
Copyright ©2011 Zilog®, Inc. All rights reserved.
www.zilog.com

Zilog Developer Studio II – ZNEO™

UM017105-0511

User Manual

http://www.zilog.com

ii

Zilog Developer Studio II – ZNEO™
User Manual
This publication is subject to replacement by a later edition. To determine whether a later edition exists, or
to request copies of publications, visit www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A criti-
cal component is any component in a life support device or system whose failure to perform can be reason-
ably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

Document Disclaimer

©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, and Z8 Encore! XP are registered trademarks of Zilog, Inc. All other product or service
names are the property of their respective owners.

Warning:
 UM017105-0511

http://www.zilog.com

Zilog Developer Studio II – ZNEO™
User Manual

iii
Revision History

Each instance in the Revision History table below reflects a change to this document from
its previous version. For more details, click the appropriate links in the table.

Date
Revision
Level Description Page

May
2011

05 Updated Using the Integrated Development Environment. 15

Updated Using the Editor. 109

Updated Structures and Unions in Assembly Code section of Using
the Macro Assembler.

239

Updated Warning and Error Messages section of Using the Macro
Assembler.

255

Updated Disassembly Window section of Using the Debugger. 341

Dec
2010

04 Updated ZDS II System Requirements section. v

Feb
2007

03 Changed the description of the Project Settings dialog box. 8

Changed Select Active Configuration to Select Build Configuration.
Changed File Verify button to Verify Download button.

15

Removed PL and PW for CR 3684. 211

Added Table 47 on page 346. Added the checksum, fillmem,
loadmem, and savemem commands. Updated the sample command
script file.

359

Updated. v, 2, 32, 37, 40,
43, 74, 74, 84,
91, 96, 97,
106, 197, 217,
217, 235, 343,
349, 363, 365,
366, 366, 387

Added new sections: 40,40, 41, 83,
239, and 251.

Added note for CR 5661. 197, 297

Added new shortcuts. 24
UM017105-0511 Revision History

iv

Zilog Developer Studio II – ZNEO™
User Manual
Jun
2006

02 Updated ZDS II System Requirements section. v

Changed FAQ.txt to FAQ.html. viii

Updated screenshots. 1

Updated various sections, including the description of the memory
map for CR 7124.

15

Added messages. 197

Updated Label Field section. 217

Updated text and figures for CRs 7123 and 7124. 301

Added new Cyclic Redundancy Check sections. 336, 367

Jan
2006

01 Initial release. All

Date
Revision
Level Description Page
Revision History UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

v

Preface

The following sections provide an introduction to Zilog Developer Studio II:

• ZDS II System Requirements – see page v

• Zilog Technical Support – see page vii

ZDS II System Requirements

To effectively use Zilog Developer System II, you need a basic understanding of the C and
assembly languages, the device architecture, and Microsoft Windows.

The following sections describe the ZDS II system requirements:

• Supported Operating Systems – see page v

• Recommended Host System Configuration – see page vi

• Minimum Host System Configuration – see page vi

• When Using the Serial Smart Cable – see page vi

• When Using the USB Smart Cable – see page vii

• When Using the Opto-Isolated USB Smart Cable – see page vii

• When Using the Ethernet Smart Cable – see page vii

Supported Operating Systems

• Windows 7 64-bit

• Windows 7 32-bit

• Windows Vista 64-bit

• Windows Vista 32-bit

• Windows XP Professional 32-bit

The USB Smart Cable is not supported on 64-bit Windows Vista and Windows XP for
ZDS II – Z8 Encore! versions 4.10.1 or earlier.

• Windows 2000 SP4

Note:
UM017105-0511 Preface

vi

Zilog Developer Studio II – ZNEO™
User Manual
Recommended Host System Configuration

• Windows XP Professional SP3 or later

• Pentium IV 2.2 GHz processor or higher

• 1024 MB RAM or more

• 135 MB hard disk space (includes application and documentation)

• Super VGA video adapter

• CD-ROM drive for installation

• USB high-speed port (when using the USB Smart Cable)

• RS-232 communication port with hardware flow control

• Internet browser (Internet Explorer or Netscape)

Minimum Host System Configuration

• Windows XP Professional SP2

• Pentium IV 2.2 GHz processor

• 512 MB RAM

• 50 MB hard disk space (application only)

• Super VGA video adapter

• CD-ROM drive for installation

• USB full-speed port (when using the USB Smart Cable)

• RS-232 communication port with hardware flow control

• Internet browser (Internet Explorer or Netscape)

When Using the Serial Smart Cable

• RS-232 communication port with hardware flow and modem control signals

Some USB to RS-232 devices are not compatible because they lack the necessary hardware
signals and/or they use proprietary auto-sensing mechanisms which prevent the Smart
Cable from connecting.

Note:
ZDS II System Requirements UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

vii
When Using the USB Smart Cable

• High-speed USB (fully compatible with original USB)

• Root (direct) or self-powered hub connection

The USB Smart Cable is a high-power USB device. Windows NT is not supported.

When Using the Opto-Isolated USB Smart Cable

• High-speed USB (fully compatible with original USB)

• Root (direct) or self-powered hub connection

The USB Smart Cable is a high-power USB device. Windows NT is not supported.

When Using the Ethernet Smart Cable

• Ethernet 10Base-T compatible connection

Zilog Technical Support

For technical questions about our products and tools or for design assistance, please visit
the Zilog website at http://www.zilog.com. You must provide the following information in
your support ticket:

• Product release number (located in the heading of the toolbar)

• Product serial number

• Type of hardware you are using

• Exact wording of any error or warning messages

• Any applicable files attached to the email

To receive Zilog Developer Studio II (ZDS II) product updates and notifications, register
at the Technical Support web page at http://support.zilog.com.

Note:

Note:
UM017105-0511 Zilog Technical Support

http://www.zilog.com
http://support.zilog.com

viii

Zilog Developer Studio II – ZNEO™
User Manual
Before Contacting Technical Support

Before you contact Zilog Technical Support, consult the following documentation:

Readme.txt File. Refer to the readme.txt file in the following ZDS II directory for last-
minute tips and information about problems that could occur while installing or running
ZDS II:

<ZILOGINSTALL>\ZDSII_product_version\

where:

• ZILOGINSTALL is the ZDS II installation directory. For example, the default installa-
tion directory is C:\Program Files\Zilog.

• product is the specific Zilog product. For example, product can be ZNEO, Z8Encore!
or eZ80Acclaim!.

• version is the ZDS II version number. For example, version might be 4.11.0 or 5.0.0.

FAQ.html File. The FAQ.html file contains answers to frequently-asked questions and
other information about getting the best results from ZDS II. The information in this file
does not generally go out of date from release to release as quickly as the information in
the readme.txt file. You can find the FAQ.html file in the following directory:

<ZILOGINSTALL>\ZDSII_product_version\

where:

• <ZILOGINSTALL> is the ZDS II installation directory. For example, the default
installation directory is C:\Program Files\Zilog.

• product is the specific Zilog product family. For example, product can be ZNEO,
Z8Encore! or eZ80Acclaim!.

• version is the ZDS II version number. For example, version could be 4.11.0 or 5.0.0.

Troubleshooting Section. See the Troubleshooting the Linker section on page 295.
Zilog Technical Support UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

ix
Table of Contents

Revision History .iii

Preface. v
ZDS II System Requirements . v

Supported Operating Systems . v
Recommended Host System Configuration . vi
Minimum Host System Configuration . vi
When Using the Serial Smart Cable . vi
When Using the USB Smart Cable . vii
When Using the Opto-Isolated USB Smart Cable . vii
When Using the Ethernet Smart Cable . vii

Zilog Technical Support . vii
Before Contacting Technical Support .viii

List of Figures . xxi

List of Tables. xxvii

Getting Started . 1
Installing ZDS II . 1
Developer’s Environment Tutorial . 1

Add a File to the Project . 6
Set Up the Project . 8

Using the Integrated Development Environment . 15
Toolbars . 16

File Toolbar . 17
Build Toolbar . 18
Find Toolbar . 19
Command Processor Toolbar . 19
Debug Toolbar . 20
Debug Windows Toolbar . 22

Windows . 23
Project Workspace Window . 23
Edit Window . 24
Output Windows . 29

Menu Bar . 31
File Menu . 32
Edit Menu . 40
View Menu . 44
UM017105-0511 Table of Contents

x

Zilog Developer Studio II – ZNEO™
User Manual
Project Menu . 45
Build Menu . 83
Debug Menu . 86
Tools Menu . 87
Window Menu . 104
Help Menu . 105

