40
0 0060 40 DC 22 C2 88 C2 8% C2 BA 12 01 5F 7F 20 12 01
0 0070 A% 7F 20 12 01 A% 7F 80 12 01 A9 12 01 A0 7F CO

0 0080 12 01 A9 12 01 AO 7F 10 12 01 AS 7F 00 T7E 10 12
0 0080 01 63 E4 12 01 A9 T7F 60 12 01 A9 C2 00 75 0E 01
0 00RO 12 01 80 C2 00 75 OE 28 02 01 80 75 RO FF 75 98
0 00BO FF 12 00 &3 7B FF 74 01 7% 3B E4 FD FF 12 00 08

0 0020 JA 01 79 44 12 00 03 12 01 5F 7B FF 7A 01 79 4D
0 0000 E4 FD FF 12 00 0% 74 01 79 56 12 00 03 12 01 5F
0 00E0D 80 D2 BB 01 0C E5 82 29 F5 82 E5 &3 3R F5 83 EO
0 00F0 22 50 06 E9 25 82 F8 E6 22 BB FE 06 E9 25 82 F&

Figure 43. Using the Code Dump Function, #1 of 2

Edit

Users can change data values in the Code Dump window at any time, except during emu-
lation. The editing method is quite simple; just place the cursor where you wish to make
an edit, and write a new character pair in hexadecimal format. The color of the character
pair will change from black to red to indicate that the change was made, as highlighted in
Figure 44.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

[C1 CODE : Bank_0 0035 : Page CS 5D71 = & |3

Bank#/00 Goto Pattern Load Save | Fil |

1 2 3 4 5 6 7 834 8 A B C D E F

0
2 01 B4 7B FF E4 FD 7F 01 8B 08 BX 09 89 0A EF
2 34 32 51 20 11 14 &0 14 12 34 70 12 75 0D &0
a 94 80 03 75 0D D4 ED
01 80 E4 F5 OB AB 08
00 12 00 EZ2 F5 OC &0
25 0C 0OE 12 01 80 05 OB ES5 0B C3 94 40
C2 BB C2 B9 C2 BR 12 01 5F 7F 20 12 01
12 01 23 7F &80 12 01 A9 12 01 &0 7F CO
12 01 20 7F 10 12 01 A% 7F 00 7E 10 12
|| 12 01 &% 7F 60 12 01 A9 C2 00 75 0E 01
0 00RO 12 01 80 C2 00 75 OE 28 02 01 &0 75 RO FF 75 398
0 _00BO FF 12 00 &3 7B FF 74 01 75 3B E4 FD FF 12 00 0%
0 00C0 7R 01 79 44 12 00 03 12 01 5F 7B FF 7R 01 79 4D
l2 00 0% 7R 01 79 56 12 00 03 12 01 5F
01 oC E5 82 2% F5 &2 E5 83 3A F5 83 EO
0 _00FO 22 50 06 E9 25 82 F8 E6 22 BB FE 06 E9 25 82 F&8

D_DDDD 1]

0 0030

@:@@4@

Figure 44. Using the Code Dump Function, #2 of 2

If you wish to cancel your inputs, press the Escape (Esc) key. Press the Enter key to save
your changes, and note that the red color of your changed character pair has changed back
to black.

Bank

The devices in the Z8051 Series use a linear addressing method, and display page units in
the 64 KB range. To overcome this 64 KB limit, the user can employ banked addresses, in
which a bank is the upper 4 bits of a 20-bit address.

Goto

Click the Goto button to view memory locations in any 16-bit segments within the
0000h—-FFFFh address range in the Code Dump window or edit these memory locations
by entering an address in hexadecimal format. See the example Input dialog in Figure 45.

UMO024002-0512 The 28051 On-Chip Debugger

42

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 45. The Code Dump Function’s Goto/Input Dialog

Load

Click the Load button to display the Pattern Load dialog, in which you can load a data pat-
tern or code hex file to the code space; see Figure 46.

Figure 46. The Code Dump Function’s Pattern Load Dialog

Alternatively, users can download code by choosing Load Hex from the File menu. How-
ever, this method is used to load user-specified data patterns only; it does not clear the

entire code space. A data pattern can be either a small code segment or complete program
code.

Save

Click the Save button to display the Pattern Save dialog, in which you can save a code
space as a pattern file; see the example in Figure 47.

UMO024002-0512 The 28051 On-Chip Debugger

43

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 47. The Code Dump Function’s Pattern Save Dialog

Fill
Click the Fill button to display the Pattern Fill dialog, in which you can write a common

value in all code memory spaces in a specified address range; see the example in
Figure 48.

Figure 48. The Code Dump Function’s Pattern Fill Dialog

XDATA Dump Window

The XDATA Dump window displays each 8-bit segment of code memory in the hexadeci-
mal format and supports the editing of this data. Each 256-byte page resides at an address
in the range xx00—xxFFh, in which xx is the number of the page.

The upper side of the XDATA Dump window displays the address of the current cursor
position and the checksum of the current page. The current page number is displayed as a
watermark in the center of this window. In Figure 49, for example, the page number is 00.

UMO024002-0512 The 28051 On-Chip Debugger

44

78051 On-Chip Debugger and In-System Programmer
User Manual

XDATA : Bank_0 0OCE : Page CS SBDS (o] & |

Bank# /00« Goto Pattern Load Save | Fil ‘
0 1 2

3 4 5 6 fF &4 %8 A B C D E F
0 0000 02 11 FR 02 12 3% FD 7F 01 BB 08 BRA 09 B9 OA EF
0 0010 14 60 OF 02 12 34 14 60 13 24 03 70 12 75 0D 80
0 0020 80 OD 75 02 12 33 08 75 0D 94 80 03 75 0D D4 ED
0 0030 25 0D F5 02 12 36 F5 OE 12 01 &0 02 12 3B AB 08
0 0040 AR 09 AS 02 OF 5E 82 75 83 00 12 02 12 3C 0OC &0
0 0030 11 D2 00 &5 0C OE 12 01 80 05 OB ES OB C3 94 40
0 00s0 40 DC 22 C2 88 C2 8% C2 BA 12 01 5F 7F 20 12 01
0 0070 AS TF 20 12 01 &% T7F 80 12 01 A9 12 01 A0 7F CO

I

0 0080 21 BD 41 06 41 75 41 €O 61 0C &1 54 01 EB 01 E4
0 0080 02 63 01 96 01 C1 12 01 35 12 01 18 70 22 75 &4
0 00RO 00 75 &5 02 74 00 85 C6 Be 05 B& FO D5 Be FC D2
0 00B0 C1 20 C1 FD 12 03 74 12 01 SE 75 &4 00 75 85 00
0 0020 22 75 &4 00 75 85 02 90 B0 00 43 C1 01 75 Be 40
0 0000 74 00 FO DS Be FC D2 CO 20 CO FD &3 C1 01 75 85
0 00ED OO 74 00 22 &3 D% 10 D2 C4 80 FE 75 81 BF 75 AB
0 _00F0 OO0 75 DB 00 75 34 00 75 9B F4 43 C1 01 75 A0 &80

Figure 49. Using the XDATA Dump Function, #1 of 2

Edit

Users can change data values in the Code Dump window at any time, except during emu-
lation. The editing method is quite simple; just place the cursor where you wish to make
an edit, and write a new character pair in hexadecimal format. The color of the character
pair will change from black to red to indicate that the change was made, as highlighted in
Figure 50.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

XDATA : Bank_0 0028 : Page CS 5BDS (o] & |

Bank# /00 Goto Pattern Load Save | Fil ‘

0 1 2 3 4 5 6 7 & 9 A B C D E F

0 0000 02 11 FA 02 12 3% FD 7F 01 BB 08 BA 09 B9 0& EF
0 0010 14 &0 OF 02 l2—SZT+HG—13 24 03 70 12 75 OD &0
0 0020 80 OD 75 02 1 398 Z4 0D 54 20 03 75 0D D4 ED
0 0030 25 0D F5 02 12—3% GE—12 01 &80 02 12 3B &AB 08
0 0040 22 09 A% 02 OF 5E 82 75 83 00 12 02 12 3C OC &0
0 0030 11 D2 00 &85 0C OE 12 01 80 05 OB ES OB C3 94 40
0 00s0 40 DC 22 C2 88 C2 8% C2 BA 12 01 5F 7F 20 12 01
0 0070 A% 7F 20 12 01 A% 7F 80 12 01 A9 12 01 A0 7F CO
0 0080 21 BD 41 06 41 78 41 €O &1 0OC 61 54 01 EB 01 E4
0 0080 02 63 01 96 01 C1 12 01 35 12 01 18 70 22 75 &4
0 00RO OO0 75 85 02 74 00 85 C6 Be 05 B& FO D5 B FC D2
0 00BO €1 20 C1 FD 12 03 74 12 01 SE 75 &4 00 75 85 00
0 00C0 22 75 B4 00 75 85 02 50 80 00 43 C1 01 75 Be 40
0 0000 74 00 FO DS Be FC D2 CO 20 CO FD &3 C1 01 75 85
0 00ED OO0 74 00 22 63 D% 10 D2 €4 80 FE 75 81 BF 75 AB
0 00F0 OO0 75 DB 00 75 94 00 75 9B F4 43 C1 01 75 A0 &0

Figure 50. Using the XDATA Dump Function, #2 of 2

Bank

The devices in the Z8051 Series use a linear addressing method, and display page units in
the 64 KB range. To overcome this 64 KB limit, the user can employ banked addresses, in
which a bank is the upper 4 bits of a 20-bit address.

Goto

Click the Goto button to view memory locations in any 16-bit segments within the
0000h—FFFFh address range in the XDATA Dump window or edit these memory loca-
tions by entering an address in hexadecimal format. See the example in Figure 51.

Figure 51. The XDATA Dump Function’s Goto/Input Dialog

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

47

Load

Click the Load button to display the Pattern Load dialog, in which you can load a data pat-
tern or code hex file to the XDATA area. However, this command does not clear the

XDATA area; see Figure 52.

Figure 52. The XDATA Dump Function’s Pattern Load Dialog

Save

Click the Save button to display the Pattern Save dialog, in which you can save the
XDATA area as a pattern file; see Figure 53.

Figure 53. The XDATA Dump Function’s Pattern Save Dialog

Fill

Click the Fill button to display the Pattern Fill dialog, in which you can write a common
value in all XDATA memory spaces in a specified address range; see the example in
Figure 54.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

48

Figure 54. The XDATA Dump Function’s Pattern Fill Dialog

IRAM Dump Window

The IRAM Dump window displays each 8-bit segment of code memory in the hexadeci-
mal format and supports the editing of this data. Each 256-byte page resides at an address
in the range xx00—xxFFh, in which xx is the number of the page.

The upper side of the IRAM Dump window displays the address of the current cursor
position and the checksum of the current page. A watermark, displayed as iR, appears in
the center of this window, as shown in Figure 55.