Shortcut Keys . 105
File Menu Shortcuts . 105
Edit Menu Shortcuts . 106
Project Menu Shortcuts . 106
Build Menu Shortcuts . 107
Debug Menu Shortcuts . 107

Using the Editor . 109
Auto Completion . 111
Call Tips . 115
Auto Indentation . 117
Multiple Clipboards . 119
Line and Block Comments . 121
Abbreviations and Expansions . 121
Auto Insertion of Braces and Quotes . 127
Long Line Indicator . 129
UNICODE Support . 131
Auto Syntax Styler . 132
Code Folding Margin . 135
Line Number Margin . 137
Type Info Tips . 139
Highlighting and Finding Matched Braces . 140
Matching Preprocessor Conditional Macros . 141
Wrap Long Lines . 142
Indentation Guides . 143
Zoom In/Out . 145
Bookmarks . 145
Opening an Include File . 148
Highlighting a Program Counter Line . 149
Mismatched Brace Highlighting . 151
Auto Conversion of “.” to “→” . 153

Using the ANSI C-Compiler . 155
Language Extensions . 156

Additional Keywords for Storage Specification . 157
Memory Models . 161
Table of Contents UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

xi
Interrupt Support . 162
Placement Directives . 164
String Placement . 165
Inline Assembly . 166
Char and Short Enumerations . 167
Setting Flash Option Bytes in C . 168
Supported New Features from the 1999 Standard . 169

Type Sizes . 169
Predefined Macros . 170

Examples . 171
Calling Conventions . 172

Function Call Mechanism . 172
Special Cases . 174

Calling Assembly Functions from C . 174
Function Naming Convention . 174
Argument Locations . 175
Return Values . 175
Preserving Registers . 176

Calling C Functions from Assembly . 176
Assembly File . 176
Referenced C Function Prototype . 177

Command Line Options . 177
Run-Time Library . 177

Zilog Header Files . 178
Zilog Functions . 180

Stack Pointer Overflow . 186
Startup Files . 187
Segment Naming . 188
Linker Command Files for C Programs . 188

Linker Referenced Files . 190
Linker Symbols . 191
Sample Linker Command File . 192

ANSI Standard Compliance . 194
Freestanding Implementation . 194
Deviations from ANSI C . 195

Warning and Error Messages . 197
Preprocessor Warning and Error Messages . 197
Front-End Warning and Error Messages . 199
Optimizer Warning and Error Messages . 207
Code Generator Warning and Error Messages . 208
UM017105-0511 Table of Contents

xii

Zilog Developer Studio II – ZNEO™
User Manual
Using the Macro Assembler . 211
Address Spaces and Segments . 212

Allocating Processor Memory . 212
Address Spaces . 212
Segments . 213
Assigning Memory at Link Time . 214

Output Files . 214
Source Listing (.lst) Format . 215
Object Code (.obj) File . 216

Source Language Structure . 216
General Structure . 216
Assembler Rules . 218

Expressions . 220
Arithmetic Operators . 220
Relational Operators . 221
Boolean Operators . 221
LOW and LOW16 Operators . 221
Decimal Numbers . 222
Hexadecimal Numbers . 222
Binary Numbers . 222
Octal Numbers . 222
Character Constants . 223
Operator Precedence . 223
Address Spaces and Instruction Encoding . 224

Directives . 226
ALIGN . 227
.COMMENT . 227
CPU . 227
Data Directives . 228
DEFINE . 231
DS . 232
END . 232
EQU . 233
INCLUDE . 233
LIST . 234
NOLIST . 234
ORG . 235
SEGMENT . 235
.SHORT_STACK_FRAME . 236
TITLE . 236
VAR . 237
Table of Contents UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

xiii
VECTOR . 237
XDEF . 238
XREF . 238
Structures and Unions in Assembly Code . 239

Conditional Assembly . 244
Conditional Assembly Directives . 244

Macros . 247
Macro Definition . 247
Concatenation . 248
Macro Invocation . 249
Local Macro Labels . 249
Optional Macro Arguments . 249
Exiting a Macro . 250

Labels . 250
Anonymous Labels . 251
Local Labels . 251
Importing and Exporting Labels . 251
Label Spaces . 251

Source Language Syntax . 252
Warning and Error Messages . 255

Using the Linker/Locator . 259
Linker Functions . 259
Invoking the Linker . 260
Linker Commands . 260

<outputfile>=<module list> . 262
CHANGE . 262
COPY . 263
DEBUG . 265
DEFINE . 265
FORMAT . 265
GROUP . 266
HEADING . 266
LOCATE . 266
MAP . 267
MAXHEXLEN . 267
MAXLENGTH . 268
NODEBUG . 268
NOMAP . 268
NOWARN . 268
ORDER . 269
RANGE . 269
UM017105-0511 Table of Contents

xiv

Zilog Developer Studio II – ZNEO™
User Manual
SEARCHPATH . 270
SEQUENCE . 270
SORT . 271
SPLITTABLE . 271
UNRESOLVED IS FATAL . 272
WARN . 272
WARNING IS FATAL . 272
WARNOVERLAP . 273

Linker Expressions . 273
Examples . 274
+ (Add) . 274
& (And) . 274
BASE OF . 275
COPY BASE . 276
COPY TOP . 276
/ (Divide) . 276
FREEMEM . 276
HIGHADDR . 277
LENGTH . 277
LOWADDR . 277
* (Multiply) . 278
Decimal Numeric Values . 278
Hexadecimal Numeric Values . 278
| (Or) . 279
<< (Shift Left) . 279
>> (Shift Right) . 279
- (Subtract) . 279
TOP OF . 280
^ (Bitwise Exclusive Or) . 280
~ (Not) . 280

Sample Linker Map File . 280
Troubleshooting the Linker . 295

How do I speed up the linker? . 295
How do I generate debug information without generating code? 295
How much memory is my program using? . 295
How do I create a hex file? . 295
How do I determine the size of my actual hex code? . 296

Warning and Error Messages . 297

Configuring Memory for Your Program. 301
ZNEO Memory Layout . 301
Programmer’s Model of ZNEO Memory . 303
Table of Contents UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

xv
Unconventional Memory Layouts . 307
Program Configurations . 308

Default Program Configuration . 308
Download to ERAM Program Configuration . 312
Download to RAM Program Configuration . 315
Copy to ERAM Program Configuration . 318
Copy to RAM Program Configuration . 322

Using the Debugger. 327
Status Bar . 328
Code Line Indicators . 328
Debug Windows . 329

Registers Window . 329
Special Function Registers Window . 330
Clock Window . 331
Memory Window . 331
Watch Window . 337
Locals Window . 339
Call Stack Window . 340
Symbols Window . 340
Disassembly Window . 341
Simulated UART Output Window . 342

Using Breakpoints . 343
Inserting Breakpoints . 344
Viewing Breakpoints . 344
Moving to a Breakpoint . 345
Enabling Breakpoints . 345
Disabling Breakpoints . 346
Removing Breakpoints . 346

Building a Project from the Command Line . 349
Running the Compiler from the Command Line . 350
Running the Assembler from the Command Line . 351
Running the Linker from the Command Line . 351
Assembler Command Line Options . 351
Compiler Command Line Options . 354
Librarian Command Line Options . 356
Linker Command Line Options . 357
Sample Command Script File . 363
Supported Script File Commands . 364

add file . 364
batch . 365
bp . 365
UM017105-0511 Table of Contents

xvi

Zilog Developer Studio II – ZNEO™
User Manual
build . 366
cancel all . 366
cancel bp . 366
cd . 367
checksum . 367
crc . 367
debugtool copy . 367
debugtool create . 368
debugtool get . 368
debugtool help . 368
debugtool list . 368
debugtool save . 369
debugtool set . 369
debugtool setup . 369
defines . 370
delete config . 370
examine (?) for Expressions . 370
examine (?) for Variables . 371
exit . 372
fillmem . 372
go . 372
list bp . 373
loadmem . 373
log . 373
makfile or makefile . 374
new project . 374
open project . 375
option . 375
print . 380
pwd . 380
quit . 381
rebuild . 381
reset . 381
savemem . 381
set config . 382
step . 382
stepin . 382
stepout . 383
stop . 383
target copy . 383
target create . 383
Table of Contents UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

xvi
target get . 383
target help . 384
target list . 384
target options . 384
target save . 385
target set . 385
target setup . 385
wait . 386
wait bp . 386

Running the Flash Loader from the Command Processor . 387
Displaying Flash Help . 387
Setting Up Flash Options . 387
Executing Flash Commands . 388
Examples . 388