Figure 55 also shows IRAM addresses in the range 00h—7Fh, which represent the direct
area; the characters representing these addresses are colored black. IRAM addresses in the
range 80h—FFh represent the indirect area; these characters are colored cyan.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

7/ IRAM : 0B9 o & [
Pattern Save

0 1 2 3 4 5 & 7 &8 % A B C D E F

0oao 2 8B FB E3 BT 5& 42 10 1% B2 F4 62 00 04 AE 11
0010 4D 895 EB EA EE 66 ED A% F1 83 BB 08 FF 32 7D &2
0o20 DF 22 2C 0% 34 20 5B 20 45 81 EE FAR 81 0E D5 &0
0030 55 53 C1 80 73 98 6A 10 AB D4 40 646 68 49 BE 232
0oo40 D9 A2 BS 95 CO CO D9 21 40 64 7% F6 &8 66 BS 43
0050 22 68 AR D4 62 12 63 0OA F5 11 7C 73 04 7C CZ2 0E

00s0 €O C9% A3 3B F4 C3 CF 00 BC OE D5 C3 0C 2C 11 &8

0070 DO E3 62 3A AD 56 D2 ES 94 08 FC 37 ES EB &89 EE
oogo 00 C2 80 BE BGE FB 59 A3 51 12 A3 B3 92 FB DC LE
0os0 4B EA 04 8F 71 7B 37 &D 1F E& B4 26 E6 41 98 F1
0oR0 DD 7F BD 8D B& ER 2F EF BC 1D DD E5 5D BO D1 EE
DOBO 48 &D 2D 85 4D C7 55 5E 2B 3F 76 6D 7E DD 77 BF
0oco 2D 0& 26 73 AR D9 F4 BE 82 91 32 4B F& Be 1E ES
gopo 7F C1 ES C4 BF BE Be AC 7F 63 2E A0 B7 2D FD D&
00E0 ES BE C5 BO FF FC CF D4 43 98 27 76 48 T7F 3E BS
00F0 EF 1F B2 70 EE BE B9 BF E1 &8F E1 79 77 56 CD ED

Figure 55. Using the IRAM Dump Function, #1 of 2

To learn more about direct and indirect memory areas, please refer to the product specifi-
cation for your particular Z8051 device.

Edit

Users can change data values in the IRAM Dump window at any time, except during emu-
lation. The editing method is quite simple; just place the cursor where you wish to make
an edit, and write a new character pair in hexadecimal format. The color of the character
pair will change from black to red to indicate that the change was made, as highlighted in
Figure 56.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

‘7 IRAM : 09D = =R ="
Pattern Save

0 1 2 3 4 5 6 7 & % A B C D E F

fufu]u] FE E3 B7 5& 42 10 18 B2 F4 62 00 04 AE 11
0010 ZB ERA EB &6 ED-&S g3 BB 08 FF 3A 7D &2
0020 2 2C 0% 34 80 5B 12 34 Bl EE FA 81 OE D5 &0
0030 C1l B0 73 98 6RAI6 40 &8 63 49 BE AR
0040 B9 83 CO CO D9 21 40 64 79 F6 33 €€ BS 43
0050 BR D4 62 12 &3 0& F5 11 7C 73 04 7C C2 OE
00a0 A3 3B F4 C3 CF 00 BC OE D5 C3 0OC 2C 11 B
0070 2 3R AD 56 D2 E9 94 08 FC 37 E9 EB 89 EE
0080 80 BE 6E FB 59 A3 5 ‘ B L
0080 04 B8F 71 7B 37 &D 1 7 1

00A0D BD 8D B8 Ea 2F EF BLC—IE 5

00BO 2D 85 4D C7 55 5E 2B 3F 7

0oca 26 73 AA D9 F4 BE 82 91 3

00D0 E5 C4 BF BE B& AC 7F &3 2

00ED C5 BO FF FC CF D4 43 88 2

00F0 B2 70 BB BE B9 BF E1 &F E

Figure 56. Using the IRAM Dump Function, #2 of 2

If you wish to cancel your inputs, press the Escape (Esc) key. Press the Enter key to save
your changes, and note that the red color of your changed character pair has changed back
to black.

Save
Click the Save button to save the IRAM area as a pattern file.

SFR Dump Window

The Special Function Register (SFR) Dump window displays each 8-bit segment of code
memory in the hexadecimal format and supports the editing of this data. The upper side of
the SFR Dump window displays the address of the current cursor position and the check-
sum of the current page.

Figure 57 shows SFR addresses in the range 80h—FFh, which represent the direct area of
IRAM.

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

#& SFR: 0CD o] = |
Pattern Eefreshl Save

0 2 3 4 5 6 7T &8 8 A B C D E F
7

1
oogo 29 22 4C 01 00 00 DS OO0 OO0 OO0 04 27 76 00 00 DF
ooso0 05 00 00 OO 00 Q0 OO0 00 FF OO BF O1 FO 00 OO 0O
oox0 T7TF CO 00 OO OO 0O OO 00 OO0 OO0 00 OO0 00 00 00 00
OoBO 00 OO 00 OO0 00 Q0 00 00 00 00 7F 7F 00 00 OO0 0O
ooco 00 o0 00 OO 0O QO OO 00 OO0 OO 0QO0 OO0 00 00 00 00
oooo 00 Q0 00 00 00 00 42 OO0 OO0 00 00 00 3F 3F 01 FF
O0E0D EF 00 00 00 00 80 FF OO OO0 00 00 03 80 00 00 00
0oF0 00 00 00 OO0 00 Q0 00 00 00 00 03 CO &0 08 00 00

Figure 57. Using the SFR Dump Function, #1 of 3

The special function registers differ in each Z8051 Series device. To learn more about spe-
cial function registers, please refer to the product specification for your particular Z8051
device.

Edit

Users can change data values in the SFR Dump window at any time, except during emula-
tion. The editing method is quite simple; just place the cursor where you wish to make an
edit, and write a new character pair in hexadecimal format. The color of the character pair
will change from black to red to indicate that the change was made, as highlighted in
Figure 58.

#3 SFR : 0A6 =R
Pattern | Refresh | Save

60 1 2 3 4 5 & 7F &8 % A B C D E F
oogo 29 22 00 00 00 04 87 76 00 00 DF
0080 05 00 00 FF 00 8F 01 FO 00 00 00
0oR0 TF 00 o0 00 00 00 00 00 00 00
O0BO 00 00 00 00 7F 7F 00 00 00 00

aa 00 00 00 00 00 00 00 00 00
gooo 00 00 00 00 00 00 3F 3F 01 FF
00ED EF 00 00 00 00 O3 B0 00 00 00

00F0 00 00 00 00 03 CO &0 0B 00 00

Figure 58. Using the SFR Dump Function, #2 of 3

UMO024002-0512 The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

If you wish to cancel your inputs, press the Escape (Esc) key. Press the Enter key to save
your changes, and note that the red color of your changed character pair has changed back
to black.

Refresh

The SFR area includes static registers such as a stack pointer, an accumulator, etc. How-
ever, most SFRs are dynamic registers such as timers, 1/0s, etc. Clicking the Refresh but-
ton (highlighted in Figure 59) redisplays all current data.

#< SFR.: ol &]
Pattefn | Refresh | Save

3 4 5 6 7 &8 9 A B C D E F
7

ooso 29 22 4C 01 00 QO D9 00 OO0 OO 04 87 76 00 00 DF
0s0 05 00 00 OO0 Q0 OO0 00 00 FF 00 &F 01 FO OO0 0O Q0
7F CO 00 Q0O 0O 00 00 OO 00 00 00 00 00 00 Q0 00
a0 00 00 00 OO0 OO0 00 00 00 00 7F 7F 00 00 00 00
a0 00 00 00 OO OO0 00 00 00 00 00 00 00 OO0 00 00
00 oo 00 00 00 00 42 OO0 00 OO0 00 00 3F 3F 01 FF
EF 00 00 00 00 280 FF OO 00 OO0 00 03 80 00 00 00
00 00 00 00 OO0 00 00 OO0 00 00 03 CO &0 08 00 00

Figure 59. Using the SFRDump Function, #3 of 3

Save

Clicking the Save button saves an SFR area as a pattern file.

Watch Global Window

The Watch Global window displays and supports the modification of global variables
within the user’s C language-based source program. Each variable is located within the
Code, XDATA, IRAM, SFR dump spaces. If users could easily determine a variable’s
location, they could edit the variable directly. However, finding a global variable across
these many memory dump spaces is often perceived to be a tedious process.

The Watch Global window alleviates this problem by employing a map/symbol file; see
Figure 60.

UMO024002-0512 The 28051 On-Chip Debugger

(€], Global variables

78051 On-Chip Debugger and In-System Programmer

User Manual

=)

Add symbol ‘ | Remove symbol |

Type | Aftribute | Name Value Address |
BIT BIT LCD E 0 0x88.2

BIT BIT LCD RS 1 0x88.0

BIT BIT LCD_RW 1 Ox88.1
unsigned char DATA R1_io 0x0 OxAD

unsigned char DATA RO_io 0x0 0x98

iunsigned char DATA RO_port Oocd Ox80

BIT BIT RO3 0 0x80.3

Figure 60. The Watch Global Function’s Global Variables Dialog

Add Symbol

Clicking the Add Symbol button displays the Global Symbol Add/Remove dialog, in
which you can add a global variable to the Watch Global display list, shown in Figure 61.

Figure 61. Adding A Global Symbol

Remove Symbol

Clicking the Remove Symbol button removes a global variable from the Watch Global
display list.

UMO024002-0512

The Z8051 On-Chip Debugger

53

Edit

78051 On-Chip Debugger and In-System Programmer
User Manual

Users can change data values in the Watch Global window at any time, except during emu-
lation. This editing method is quite simple; just place the cursor where you wish to make

an edit, and double-click the left button on your mouse to display a pop-up dialog in which
you can change the data and click the Modify pop-up button to incorporate the change, as
shown in Figure 62.

5l Global variables = |[=[S
Add symbol ‘ | Remove symbol |

Type | Aftribute | MName Value Address |

BIT BIT LCD E 0 0x88.2

BIT BIT LCD RS 1 0x88.0

BIT BIT LCD_RwW 1 0x88.1

unsigned char DATA R1_io 0x0 OxAD

unsigned char DATA RO_io [050] 08

‘unsigned char DATA RO_port [ox4] Madify ” """"

BIT BIT RO3 L) UXEU.3

Figure 62. Editing A Global Symbol

Watch Local Window

The Watch Global window displays and supports the modification of local variables
within the user’s C language-based source program. Each variable is located within the
Code, XDATA, IRAM, SFR dump spaces.

Much like the issue with finding global variables, users could edit these local variables
directly if finding them was not so tedious. The Watch Local window, shown in Figure 63,
alleviates this problem by employing a map/symbol file, as described in the previous sec-

tion.

UMO024002-0512

The Z8051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

L1 Local function() : LCD_OUT [[[eERa]
Type | Affribute MName Value | Address
BIT BIT TYPE 0 0x20.0
unsigned char DATA uch 01 OxE

4 L I+

Figure 63. The Watch Local Function Dialog

Edit

Users can change data values in the Watch Local window at any time, except during emu-
lation. This editing method is quite simple; just place the cursor where you wish to make
an edit, and double-click the left button on your mouse to display a pop-up dialog in which
you can change the data and click the Modify pop-up button to incorporate the change, as
shown in Figure 64.

1) Local function() - LCD_OUT o | E]]
Type | Affribute MName | Value | Address
BIT BIT TYPE 0 0x20.0
unsigned char DATA uch [ox1] Modify |
4 WL I

Figure 64. Editing A Local Symbol

Add or Remove Symbol

Locals variables are dynamic; therefore, adding or removing a symbol will depend on
each program module.

In the Debugger, the user can check the current C module and find its local variables auto-
matically so that the user is not required to add or remove the symbol.