Standard Header Files . 392
Errors <errno.h> . 393
Standard Definitions <stddef.h> . 393
Diagnostics <assert.h> . 394
Character Handling <ctype.h> . 394
Limits <limits.h> . 395
Floating Point <float.h> . 396
Mathematics <math.h> . 398
Nonlocal Jumps <setjmp.h> . 401
Variable Arguments <stdarg.h> . 401
Input/Output <stdio.h> . 402
General Utilities <stdlib.h> . 403
String Handling <string.h> . 405

Standard Functions . 407
abs . 407
acos, acosf . 408
asin, asinf . 408
assert . 409
atan, atanf . 409
atan2, atan2f . 410
atof, atoff . 410
atoi . 411
atol . 411
bsearch . 412
calloc . 413
ceil, ceilf . 413
cos, cosf . 414
UM017105-0511 Table of Contents

xvi

Zilog Developer Studio II – ZNEO™
User Manual
cosh, coshf . 414
div . 414
exp, expf . 415
fabs, fabsf . 416
floor, floorf . 416
fmod, fmodf . 416
free . 417
frexp, frexpf . 417
getchar . 418
gets . 419
isalnum . 419
isalpha . 420
iscntrl . 420
isdigit . 420
isgraph . 421
islower . 421
isprint . 421
ispunct . 422
isspace . 422
isupper . 422
isxdigit . 423
labs . 423
ldexp, ldexpf . 423
ldiv . 424
log, logf . 424
log10, log10f . 425
longjmp . 425
malloc . 426
memchr . 427
memcmp . 427
memcpy . 428
memmove . 428
memset . 428
modf, modff . 429
pow, powf . 429
printf . 430
putchar . 433
puts . 434
qsort . 434
rand . 435
realloc . 435
Table of Contents UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

xix
scanf . 436
setjmp . 440
sin, sinf . 440
sinh, sinhf . 441
sprintf . 441
sqrt, sqrtf . 441
srand . 442
sscanf . 442
strcat . 443
strchr . 443
strcmp . 444
strcpy . 444
strcspn . 445
strlen . 445
strncat . 446
strncmp . 446
strncpy . 447
strpbrk . 447
strrchr . 448
strspn . 448
strstr . 448
strtod, strtof . 449
strtok . 450
strtol . 451
tan, tanf . 452
tanh, tanhf . 452
tolower . 452
toupper . 453
va_arg . 453
va_end . 454
va_start . 455
vprintf . 456
vsprintf . 457

Glossary. 459

Index . 467

Customer Support . 491
UM017105-0511 Table of Contents

xx

Zilog Developer Studio II – ZNEO™
User Manual
Table of Contents UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

xxi
List of Figures

Figure 1. Select Project Name Dialog Box . 2

Figure 2. New Project Dialog Box . 3

Figure 3. New Project Wizard Dialog Box—Build Options Step 4

Figure 4. New Project Wizard Dialog Box—Target and Debug Tool Selection Step . 5

Figure 5. New Project Wizard Dialog Box—Target Memory Configuration Step . . . 6

Figure 6. Add Files to Project Dialog Box . 7

Figure 7. Sample Project . 8

Figure 8. General Page of the Project Settings Dialog Box . 9

Figure 9. Assembler Page of the Project Settings Dialog Box 10

Figure 10. Code Generation Page of the Project Settings Dialog Box 11

Figure 11. Advanced Page of the Project Settings Dialog Box 12

Figure 12. Output Page of the Project Settings Dialog Box . 13

Figure 13. Build Output Window . 14

Figure 14. ZNEO Integrated Development Environment (IDE) Window 16

Figure 15. The File Toolbar . 17

Figure 16. The Build Toolbar . 18

Figure 17. The Find Toolbar . 19

Figure 18. The Command Processor Toolbar . 19

Figure 19. The Debug Toolbar . 20

Figure 20. The Debug Windows Toolbar . 22

Figure 21. Project Workspace Window for Standard Projects 23

Figure 22. Project Workspace Window for Assembly Only Projects 24

Figure 23. Edit Window . 25

Figure 24. Bookmark Example . 27

Figure 25. Inserting a Bookmark . 28

Figure 26. Build Output Window . 30

Figure 27. Debug Output Window . 30

Figure 28. Find in Files Output Window . 30
UM017105-0511 List of Figures

xxi

Zilog Developer Studio II – ZNEO™
User Manual
Figure 29. Find in Files 2 Output Window . 31

Figure 30. Messages Output Window . 31

Figure 31. Command Output Window . 31

Figure 32. Open Dialog Box . 32

Figure 33. New Project Dialog Box . 33

Figure 34. Select Project Name Dialog Box . 33

Figure 35. New Project Wizard Dialog Box—Build Options . 34

Figure 36. New Project Wizard Dialog Box—Target and Debug Tool Selection 35

Figure 37. New Project Wizard Dialog Box—Target Memory Configuration 36

Figure 38. Open Project Dialog Box . 37

Figure 39. Save As Dialog Box . 38

Figure 40. Print Preview Window . 39

Figure 41. Find Dialog Box . 40

Figure 42. Find in Files Dialog Box . 41

Figure 43. Replace Dialog Box . 42

Figure 44. Go to Line Number Dialog Box . 43

Figure 45. Breakpoints Dialog Box . 43

Figure 46. Add Files to Project Dialog Box . 46

Figure 47. General Page of the Project Settings Dialog Box . 48

Figure 48. Assembler Page of the Project Settings Dialog Box 50

Figure 49. Code Generation Page of the Project Settings Dialog Box 52

Figure 50. (Listing Files Page of the Project Settings Dialog Box) 54

Figure 51. Preprocessor Page of the Project Settings Dialog Box 55

Figure 52. Advanced Page of the Project Settings Dialog Box 57

Figure 53. (Commands Page of the Project Settings Dialog Box 61

Figure 54. Additional Linker Directives Dialog Box . 62

Figure 55. Select Linker Command File Dialog Box . 63

Figure 56. Objects and Libraries Page of the Project Settings Dialog Box 65

Figure 57. Address Spaces Page of the Project Settings Dialog Box 69

Figure 58. Warnings Page of the Project Settings Dialog Box 71
List of Figures UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

xxi
Figure 59. Output Page of the Project Settings Dialog Box . 73

Figure 60. Debugger Page of the Project Settings Dialog Box 75

Figure 61. Configure Target Dialog Box . 76

Figure 62. Target Flash Settings Dialog Box . 78

Figure 63. Create New Target Wizard Dialog Box . 79

Figure 64. Target Copy or Move Dialog Box . 80

Figure 65. Setup Ethernet Smart Cable Communication Dialog Box 81

Figure 66. Setup USB Communication Dialog Box . 82

Figure 67. Save As Dialog Box . 82

Figure 68. Select Configuration Dialog Box . 83

Figure 69. Manage Configurations Dialog Box . 85

Figure 70. Add Project Configuration Dialog Box . 85

Figure 71. Flash Loader Processor Dialog Box . 88

Figure 72. Show CRC Dialog Box . 92

Figure 73. Calculate Checksum Dialog Box . 92

Figure 74. Calculate Checksum Dialog Box . 93

Figure 75. Customize Dialog Box–Toolbars Tab . 94

Figure 76. New Toolbar Dialog Box . 94

Figure 77. Customize Dialog Box–Commands Tab . 96

Figure 78. Options Dialog Box—General Tab . 97

Figure 79. Options Dialog Box—Editor Tab . 98

Figure 80. Color Dialog Box . 99

Figure 81. Font Dialog Box . 100

Figure 82. Options Dialog Box—Editor Tab—Advanced Editor Options Dialog
Box . 101

Figure 83. Options Dialog Box—Debugger Tab . 104

Figure 84. Auto Completion . 112

Figure 85. Autocompletion of Members . 113

Figure 86. Autocompletion of Header File Inclusion . 113

Figure 87. Autocompletion of HTML Tags . 114

Figure 88. Advance Editor Options—Show Autocompletion List 115
UM017105-0511 List of Figures

xxi

Zilog Developer Studio II – ZNEO™
User Manual
Figure 89. Call Tips Window . 116

Figure 90. Advance Editor Options—Show Call Tips Window 117

Figure 91. Auto Indentation in C Program . 118

Figure 92. Auto Indentation With Assembly Program . 118

Figure 93. Options Dialog Box—Auto Indent . 119

Figure 94. Multiple Clipboards . 120

Figure 95. Abbreviation Example 1 . 122

Figure 96. Abbreviation Example 2 . 123

Figure 97. Abbreviations Dialog Box . 124

Figure 98. Auto Insertion of Closing Brace . 127

Figure 99. Auto Insertion of Closing Parenthesis . 128

Figure 100. Advance Editor Options—Auto Insertion of Brace and Quotes 129

Figure 101. Long Line Indicator . 130

Figure 102. Advance Editor Options—Long Line Indicator Settings 131

Figure 103. Advance Editor Options—Support UNICODE . 132

Figure 104. Auto Syntax Styler . 133

Figure 105. Options Dialog Box—Editor Tab . 134

Figure 106. Color Dialog Box . 135

Figure 107. Code Folding Margin . 136

Figure 108. Advance Editor Options—Display Code Folding Margin 137

Figure 109. Line Number Margin . 138

Figure 110. Advance Editor Options—Display Line Number Margin 139

Figure 111. Type Info Tips . 140

Figure 112. Highlighting Matching Braces . 140

Figure 113. Highlighting Matching Parentheses . 141

Figure 114. Wrapping Long Lines . 142

Figure 115. Advance Editor Options—Wrap Long Lines . 143

Figure 116. Indentation Guides . 144

Figure 117. Advance Editor Options—Display Indentation Guide 145

Figure 118. Bookmark Example . 146
List of Figures UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

xx
Figure 119. Inserting a Bookmark . 147

Figure 120. Opening an Include File . 149

Figure 121. Highlighting PC Line in Debug mode . 150

Figure 122. Advance Editor Options—Highlight PC Line in Debug mode 151

Figure 123. Mismatched Brace Highlighting . 152

Figure 124. Mismatched Parenthesis Highlighting . 152

Figure 125. Convert . to → Automatically . 153

Figure 126. ZNEO C-Compiler Memory Layout . 158

Figure 127. Call Frame Layout . 173

Figure 128. ZNEO Hierarchical Memory Model . 189

Figure 129. Multiple File Linking . 190

Figure 130. Typical ZNEO Physical Memory Layout . 302

Figure 131. Typical ZNEO Programmer’s Model—General . 306

Figure 132. Programmer’s Model—Default Program Configuration 309

Figure 133. Programmer’s Model—Download to ERAM Program Configuration . . . 313

Figure 134. Programmer’s Model—Download to RAM Program Configuration 316

Figure 135. Programmer’s Model—Copy to ERAM Program Configuration 319

Figure 136. Programmer’s Model—Copy to RAM Program Configuration 323

Figure 137. Debug and Debug Window Toolbars . 327

Figure 138. Registers Window . 329

Figure 139. Special Function Registers Window . 330

Figure 140. Clock Window . 331

Figure 141. Memory Window . 332

Figure 142. Memory Window—Starting Address . 333

Figure 143. Memory Window—Requested Address . 334

Figure 144. Fill Memory Dialog Box . 334

Figure 145. Save to File Dialog Box . 335

Figure 146. Load from File Dialog Box . 336

Figure 147. Show CRC Dialog Box . 336

Figure 148. Watch Window . 337
UM017105-0511 List of Figures

xx

Zilog Developer Studio II – ZNEO™
User Manual
Figure 149. Locals Window . 340

Figure 150. Call Stack Window . 340

Figure 151. Symbols Window . 341

Figure 152. Disassembly Window . 341

Figure 153. Simulated UART Output Window . 343

Figure 154. Setting a Breakpoint . 344

Figure 155. Viewing Breakpoints . 345
List of Figures UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

xx
List of Tables

Table 1. Edit Shortcuts . 25

Table 2. File Menu Shortcuts . 105

Table 3. Edit Menu Shortcuts . 106

Table 4. Project Menu Shortcuts . 106

Table 5. Build Menu Shortcuts . 107

Table 6. Debug Menu Shortcuts . 107

Table 7. Working with Words . 110

Table 8. Working with Lines . 110

Table 9. Working with Paragraphs . 111

Table 10. Working with Files . 111

Table 11. Default Storage Specifiers . 160

Table 12. Pointer Conversion* . 161

Table 13. Nonstandard Headers . 178

Table 14. ZNEO Startup Files . 187

Table 15. Segments . 188

Table 16. Linker Referenced Files . 190

Table 17. Linker Symbols . 191

Table 18. ZNEO Address Spaces . 212

Table 19. Predefined Segments . 213

Table 20. Operator Precedence . 223

Table 21. Structure and Union Assembler Directives . 239

Table 22. Anonymous Labels . 251

Table 23. Assembler Command Line Options . 352

Table 24. Compiler Command Line Options . 354

Table 25. Librarian Command Line Options . 356

Table 26. Linker Command Line Options . 357

Table 27. Script File Commands . 360

Table 28. Command Line Examples . 376

Table 29. Assembler Options . 376

Table 30. Compiler Options . 377

Table 31. General Options . 378

Table 32. Librarian Options . 378

Table 33. Linker Options . 379
UM017105-0511 List of Tables

xx

Zilog Developer Studio II – ZNEO™
User Manual
Table 34. Standard Headers . 391
List of Tables UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

1

Chapter 1. Getting Started

This section provides a tutorial of the developer’s environment, so you can be working
with the ZDS II graphical user interface (GUI) in a short time. This section covers the fol-
lowing topics:

• Installing ZDS II on page 1

• Developer’s Environment Tutorial on page 1

You can use this tutorial to install and start using ZDS II without any attached hardware. If
you have a development kit, use the included Quick Start Guide to set up your hardware
and install ZDS II. For steps to create a new project using target hardware, see New Project
on page 32.

Installing ZDS II

If you have not already installed ZDS II, perform the following procedure:

1. Insert the CD in your CD-ROM drive.

2. Follow the setup instructions on your screen.

3. Install the application in an appropriate folder location on your PC.

Developer’s Environment Tutorial

This tutorial shows you how to use the basic features of Zilog Developer Studio. To begin
this tour, you need a basic understanding of Microsoft Windows. Estimated time for com-
pleting this exercise is 15 minutes.

In this tour, you perform the following brief procedure.

• Create a New Project on page 2

• Add a File to the Project on page 6

• Set Up the Project on page 8

When you complete this tour and save your project, you will have a sample.lod file that
can be used for debugging.

Note:
UM017105-0511 Getting Started

2

Zilog Developer Studio II – ZNEO™
User Manual
Be sure to read Menu Bar on page 31 to learn more about all of the dialog boxes and their
options discussed in this tour.

For the purpose of this tutorial, your ZNEO developer’s environment directory will be
referred to as <ZDS Installation Directory>, which equates to the following nomenclature:

<ZILOGINSTALL>\ZDSII_ZNEO_<version>\

where:

• ZILOGINSTALL is the ZDS II installation directory. For example, the default installa-
tion directory is C:\Program Files\Zilog.

• version is the ZDS II version number. For example, version might be 4.11.0 or
5.0.0.

Create a New Project. Start the ZDS II program if it is not already running.

1. To create a new project, select New Project from the File menu. The New Project
dialog box is displayed.

2. From the New Project dialog box, click the Browse button () to navigate to a
directory in which to save your project. The Select Project Name dialog box is dis-
played; see Figure 1.

Figure 1. Select Project Name Dialog Box

Note:
Developer’s Environment Tutorial UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

3

3. Use the Look In drop-down menu to navigate to the directory in which you’ll save
your project. For this tutorial, Zilog recommends you place your project in the follow-
ing directory:

<ZDS Installation Directory>\samples\Tutorial

If Zilog Developer Studio was installed in the default directory, the actual filepath
would be:

C:\Program Files\Zilog\ZDSII_ZNEO_4.10.1\samples\Tutorial

4. In the File Name: field, enter sample as the name of your project.

The ZNEO developer’s environment creates a project file. By default, project files
have the .zdsproj extension (for example, <project name>.zdsproj). You do not
have to enter the extension .zdsproj in this field. It is added automatically.

5. Click Select to return to the New Project dialog box.

6. Because the sample project uses .c files, select Standard from the Project Type
drop-down menu.

7. In the CPU Family drop-down menu, select Z16F_Series.

8. In the CPU drop-down menu, select Z16F2811AL.

9. In the Build Type drop-down menu, select Executable to build an application (see
Figure 2).

10. Click Continue. The New Project Wizard dialog box is displayed (see Figure 3). It
allows you to modify the initial values for some of the project settings during the proj-
ect creation process.

Figure 2. New Project Dialog Box
UM017105-0511 Developer’s Environment Tutorial

4

Zilog Developer Studio II – ZNEO™
User Manual
11. Accept the defaults by clicking Next. The Target and Debug Tool Selection step of
the New Project Wizard dialog box is displayed; see Figure 4.