UMO024002-0512 The 28051 On-Chip Debugger

55

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 65 shows an example C source program module. The current program counter is
located in the delay (UINT uCnt) function module (highlighted in the upper half of the
figure), and the Local Variable window displays the name of the module and its variable
(highlighted in the lower half of the figure).

Figure 65. Example Watch Local Function, #1 of 2

UMO024002-0512 The 28051 On-Chip Debugger

56

78051 On-Chip Debugger and In-System Programmer
User Manual

If program flow is changed to another module, then the Local Variable list will be
changed, as shown in Figure 66.

Figure 66. Example Watch Local Function, #2 of 2

Text File Window

The Text File window displays text files, but does not support the editing of text files. If
you have loaded a map/symbol file, the source program file will display an actual hard-
ware address in the line number area. To provide a visual understanding of this displayed
data, the following two examples offer a comparison.

Example 1. If a map/symbol file has not been loaded, or if the file does not include sym-
bol information, only the line number is displayed, as highlighted in Figure 67.

UMO024002-0512 The 28051 On-Chip Debugger

57

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 67. Using the Text File Function, #1 of 5

Example 2. If a map/symbol file has been loaded and the file includes symbol informa-
tion, then the line number and address are displayed, as highlighted in Figure 68.

Figure 68. Using the Text File Function, #2 of 5

UMO024002-0512 The 28051 On-Chip Debugger

58

78051 On-Chip Debugger and In-System Programmer
User Manual

Goto Line

Clicking the Goto Line button displays the Get Decimal Number dialog box, which
allows users to jump to another line in a text file; see Figure 69. Map/symbol information
iS not required.

Figure 69. Using the Text File Function, #3 of 5

Disassemble Window Linkage

If a map/symbol file has been loaded and a text file is displayed (see the example in
Figure 70), the text file will show addresses instead of line numbers. In this Text File
Child Window, and with your mouse, set your cursor in an address area (the left-most col-
umn) and double-click the left button to launch the Code Disassemble dialog, which will
highlight the address.

UMO024002-0512 The 28051 On-Chip Debugger

59

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 70. Text File Child Window

Example. Double-click the left button on your mouse at address 0_02C6. The Code Dis-
assembler child window appears, showing the 0_02C6 location at the top of the dialog;
see Figure 71.

UMO024002-0512 The 28051 On-Chip Debugger

60

78051 On-Chip Debugger and In-System Programmer
User Manual

Figure 71. Code Disassembler Child Window

Break Toggle

If a map/symbol file has been loaded and a text file is displayed, the text file will show
addresses instead of line numbers. With your mouse, set your cursor in the text area and
double-click the left button to toggle all PC breakpoints.

UMO024002-0512 The 28051 On-Chip Debugger

61

78051 On-Chip Debugger and In-System Programmer

User Manual

62

Figure 72 shows an example of a segment of source code in which the color of the PC
breakpoint line is red.

& main.c

==Eo)

Goto line I

85 |
0 0063
0 0069

[NER]
) w3 oo

00
0 0071
0 0078
93

94

95

0 0078
0 007E
33

33

100

0 003
ﬁ_ﬁﬁc-ﬁ

=]
[
[=}]

84 void LCD init()

LCD E = LCD_BW = LCD RS = 0

delay (0x££EL) ;

f/ Function set (4bkit long)
LCD out Upper((UCHAR) 0x20) ;
LCD _out_Upper((UCHAR) Ox20) ;
LCD out_TUpper ((UCHAR) 0x80)
delay (0x10);

f/ Display on / off

LCD out_Upper ((UCHAR) 0x00) ;
LCD out_Upper ((UCHAR) Oxc0) ;
delay (0x10);

S/ Display clear
LCD out_Upper((UCHAR) O0x00) ;

Trm vt T L ITEHRAD Y Ow 10 -

4 |

1 [

UMO024002-0512

Figure 72. Using the Text File Function, #4 of 5

ffE=0
£ min

78

'y minﬁﬂ

ff0

ff min

f0

FF (41

The 28051 On-Chip Debugger

78051 On-Chip Debugger and In-System Programmer
User Manual

In Figure 73, the color of the current program counter address line is blue.

& mainc (o)==
Goto line I
24 woid LCD init{) -
85

0 0083 LCD E = LCD BW = LCD RS = 0; £ E=0

0_0089 delay (OxfEEfL) ; /f min
g9 f/ Function set (4kit long)

0_00&6C LCD out Upper ((UOCHAR)Ox20) 7 £

0 0071 LCD _out_Upper { (UCHAR) 0x20) ; fFa

0_007& LCD out_Upper { (UCHAR) 0x20) P
93 delay(0x10); i m:i.n|E
94 s
95 [/ Display on / off

0_007E LCD out_Upper ((UCHAR) 0x00) ; ffF 0

0 _007E LCD out Upper (| (UCHAR)OxcO); ff
98 delay (0x10); £f min
99

1040 f/ Display clear

0_0083 LCD out_Upper { (UCHAR) 0x00) ; ff0

N NNss T st TTrona» T ITEHRD Y Ow 10 = fr [l

4| 1 [b

Figure 73. Using the Text File Function, #5 of 5

UMO024002-0512 The 28051 On-Chip Debugger

Z8051 On-Chip Debugger and In-System Programmer
User Manual

The Z8051 OCD In-System Programmer

The 28051 On-Chip Debugger (OCD) In-System Programmer (ISP) has been developed
to support Zilog’s 28051 8-bit MCUs. This document describes how to set up and use the
Z8051 On-Chip Debugger ISP with your Z8051 Development Kit. The OCD ISP is used
to program the Flash or EEPROM memory spaces of a target Z8051 MCU using Zilog’s
On-Chip Debugger. The OCD interface uses only two 1/0 lines! and does not require a
socket adapter or specified power circuit. An example ISP screen is shown in Figure 74.