Figure 3. New Project Wizard Dialog Box—Build Options Step
Developer’s Environment Tutorial UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

5

12. Click Next to accept the defaults. The Target Memory Configuration step of the New
Project Wizard dialog box is displayed; see Figure 5.

Figure 4. New Project Wizard Dialog Box—Target and Debug Tool Selection Step
UM017105-0511 Developer’s Environment Tutorial

6

Zilog Developer Studio II – ZNEO™
User Manual
13. Click Finish. ZDS II creates a new project named sample. Two empty folders, Stan-
dard Project Files and External Dependencies, are displayed in the Project Work-
space window on the left side of the integrated development environment (IDE).

Add a File to the Project

In this section, you add the main.c source file (provided) to the sample project.

1. From the Project menu, select Add Files. The Add Files to Project dialog box is dis-
played; see Figure 6.

Figure 5. New Project Wizard Dialog Box—Target Memory Configuration Step
Developer’s Environment Tutorial UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

7

2. In the Add Files to Project dialog box, return to the tutorial directory by navigating to

<ZDS Installation Directory>\samples\Tutorial

3. Select the main.c file and click Add. The main.c file is displayed under the Stan-
dard Project Files folder in the Project Workspace window on the left side of the
IDE, as shown in Figure 7.

Figure 6. Add Files to Project Dialog Box
UM017105-0511 Developer’s Environment Tutorial

8

Zilog Developer Studio II – ZNEO™
User Manual
To view a file in the Edit window during the tutorial, double-click the file in the Project
Workspace pane.

Set Up the Project

Before you save and build the sample project, check the settings in the Project Settings
dialog box.

1. From the Project menu, select Settings. The Project Settings dialog box is dis-
played. It provides various project configuration pages that can be accessed by select-
ing the page name in the pane on the left side of the dialog box. There are several
pages grouped together for the C compiler and Linker that allow you to set up subset-
tings for that tool. For more information about this topic, see Settings on page 46.

Figure 7. Sample Project

Note:
Developer’s Environment Tutorial UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

9

2. In the Configuration drop-down menu in the upper left corner of the Project Set-
tings dialog box, make sure the Debug build configuration is selected, as shown in
Figure 8.

For your convenience, the Debug configuration is a predefined configuration of
defaults set to enable the debugging of program code. For more information about
project configurations such as adding your own configuration, see Set Active Config-
uration on page 83.

3. Click the Assembler page.

Figure 8. General Page of the Project Settings Dialog Box
UM017105-0511 Developer’s Environment Tutorial

10

Zilog Developer Studio II – ZNEO™
User Manual
4. Make sure that the Generate Assembly Listing Files (.lst) checkbox is selected, as
shown in Figure 9.

5. Click the Code Generation page.

Figure 9. Assembler Page of the Project Settings Dialog Box
Developer’s Environment Tutorial UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

11
6. Select the Limit Optimizations for Easier Debugging checkbox, as shown in
Figure 10.

7. Click the Advanced page.

Figure 10. Code Generation Page of the Project Settings Dialog Box
UM017105-0511 Developer’s Environment Tutorial

12

Zilog Developer Studio II – ZNEO™
User Manual
8. Make certain the Generate Printfs Inline checkbox is selected, as shown in Figure 11.

9. Click the Output page.

Figure 11. Advanced Page of the Project Settings Dialog Box
Developer’s Environment Tutorial UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

13
10. Make sure that the IEEE 695 and Intel Hex32 - Records checkboxes are both
selected, as shown in Figure 12.

11. Click OK to save all project settings. The Development Environment will prompt you
to build the project when changes are made to the project settings that would effect the
resulting build program. The message displays: “The project settings have
changed since the last build. Would you like to rebuild the
affected files?”

12. Click Yes to build the project. The developer’s environment builds the sample proj-
ect.

Figure 12. Output Page of the Project Settings Dialog Box
UM017105-0511 Developer’s Environment Tutorial

14

Zilog Developer Studio II – ZNEO™
User Manual
13. Observe the compilation process in the Build Output window, as shown in Figure 13.
When the Build completed message is displayed in the Build Output window, you
have successfully built the sample project and created a sample.lod file to debug.

14. From the File menu, select Save Project.

Figure 13. Build Output Window
Developer’s Environment Tutorial UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

15
Chapter 2. Using the Integrated
Development Environment

This section discusses how to use the following integrated development environment
(IDE) elements.

• Toolbars – see page 16

• Windows – see page 23

• Menu Bar – see page 31

• Shortcut Keys – see page 105

To effectively understand how to use the developer’s environment, be sure to go through
the Developer’s Environment Tutorial on page 1.

After the discussion of the toolbars and windows, this section discusses the menu bar,
shown in Figure 14, from left to right—File, Edit, View, Project, Build, Debug, Tools,
Window, and Help—and the dialog boxes accessed from the menus. For example, the
Project Settings dialog box is discussed as a part of the Project menu section.
UM017105-0511 Using the Integrated Development Environment

16

Zilog Developer Studio II – ZNEO™
User Manual
For a table of all of the shortcuts used in the ZNEO developer’s environment, see Shortcut
Keys on page 105.

Toolbars

The toolbars provide quick access to most features of the ZNEO developer’s environment.
You can use these buttons – even cue cards – to perform any task. As you move the mouse
pointer across the toolbars, the main function of each button is displayed in a pop-up dia-
log. Additionally, you can drag and move the toolbars to different areas on the screen.

The following toolbars are described in this section.

• File Toolbar – see page 17

• Build Toolbar – see page 18

Figure 14. ZNEO Integrated Development Environment (IDE) Window
Toolbars UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

17
• Find Toolbar – see page 19

• Command Processor Toolbar – see page 19

• Debug Toolbar – see page 20

• Debug Windows Toolbar – see page 22

For more information about debugging, see the Using the Debugger chapter on page 327.

File Toolbar

The File toolbar, shown in Figure 15, allows you to perform basic functions with your files
using a number of buttons, each of which is briefly described below.

New. Creates a new file.

Open. Allows you to open an existing file.

Save. Saves the active file.

Save All. Saves all open files and the currently loaded project.

Cut. Deletes selected text from the active file and puts it on the Windows clipboard.

Copy. Copies selected text from the active file and puts it on the Windows clipboard.

Paste. Pastes the current contents of the clipboard into the active file at the current cursor
position.

Delete. Deletes selected text from the active file.

Print. Prints the active file.

Workspace Window. Shows or hides the Project Workspace window.

Output Window. Shows or hides the Output window.

Figure 15. The File Toolbar

Note:
UM017105-0511 Toolbars

18

Zilog Developer Studio II – ZNEO™
User Manual
Build Toolbar

The Build toolbar, shown in Figure 16, allows you to build your project, set breakpoints,
and select a project configuration with the following controls and buttons; a description of
each follows.

Select Build Configuration List Box. Lets you activate the build configuration for your
project. See the Set Active Configuration section on page 83 for more information.

Compile/Assemble File Button. Compiles or assembles the active source file.

Build Button. Builds your project by compiling and/or assembling any files that have
changed since the last build and then links the project.

Rebuild All Button. Rebuilds all files and links the project.

Stop Build Button. Stops a build in progress.

Connect to Target Button. Starts a debug session and initializes the communication to
the target hardware. Clicking this button does not download the software or reset to main.
Use this button to access target registers, memory, and so on, without loading new code or
to avoid overwriting the target’s code with the same code. This button is not enabled when
the target is the simulator.

Download Code Button. Downloads the executable file for the currently open project to
the target for debugging. The button also initializes the communication to the target hard-
ware if it has not been done yet. Use this button anytime during a debug session.

Using the Download Code button overwrites the current code on the target.

Reset Button. The Reset button resets the program counter to the beginning the program.
If not in Debug mode, a debug session is started. By default and if possible, clicking the
Reset button resets the program counter to symbol 'main'. If you deselect the Reset to
Symbol 'main' (Where Applicable) checkbox on the Debugger tab of the Options dia-
log box (see page 102), the program counter resets to the first line of the program.

Go Button. The Go button executes project code from the current program counter. If not
in Debug mode when the button is clicked, a debug session is started.

Figure 16. The Build Toolbar

Note:
Toolbars UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

19
Insert/Remove Breakpoint Button. The Insert/Remove Breakpoint button sets a new
breakpoint or removes an existing breakpoint in the active file at the line in which the cur-
sor is. You can set a breakpoint in any line with a blue dot displayed to the left of the line
(shown in Debug mode only).

Enable/Disable Breakpoint Button. The Enable/Disable Breakpoint button activates or
deactivates an existing breakpoint at the line in which the cursor is. A red octagon indi-
cates an enabled breakpoint; a white octagon indicates a disabled breakpoint.

Remove All Breakpoints Button. The Remove All Breakpoints button deletes all
breakpoints in the currently loaded project.

Find Toolbar

The Find toolbar, shown in Figure 17, provides access to text search functions using either
of two entry points, each of which is briefly described below.

Find in Files Button. Opens the Find in Files dialog box, allowing you to search for text
in multiple files.

Find Field. To locate text in the active file, enter the text in the Find field and press the
Enter key. The search term is highlighted in the file. To search again, press the Enter key
again.

Command Processor Toolbar

The Command Processor toolbar, shown in Figure 18, allows you to execute IDE and
debugger commands using either of two entry points, each of which is briefly described
below.

See Supported Script File Commands on page 364 for a list of supported commands.

Figure 17. The Find Toolbar

Figure 18. The Command Processor Toolbar
UM017105-0511 Toolbars

20

Zilog Developer Studio II – ZNEO™
User Manual
Run Command Button. Executes the command in the Command field. Output from the
execution of the command is displayed in the Command tab of the Output window.

Stop Command Button. Stops any commands currently running.

Command Field. The Command field allows you to enter a new command. Click the Run
Command button or press the Enter key to execute the command. Output from the execu-
tion of the command is displayed in the Command tab of the Output window.

To modify the width of the Command field, perform the following brief procedure:

1. Select Customize from the Tools menu.

2. Click to set your cursor in the Command field. A hatched rectangle highlights the
Command field.

3. Use your mouse to select and drag the side of the hatched rectangle. The new size of
the Command field is saved as a new project setting.

Debug Toolbar

The Debug toolbar, shown in Figure 19, allows you to perform debugging functions with
the following buttons:

Download Code Button. Downloads the executable file for the currently open project to
the target for debugging. The button also initializes the communication to the target hard-
ware if it has not been done yet. Use this button anytime during a debug session.

The current code on the target is overwritten.

Verify Download Button. Determines download correctness by comparing executable
file contents to target memory.

Reset Button. Resets the program counter to the beginning the program. If not in Debug
mode, a debug session is started. By default and if possible, clicking the Reset button
resets the program counter to symbol 'main'. If you deselect the Reset to Symbol 'main'
(Where Applicable) checkbox on the Debugger tab of the Options dialog box (see
page 102), the program counter resets to the first line of the program.

Figure 19. The Debug Toolbar

Note:
Toolbars UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

21
Stop Debugging Button. Ends the current debug session. To stop program execution,
click the Break button.

Go Button. Executes project code from the current program counter. If not in Debug
mode when the button is clicked, a debug session is started.

Run to Cursor Button. Executes the program code from the current program counter to
the line containing the cursor in the active file or the Disassembly window. The cursor
must be placed on a valid code line (a C source line with a blue dot displayed in the gutter
or any instruction line in the Disassembly window).

Break Button. Stops program execution at the current program counter.

Step Into Button. Executes one statement or instruction from the current program coun-
ter, following the execution into function calls. When complete, the program counter
resides at the next program statement or instruction unless a function was entered, in
which case the program counter resides at the first statement or instruction in the function.

Step Over Button. Executes one statement or instruction from the current program coun-
ter without following the execution into function calls. When complete, the program coun-
ter resides at the next program statement or instruction.

Step Out Button. Executes the remaining statements or instructions in the current func-
tion and returns to the statement or instruction following the call to the current function.

Set Next Instruction Button. Sets the program counter to the line containing the cursor in
the active file or the Disassembly window.

Insert/Remove Breakpoint Button. Sets a new breakpoint or removes an existing break-
point at the line containing the cursor in the active file or the Disassembly window. A
breakpoint must be placed on a valid code line (a C source line with a blue dot displayed
in the gutter or any instruction line in the Disassembly window). For more information
about breakpoints, see the Using Breakpoints section on page 343.

Enable/Disable Breakpoint Button. Activates or deactivates the existing breakpoint at
the line containing the cursor in the active file or the Disassembly window. A red octagon
indicates an enabled breakpoint; a white octagon indicates a disabled breakpoint. For more
information about breakpoints, see the Using Breakpoints section on page 343.

Disable All Breakpoints Button. Deactivates all breakpoints in the currently loaded proj-
ect. To remove breakpoints from your program, use the Remove All Breakpoints button.

Remove All Breakpoints Button. Deletes all breakpoints in the currently loaded project.
To deactivate breakpoints in your project, use the Disable All Breakpoints button.
UM017105-0511 Toolbars

22

Zilog Developer Studio II – ZNEO™
User Manual
Debug Windows Toolbar

The Debug Windows toolbar, shown in Figure 20, allows you to display a number of
Debug windows using a number of buttons, each of which is briefly described below.

Registers Window Button. Displays or hides the Registers window. This window is
described in the Registers Window section on page 329.

Special Function Registers Window Button. Opens one of ten Special Function Regis-
ters windows. This window is described in the Special Function Registers Window section
on page 330.

Clock Window Button. Displays or hides the Clock window. This window is described in
the Clock Window section on page 331.

Memory Window Button. Opens one of ten Memory windows. This window is described
in the Memory Window section on page 331.

Watch Window Button. Displays or hides the Watch window. This window is described
in the Watch Window section on page 337.

Locals Window Button. Displays or hides the Locals window. This window is described
in the Locals Window section on page 339.

Call Stack Window Button. Displays or hides the Call Stack window. This window is
described in the Call Stack Window section on page 340.

Symbols Window Button. Displays or hides the Symbols window. This window is
described in the Symbols Window section on page 340.

Disassembly Window Button. Displays or hides the Disassembly window. This window
is described in the Disassembly Window section on page 341.

Simulated UART Output Window Button. Displays or hides the Simulated UART Out-
put window. This window is described in the Simulated UART Output Window section on
page 342.

Figure 20. The Debug Windows Toolbar
Toolbars UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

23
Windows

Four ZDS II windows allow you to see various aspects of the tools while working with
your project. The first three of these windows, listed below, are described in this section;
the fourth is described in the chapter titled Using the Debugger.

• Project Workspace Window – see page 23

• Edit Window – see page 24

• Output Windows – see page 29

• Debug Windows – see page 329

Project Workspace Window

The Project Workspace window, located on the left side of the developer’s environment
(and shown in Figures 21 and 22), allows you to view your project files.

Figure 21. Project Workspace Window for Standard Projects
UM017105-0511 Windows

24

Zilog Developer Studio II – ZNEO™
User Manual
The Project Workspace window provides access to related functions using context menus.
To access context menus, right-click a file or folder in the window. Depending on which
file or folder is highlighted, the context menu provides some or all of the following func-
tions:

• Dock the Project Workspace window

• Hide the Project Workspace window

• Add files to the project

• Remove the highlighted file(s) from the project

• Build project files or external dependencies

• Build or compile the highlighted file

• Undock the Project Workspace window, allowing it to float in the Edit window

Edit Window

This section covers the following topics:

• Using the Context Menus – see page 25

• Using Bookmarks – see page 26

The Edit window area, located on the right side of the developer’s environment (and
shown in Figure 23), allows you to edit the files in your project.

Figure 22. Project Workspace Window for Assembly Only Projects
Windows UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

25
The Edit window supports the shortcuts listed in Table 1.

Using the Context Menus

There are two context menus in the Edit window, depending on where you click. When
you right-click in a file, the context menu allows you to do the following (depending on
whether any text is selected or you are running in Debug mode):

Figure 23. Edit Window

Table 1. Edit Shortcuts

Shortcuts Function

Ctrl + Z Undo

Ctrl + Y Redo

Ctrl + X Cut

Ctrl + C Copy

Ctrl + V Paste

Ctrl + F Find

F3 Repeat the previous search

Ctrl + G Go to

Ctrl + E
Ctrl +]

Go to the matching { or } symbol. Place your cursor at
the right or left of an opening or closing brace and
press Ctrl + E or Ctrl +] to move the cursor to the
matching opening or closing brace.
UM017105-0511 Windows

26

Zilog Developer Studio II – ZNEO™
User Manual
• Cut, copy, and paste text

• Go to the Disassembly window

• Show the program counter

• Insert, edit, enable, disable, or remove breakpoints

• Reset the debugger

• Stop debugging

• Start or continue running the program (Go)

• Run to the cursor

• Pause the debugging (Break)

• Step into, over, or out of program instructions

• Set the next instruction at the current line

• Insert or remove bookmarks (for more, see the Using Bookmarks section on page 26)

When you right-click outside of all files, the context menu allows you to perform the fol-
lowing tasks:

• Show or hide the Output windows, Project Workspace window, status bar, File tool-
bar, Build toolbar, Find toolbar, Command Processor toolbar, Debug toolbar, Debug
Windows toolbar

• When in Workbook Mode, each open file features an associated tab along the bottom
of the Edit Windows area that allows users to toggle in and out of Workbook Mode.