Figure 74. Example On-Chip Debugger ISP Screen

) Note: If your system V¢ is lower than device specifications, the OCD cannot program the
device.

1. The Z8051 OCD ISP requires a two-connection pin in your target system.

UM024002-0512 The Z8051 OCD In-System Programmer

64

Features

Z8051 On-Chip Debugger and In-System Programmer

User Manual

65

The key features of the Z8051 On-Chip Debugger ISP are:
Supports Zilog’s 8-bit Z8051 Family of MCUs
Uses the Intel HEX file format

Connect the Hardware

Display the Code and XData areas in an editable hexadecimal dump format

Display and edit device configurations

Autodetects target devices

Can program eight devices simultaneously

Performs post-programming device verification

Supports all programming functions

After installing the OCD software and drivers, hardware connections can be established.
The pin positions of the Z8051 USB OCD interface are shown in Figure 75. Confirm the
target device’s pin positioning, and connect this interface to the USB port of your PC.

UMO024002-0512

10

Pin No.

Function

V<Sub-
scriptTa-
ble>CC

GND

OCD
S<Sub-
scriptTa-
ble>CLK

OCD
S<Sub-
scriptTa-
ble>DATA

Figure 75. OCD Hardware ISP Pin Assignment (Bottom View)

The Z8051 OCD In-System Programmer

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Apply Power
Observe the following procedure to complete your hardware connection to the Z8051

USB OCD interface.

1. Ensure that the power is off to the target MCU and that the MCU is soldered properly
onto the target board.

A Caution: If your target MCU is already powered on prior to connecting the USB OCD interface,
it may not be able to recognize which mode the OCD is operating in. The target MCU is
identified at power-up whether it is in OCD or User Mode.

Power on your PC.

Connect the OCD hardware to your PC.

Connect the OCD hardware to your target system.
Apply power to the target system.

Use the OCD In-System Programmer to perform your programming tasks.

N o g s~ DN

When your programming work is complete, power off the target system.

Understanding the OCD ISP Menu Functions

This section describes the operation of the HexData, Program, Window and Child menus.

HexData Menu

The HexData menu, shown in Figure 76, allows users to load their hexadecimal code to a
target device for programming. Because each device operates on its own programming
algorithm and features a different memory map, ISP functions are enabled only after a tar-
get device has been selected.

UM024002-0512 The Z8051 OCD In-System Programmer

66

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Figure 76. The OCD ISP’s File Menu

Select Device

Observe the following procedure to select a target device.

1.

UMO024002-0512

Run the Z8051 ISP software. Navigate via the Windows Start menu to All Programs
— Zilog Z8051 Software and Documentation <version_number> — Zilog Z8051
ISP <version_number>,

From the HexData menu of the ISP, choose Select Device. The Device Select dialog
box appears and displays a list of potential target devices, as shown in Figure 77.

The Z8051 OCD In-System Programmer

67

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Figure 77. Device Select Dialog

Load Code HEX File

Observe the following procedure to load and read a hexadecimal data file.

} Note: All hexadecimal files follow the Intel HEX format.

UM024002-0512 The Z8051 OCD In-System Programmer

68

Z8051 On-Chip Debugger and In-System Programmer
User Manual

69

1. Select Load Code HEX File from the HexData menu to load a hexadecimal file from
the host PC to a code buffer space generated by the In-System Programmer. The Fill
Buffer dialog appears, as shown in Figure 78.

Figure 78. Fill Buffer Dialog

) Note: Loading a hexadecimal file into this code buffer space does not affect the memory space of
the target device.

The Fill Buffer dialog prompts the user to enter starting and ending addresses that
define the range of the code buffer space, plus the data pattern to fill the buffer space
before loading the hexadecimal file.

— Clicking the Fill button performs the task of filling the code buffer with specified
data values.

— Clicking the Don’t Care button will cause the buffer to remain loaded with the
data values that it currently contains.

— Clicking the Cancel button cancels the file loading tasks and closes the Fill Buffer
dialog.

2. Click either the Fill button or the Don’t Care button to open the File Open dialog box,
which is shown in Figure 79. Next, select the hexadecimal file that you wish to load
into the buffer, and click Open.

UM024002-0512 The Z8051 OCD In-System Programmer

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Figure 79. File Open Dialog

3. The OCD_ISP dialog box appears, as shown in Figure 80. After a hexadecimal file
has been loaded, this dialog displays the name of the target device and a data check-
sum value, as highlighted in the figure.

UM024002-0512 The Z8051 OCD In-System Programmer

70

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Figure 80. OCD ISP Dialog

} Note: The ISP cannot calculate the checksum without a defined code buffer range (see Step 1).
Therefore, if you have not yet selected a target device yet, the Checksum field will display
2772

Load XData HEX File

Selecting Load XData HEX File from the HexData menu loads a hexadecimal file from
the host PC to the XData buffer of the ISP software; this hexadecimal file is in Intel HEX
format. Loading this file to the XData buffer space does not affect the memory space of

the target device.

UM024002-0512 The Z8051 OCD In-System Programmer

71

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Read Device

Selecting Load XData HEX File from the HexData menu causes the target device to be
read by the OCD hardware. When the host PC detects two or more hardware devices, it
prompts the user to select which device to read, as indicated in Figure 81.

] Select device to read]

0CD_0
0CD_1
ocD_2
0CD_3

0CcD_4

0CD_6

ocD_7 Cancel

Figure 81. Select Device To Read Dialog

If the selected target device is unlocked, the OCD hardware will read the code, XData and
configuration values, then update the display and the checksum.

If the selected target device is locked, the OCD hardware will display the term LOCK and
prompt the user to read the configuration only.

Most Recent Files

As the user opens and closes files, these files will appear in the Hex Data menu, and can be
selected at any time in a current or future session. The maximum number of most recently-
used files that will appear in the Hex Data menu is eight. See the example in Figure 82,
which shows that the user has recently opened only three files; the third file (selected in
the figure) is the demo.hex file.

UM024002-0512 The Z8051 OCD In-System Programmer

72

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Figure 82. Most Recently Used Files

Exit

Choosing Exit from the HexData menu immediately terminates the OCD ISP.
Program Menu

The Program menu, shown in Figure 83, lists all of the OCD ISP’s programming main

control functions, each of which is described in this section. This menu is enabled after the
user selects a target device.

YWilrite F12
Serify

Erase
Blank check
oet configuration

Figure 83. The OCD ISP’s Program Menu

UM024002-0512 The Z8051 OCD In-System Programmer

73

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Write

Selecting Write from the Program menu applies the entire programming sequence. This
sequence is listed below.

The host PC detects the OCD hardware and its connection with the target device.
All connected target devices are processed simultaneously.

The ISP erases the target device with a bulk erase algorithm.

The ISP next programs the code area.

The ISP verifies the code area.

The ISP programs the configuration area.

N o gk~ wbhe

The ISP verifies the configuration area.

Verify

Selecting Verify from the Program menu initiates a comparison of the contents of the ISP
programmer’s buffer with the contents of the target device’s memory. This verification
sequence is described below.

1. The host PC detects the OCD hardware and its connection with the target device.
2. All connected target devices are processed simultaneously.

3. The ISP checks whether the target device is locked or unlocked. If the target is locked,
verification is canceled.

4. The ISP verifies the code area.

The ISP verifies the configuration area.

Erase

Selecting Erase from the Program menu causes the entire contents of the target device’s
memory, including configurations, to be erased. This erasure sequence is described below.

1. The host PC detects the OCD hardware and its connection with the target device.
2. All connected target devices are processed simultaneously.

3. The ISP erases the target device, whether it is locked or unlocked.

Blank Check

The Blank Check function determines if the target device is blank (entirely erased) after an
erasure. The sequence of this Blank Check function is described below.

1. The host PC detects the OCD hardware and its connection with the target device.

2. All connected target devices are processed simultaneously.

UM024002-0512 The Z8051 OCD In-System Programmer

74

Z8051 On-Chip Debugger and In-System Programmer
User Manual

3. The ISP checks whether the target device is locked or unlocked. If the target is locked,
the Blank Check function is canceled.

4. The ISP determines if the code area is entirely erased.

5. The ISP determines if the configuration area is entirely erased.

Set Configuration

Because each device in the Z8051 Series is configured differently, use the Set Configura-
tion function to configure the target device’s I/O pin functions, oscillation method, code
protection, etc.; see Figure 84 for an example.

Figure 84. Configuration Dialog
Window Menu

The Window menu, shown in Figure 85, can be used to modify the arrangement of child
windows or to directly select a child window.

UM024002-0512 The Z8051 OCD In-System Programmer

75

Z8051 On-Chip Debugger and In-System Programmer
User Manual

76

Open CODE dump
Open XDATA dump

Cascade
Tile

Close

v 1 CODE address : 00000000
2 XDATA address : 0000004D

Figure 85. The OCD ISP’s Window Menu

Open CODE Dump

Selecting Open CODE Dump from the Window menu opens a window which displays
code memory in a dump format, as shown in Figure 86. If this window is already open, the
window will move to the top-most level of the debugger frame.

Figure 86. Open CODE Dump Child Window

UM024002-0512 The Z8051 OCD In-System Programmer

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Open XData Dump

Selecting Open XData Dump from the Window menu opens a window which displays all
external data (XData) memory in a dump format. An example is shown in Figure 87. If
this window is already open, the window will move to the top-most level of the debugger

frame.

Figure 87. Open XData Dump Child Window

UM024002-0512 The Z8051 OCD In-System Programmer

77

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Cascade

Selecting Cascade from the Window menu arranges opened child windows in a stepped
(cascading) visual display, as shown in Figure 88.

Figure 88. Cascading Child Windows

UM024002-0512 The Z8051 OCD In-System Programmer

78

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Tile

Selecting Tile from the Window menu arranges opened child windows in a partitioned
(tiled) display, as shown in Figure 89.

Figure 89. Tiled Child Windows

Close

Selecting Close from the Window menu closes the top-most child window that appears in
the frame.

Windows 1, 2, 3, Etc.

This menu selection assigns a sequential number (e.g., 1, 2, 3...) to each child window in
the order in which it is opened. Users can directly select any open child window by its
number. In Figure 85 on page 76, for example, selecting 2 from the Window menu will
display the XData Dump window as the top-most window in the debugger screen.

Child Windows

Child windows are secondary windows that are displayed within the main ISP window.
The OCD ISP presents two child windows — the Code dump and XData windows.

UM024002-0512 The Z8051 OCD In-System Programmer

79

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Code Dump Window
Code dump windows display each 8-bit segment of code memory in the hexadecimal for-
mat and supports the editing of this data.

The upper side of the Code Dump window displays the address of the current cursor posi-
tion. The term Code is displayed as a watermark in the center of this window, as shown in

Figure 90.

Figure 90. CODE Dump Child Window

Edit

Users can change data values in the Code Dump window at any time, except during pro-
gramming execution. The editing method is quite simple: click the Edit button so that the
Edit OK button () appears, place the cursor where you wish to make an edit,
then write a new character pair in hexadecimal format. Upon changing any data, the
changed value will appear after a checksum is computed.

To disable a change of values, click the Edit OK button so that the Edit NO button

(/[Edit MO |) appears.

UM024002-0512 The Z8051 OCD In-System Programmer

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Cursor Position

The position of the cursor can be moved either by mouse click or by keystroke. If you pre-
fer using your keyboard, use the arrow keys (up, down, left, right) and/or the PageUp,
PageDn, Home, and End keys. If you want to use your mouse, click the target position or
use the scroll bar.