• Customize the buttons and toolbars

Using Bookmarks

A bookmark is a marker that identifies a position within a file. Bookmarks appear as cyan
boxes in the gutter portion (left) of the file window, as shown in Figure 24. The cursor can
be quickly positioned on a lines containing bookmarks.
Windows UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

27
To insert a bookmark, position the cursor on the desired line of the active file and perform
one of the following actions:

• Right-click in the Edit window and select Insert Bookmark from the resulting context
menu, shown in Figure 25.

• Select Toggle Bookmark from the Edit menu.

• Using your keyboard, enter Ctrl+M.

Figure 24. Bookmark Example
UM017105-0511 Windows

28

Zilog Developer Studio II – ZNEO™
User Manual
To remove a bookmark, position the cursor on the line of the active file containing the
bookmark to be removed and perform one of the following actions:

• Right-click in the Edit window and select Remove Bookmark from the resulting con-
text menu

• Select Toggle Bookmark from the Edit menu

• Using your keyboard, enter Ctrl+M

To remove all bookmarks in the active file, right-click in the Edit window and select
Remove Bookmarks from the resulting context menu.

To remove all bookmarks in the current project, select Remove All Bookmarks from the
Edit menu.

To position the cursor at the next bookmark in the active file, perform one of the following
actions:

• Right-click in the Edit window and select Next Bookmark from the resulting context
menu.

• Select Next Bookmark from the Edit menu.

• Press the F2 key. The cursor moves forward through the file, starting at its current
position and beginning again when the end of file is reached, until a bookmark is

Figure 25. Inserting a Bookmark
Windows UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

29
encountered. If no bookmarks are set in the active file, this function has no effect.

To position the cursor at the previous bookmark in the active file, perform one of the fol-
lowing actions:

• Right-click in the Edit window and select Previous Bookmark from the resulting
context menu.

• Select Previous Bookmark from the Edit menu.

• Using your keyboard, enter Shift+F2. The cursor moves backwards through the file,
starting at its current position and starting again at the end of the file when the file
beginning is reached, until a bookmark is encountered. If no bookmarks are set in the
active file, this function has no effect.

Output Windows

The Output windows display output, errors, and other feedback from various components
of the Integrated Development Environment.

Select one of the tabs at the bottom of the Output window to select one of the Output win-
dows, each of which is listed below and is described in this section.

• Build Output Window – see page 29

• Debug Output Window – see page 30

• Find in Files Output Windows – see page 30

• Messages Output Window – see page 31

• Command Output Window – see page 31

To dock the Output window with another window, click and hold the window’s grip bar,
then move the window.

Double-click the window’s grip bar to cause it to become a floating window.

Double-click the floating window's title bar to change it to a dockable window.

Use the context menu to copy text from or to delete all text in the Output window.

Build Output Window. Holds all text messages generated by the compiler, assembler,
librarian, and linker, including error and warning messages; see Figure 26.
UM017105-0511 Windows

30

Zilog Developer Studio II – ZNEO™
User Manual
Debug Output Window. Holds all text messages generated by the debugger while you are
in Debug Mode; see Figure 27.

Find in Files Output Windows. The two Find in Files Output windows, shown in
Figures 28 and 29, display the results of the Find in Files command (available from the
Edit menu and the Find toolbar). The File in Files 2 window is used when the Output to
Pane 2 checkbox is selected in the Find in File dialog box (for more, see Find in Files on
page 41).

Figure 26. Build Output Window

Figure 27. Debug Output Window

Figure 28. Find in Files Output Window
Windows UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

31
Messages Output Window. Holds informational messages intended for the user. The
Messages Output window also displays the chip revision identifier (always 0x0800 for
ZNEO) and the Smart Cable firmware version; see Figure 30.

Command Output Window. Holds output from the execution of commands; see
Figure 31.

Menu Bar

The menu bar lists menu items used in the ZNEO developer’s environment. Clicking a
menu bar item displays a list of selection items. If an option on a menu item ends with an
ellipsis (...), selecting the option displays a dialog box. A number of items are displayed on
the menu bar; each is listed below and described in this section.

• File Menu – see page 32

Figure 29. Find in Files 2 Output Window

Figure 30. Messages Output Window

Figure 31. Command Output Window
UM017105-0511 Menu Bar

32

Zilog Developer Studio II – ZNEO™
User Manual
• Edit Menu – see page 40

• View Menu – see page 44

• Project Menu – see page 45

• Build Menu – see page 83

• Debug Menu – see page 86

• Tools Menu – see page 87

• Window Menu – see page 104

• Help Menu – see page 105

File Menu

The File menu enables you to perform basic commands in the developer’s environment;
each of these file commands is briefly described in this section.

New File. Select New File from the File menu to create a new file in the Edit window.

Open File. Select Open File from the File menu to display the Open dialog box (see
Figure 32) which allows you to open the files for viewing and editing.

Close File. Select Close File from the File menu to close the selected file.

New Project. To create a new project, perform the following brief procedure:

Figure 32. Open Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

33
1. Select New Project from the File menu. The New Project dialog box is displayed; see
Figure 33.

2. From the New Project dialog box, click the Browse button () to navigate to the
directory in which you’ll save your project. The Select Project Name dialog box is
displayed; see Figure 34.

3. In the File Name field, enter the name of your project. You do not have to enter the
.zdsproj extension; it is added automatically.

Figure 33. New Project Dialog Box

Figure 34. Select Project Name Dialog Box
UM017105-0511 Menu Bar

34

Zilog Developer Studio II – ZNEO™
User Manual
The following characters cannot be used in a project name: () $, . - + [] ' &

4. Click Select to return to the New Project dialog box.

5. In the Project Type field, select Standard for a project that uses .c files. Select
Assembly Only for a project that will include only assembly source code.

6. In the CPU Family drop-down menu, select Z16F_Series.

7. In the CPU drop-down menu, select a CPU.

8. In the Build Type drop-down menu, select Executable to build an application or
select Static Library to build a static library. The default is Executable, which creates
an IEEE 695 executable format (.lod). For more information, see the Project Set-
tings—Output Page section on page 72.

9. Click Continue to change the default project settings using the New Project Wizard.
To accept all default settings, or to create static libraries, click Finish. For Standard
projects, the New Project Wizard dialog box is displayed (see Figure 35). For Assem-
bly-Only executable projects, continue to Step 11.

Figure 35. New Project Wizard Dialog Box—Build Options

Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

35
10. Select whether your project is linked to the standard C start-up module, C run-time
library, and floating-point library; select a small or large memory model (see the
Memory Models section on page 161); and click Next. For executable projects, the
Target and Debug Tool Selection step of the New Project Wizard dialog box is dis-
played; see Figure 36.

11. Select the Use Page Erase Before Flashing checkbox to configure the internal Flash
memory of the target hardware to be page-erased. If this checkbox is not selected, the
internal Flash is configured to be mass-erased.

12. Select the appropriate target from the Target list box.

13. Click Setup in the Target area. Refer to the Setup section on page 76 for details on
configuring a target.

14. Click Add to create a new target (see Add on page 78) or click Copy to copy an exist-
ing target (see Copy on page 79).

15. Select the appropriate debug tool and (if you have not selected the Simulator) click
Setup in the Debug Tool area. Refer to the Debug Tool section on page 80 for details
about the available debug tools and how to configure them.

16. Click Next. The Target Memory Configuration step of the New Project Wizard dia-
log box is displayed; see Figure 37.

Figure 36. New Project Wizard Dialog Box—Target and Debug Tool Selection
UM017105-0511 Menu Bar

36

Zilog Developer Studio II – ZNEO™
User Manual
17. Enter the memory ranges appropriate for the target CPU.

18. Click Finish.

Open Project. To open an existing project, perform the following procedure:

1. Select Open Project from the File menu. The Open Project dialog box is displayed;
see Figure 38.

Figure 37. New Project Wizard Dialog Box—Target Memory Configuration
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

37
2. Use the Look In drop-down menu to navigate to the directory in which your project is
located.

3. Select the project to be opened, and click Open to open your project.

To quickly open a project you were working in recently, see the Recent Projects section on
page 39.