XData Dump Window

The XDATA Dump window displays each 8-bit segment of code memory in the hexadeci-
mal format and supports the editing of this data. Each 256-byte page resides at an address
in the range xx00—xxFFh, in which xx is the number of the page. The upper side of the
XDATA Dump window displays the address of the current cursor position. The term
XDATA is displayed as a watermark in the center of this window, as shown in Figure 91.
Editing and cursor functions are the same for the XDATA Dump window as they are for
the Code Dump window.

Figure 91. XData Dump Child Window

UM024002-0512 The Z8051 OCD In-System Programmer

81

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Appendix A. OCD Driver Installation on
Windows Vista Systems

The driver programs for the Z8051 On-Chip Debugger are copied to the development PC
during the software and documentation installation. In the following procedure for PCs
running Windows Vista 32- and 64-bit operating systems, ensure that the target side of the
OCD will remain unconnected while you install these drivers.

1. Connect the OCD hardware to the USB port of your PC by connecting the A (male)
end of one of the two USB A (male)-to-Mini-B cables with the development PC’s
USB port. Connect the Mini-B end to the OCD device.

2. After the PC detects the new hardware, it will display the Found New Hardware Wiz-
ard dialog box, shown in Figure 92. Click Locate and install driver software (rec-
ommended).

Figure 92. Found New Hardware Dialog, Windows Vista

3. Depending on your development PC’s User Account Control settings, Windows may
ask for permission to continue the installation. Click Continue.

UM024002-0512 The Z8051 OCD In-System Programmer

82

Z8051 On-Chip Debugger and In-System Programmer
User Manual

4. When the Insert the Disc dialog appears, as shown in Figure 93, select | don’t have
the disc. Show me other options. Click the Next button to display the dialog that
follows, which is shown in Figure 94.

Figure 93. Install Device Driver Dialog, Windows Vista

UM024002-0512 The Z8051 OCD In-System Programmer

83

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Figure 94. Couldn’t Find Driver Dialog, Windows Vista

5. Return to page 6 and follow Steps 3 through 6.

UMO024002-0512

The Z8051 OCD In-System Programmer

84

Z8051 On-Chip Debugger and In-System Programmer
User Manual

Appendix B. OCD Driver Installation on

Windo

UMO024002-0512

ws XP Systems

The driver programs for the Z8051 On-Chip Debugger are copied during the software and
documentation installation. On Windows XP systems, ensure that the target side of the
OCD will remain unconnected while you install these drivers. It is important that you
observe the following procedure; do not skip ahead until the OCD drivers are installed.

1. Connect the OCD hardware to the USB port of your PC by connecting the A-Male end
of one of the two USB A (male)-to-Mini-B cables with the host PC’s USB port, and
connect the Mini-B end to the OCD device.

2. After the PC detects the new hardware, it will display the Found New Hardware Wiz-
ard dialog box, shown in Figure 95. Select Install from a list or specific location
(Advanced); then click Next.

Figure 95. The Found New Hardware Wizard Welcome Screen

The Z8051 OCD In-System Programmer

85

Z8051 On-Chip Debugger and In-System Programmer
User Manual

86

3. The next dialog box, shown in Figure 96, prompts you to enter a path or navigate to

the directory in which the . inf file was installed. Depending on the type of computer
you use (32- bit or 64-bit), use the Browse button to navigate to one of the following
paths and click the Next button, leaving all other selections at their default settings.

— On 32-bit machines, use the following path:
<Z8051 Installation>\Z8051 <version_number>\device drivers\OCD USB\x32

— On 64-bit machines, use the following path:
<Z8051 Installation>\Z8051_<version_number>\device drivers\OCD USB\x64

} Note: On some installations, the Found New Hardware screen shown in Figure 95 may also dis-
play the text string, Zilog Z8051 USB OCD - No Firmware. This occurrence is normal
and can be disregarded.

UMO024002-0512

Figure 96. The Found New Hardware Wizard’'s Browse Screen

The Z8051 OCD In-System Programmer

Z8051 On-Chip Debugger and In-System Programmer
User Manual

4. When Windows prompts you whether to continue the installation or stop, click the
Continue Anyway button and wait until the installation is completed (Windows may
prompt you more than once). When the installation is complete, click Finish.

UM024002-0512 The Z8051 OCD In-System Programmer

87

78051 On-Chip Debugger and In-System Programmer
User Manual

Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at http://sup-

port.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base or consider par-
ticipating in the Zilog Forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

UM024002-0512 Customer Support

88

http://support.zilog.com
http://support.zilog.com
http://www.zilog.com/kb
http://www.zilog.com/forum
http://www.zilog.com

	Z8051 On-Chip Debugger and In-System Programmer User Manual

	Revision History
	Table of Contents
	List of Figures
	Introduction
	The Z8051 On-Chip Debugger
	Features
	Install the Z8051 OCD Software and Documentation
	Z8051 OCD Driver Installation

	Understanding the OCD Menu Functions
	File Menu
	Emulation Menu
	Break/Configure Menu
	View Menu
	Window Menu

	Child Windows
	Z8051 Basic Registers Window
	Code Disassemble Window
	Code Dump Window
	XDATA Dump Window
	IRAM Dump Window
	SFR Dump Window
	Watch Global Window
	Watch Local Window
	Text File Window

	The Z8051 OCD In-System Programmer
	Features
	Connect the Hardware
	Apply Power
	Understanding the OCD ISP Menu Functions
	HexData Menu
	Program Menu
	Window Menu

	Child Windows
	Code Dump Window
	XData Dump Window

	Appendix A. OCD Driver Installation on Windows Vista Systems
	Appendix B. OCD Driver Installation on Windows XP Systems
	Customer Support