Save Project. Select Save Project from the File menu to save the currently active proj-
ect. By default, project files and configuration information are saved in a file named
<project name>.zdsproj. An alternate file extension is used if provided when the proj-
ect is created.

The <project name>.zdsproj.file contains all project data. If deleted, the project is no
longer available.

If the Save/Restore Project Workspace checkbox is selected (see the Options—General
Tab section on page 96), a file named <project name>.wsp is also created or updated with
workspace information such as window locations and bookmark details. The.wsp file
supplements the project information. If it is deleted, the last known workspace data is lost,
but this does not affect or harm the project.

Figure 38. Open Project Dialog Box

Note:

Note:
UM017105-0511 Menu Bar

38

Zilog Developer Studio II – ZNEO™
User Manual
Close Project. Select Close Project from the File menu to close the currently active proj-
ect.

Save. Select Save from the File menu to save the active file.

Save As

To save the active file with a new name, perform the following steps:

1. Select Save As from the File menu. The Save As dialog box is displayed; see
Figure 39.

2. Use the Save In drop-down menu to navigate to the appropriate directory.

3. Enter the new file name in the File Name field.

4. Use the Save as Type drop-down menu to select the file type.

5. Click Save. A copy of the file is saved with the name you entered.

Save All. Select Save All from the File menu to save all open files and the currently
loaded project.

Print. Select Print from the File menu to print the active file.

Print Preview. Select Print Preview from the File menu to display the file you want to
print in Preview mode in a new window, as shown in the following brief procedure.

1. In the Edit window, highlight the file you want to show a Print Preview.

Figure 39. Save As Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

39
2. From the File menu, select Print Preview. The file is displayed in a new window. As
shown in Figure 40, main.c is in Print Preview mode.

3. To print the file, click Print. To cancel the print preview, click Close. The file returns
to its edit mode in the Edit window.

Print Setup. Select Print Setup from the File menu to display the Print Setup dialog box,
which allows you to modify the printer’s default configuration, if desired, before you print
the file.

Recent Files. Select Recent Files from the File menu and then select a file from the
resulting submenu to open a recently opened file.

Recent Projects. Select Recent Projects from the File menu and then select a project
file from the resulting submenu to quickly open a recently opened project.

Exit. Select Exit from the File menu to exit the application.

Figure 40. Print Preview Window
UM017105-0511 Menu Bar

40

Zilog Developer Studio II – ZNEO™
User Manual
Edit Menu

The Edit menu provides access to basic editing, text search, and breakpoint and bookmark
manipulation features. A number of edit menu options are available; each is described in
this section.

Undo. Undo the last edit made to the active file.

Redo. Redo the last edit made to the active file.

Cut. Delete selected text from the active file and place it on the Windows clipboard.

Copy. Copy selected text from the active file and put it on the Windows clipboard.

Paste. Paste the current contents of the clipboard into the active file at the current cursor
position.

Delete. Delete selected text from the active file.

Select All. Highlight all text in the active file.

Show Whitespaces. Select Show Whitespaces from the Edit menu to display all
whitespace characters such as spaces and tabs in the active file.

Find. To find text in the active file, observe the following procedure:

1. Select Find from the Edit menu. The Find dialog box is displayed; see Figure 41.

2. Enter a search string in the Find What field or select a recent entry from the Find
What drop-down menu. (By default, the currently selected text in a source file or the
text where your cursor is located in a source file is displayed in the Find What field.)

3. Select the Match Whole Word Only checkbox if you want to ignore the search text
when it occurs as part of longer words.

Figure 41. Find Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

41
4. Select the Match Case checkbox if you want the search to be case-sensitive.

5. Select the Regular Expression checkbox if you want to use regular expressions.

6. Select the direction of the search with the Up or Down button.

7. Click Find Next to jump to the next occurrence of the search text or click Mark All to
insert a bookmark on each line containing the search text.

After clicking Find Next, the dialog box closes. You can press the F3 key or use the Find
Again command to find the next occurrence of the search term without displaying the Find
dialog box again.

Find Again. Select Find Again from the Edit menu to continue searching in the active file
for text previously entered in the Find dialog box.

Find in Files. This function searches the contents of the files on disk; therefore, unsaved
data in open files is not searched.

To find text in multiple files, observe the following procedure:

1. Select Find in Files from the Edit menu.

The Find in Files dialog box is displayed; see Figure 42.

2. Enter a search string in the Find field or select a recent entry from the Find drop-down
menu. (If you select text in a source file before displaying the Find dialog box, the text
is displayed in the Find field.)

3. Select or enter the file type(s) to search for in the In File Types drop-down menu.
Separate multiple file types with semicolons.

Figure 42. Find in Files Dialog Box

Note:
UM017105-0511 Menu Bar

42

Zilog Developer Studio II – ZNEO™
User Manual
4. Use the Browse button () or the In Folder drop-down menu to select the location
of the files in which you plan to search.

5. Select the Match Whole Word Only checkbox if you want to ignore the search text
when it occurs as part of longer words.

6. Select the Match Case checkbox if you want the search to be case-sensitive.

7. Select the Look in Subfolders checkbox if you want to search within subfolders.

8. Select the Output to Pane 2 checkbox if you want the search results displayed in the
Find in Files 2 Output window. If this button is not selected, the search results are dis-
played in the Find in Files Output window.

9. Click Find to perform the search.

Replace. To find and replace text in the active file, observe the following procedure:

1. Select Replace from the Edit menu. The Replace dialog box is displayed; see
Figure 43.

2. Enter a search string in the Find What field or select a recent entry from the Find
What drop-down menu. (By default, the currently selected text in a source file or the
text where your cursor is located in a source file is displayed in the Find What field.)

3. Enter the replacement text in the Replace With field or select a recent entry from the
Replace With drop-down menu.

4. Select the Match Case checkbox if you want the search to be case-sensitive.

5. Select the Regular Expression checkbox if you want to use regular expressions.

6. Select the Wrap Around Search checkbox to continue the search past the end (or
beginning) of the file until the current cursor position is reached.

7. Select the direction of the search with the Up or Down button.

Figure 43. Replace Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

43
8. Click Find Next to jump to the next occurrence of the search text, click Replace to
replace the highlighted text, or click Replace All to automatically replace all instances
of the search text.

Go to Line. To position the cursor at a specific line in the active file, select Go to Line
from the Edit menu to display the Go to Line Number dialog box, as shown in Figure 44.
Enter the desired line number in the edit field and click Go To.

Manage Breakpoints

To view, go to, enable, disable, or remove breakpoints in an active project, select Manage
Breakpoints from the Edit menu. You can access the Breakpoints dialog box, shown in
Figure 45, during Debug mode and Edit mode.

The Breakpoints dialog box lists all existing breakpoints for the currently loaded project.
A check mark in the box to the left of the breakpoint description indicates that the break-
point is enabled. Each of the buttons in this dialog box is described in this section.

Go to Code. To move the cursor to a particular breakpoint you have set in a file, highlight
the breakpoint in the Breakpoints dialog box and click Go to Code.

Enable All. To make all listed breakpoints active, click Enable All. Individual breakpoints
can be enabled by clicking in the box to the left of the breakpoint description. Enabled

Figure 44. Go to Line Number Dialog Box

Figure 45. Breakpoints Dialog Box
UM017105-0511 Menu Bar

44

Zilog Developer Studio II – ZNEO™
User Manual
breakpoints are indicated by a check mark in the box to the left of the breakpoint descrip-
tion.

Disable All. To make all listed breakpoints inactive, click Disable All. Individual break-
points can be disabled by clicking in the box to the left of the breakpoint description. Dis-
abled breakpoints are indicated by an empty box to the left of the breakpoint description.

Remove. To delete a particular breakpoint, highlight the breakpoint in the Breakpoints
dialog box and click Remove.

Remove All. To delete all of the listed breakpoints, click Remove All.

For more information about breakpoints, see the Using Breakpoints section on page 343.

Toggle Bookmark. Select Toggle Bookmark from the Edit menu to insert a bookmark in
the active file for the line in which your cursor is located or to remove the bookmark for
the line in which your cursor is located.

Next Bookmark. Select Next Bookmark from the Edit menu to position the cursor at the
line in which the next bookmark in the active file is located.

The search for the next bookmark does not stop at the end of the file; the next bookmark
might be the first bookmark in the file.

Previous Bookmark. Select Previous Bookmark from the Edit menu to position the cur-
sor at the line in which the previous bookmark in the active file is located.

The search for the previous bookmark does not stop at the beginning of the file; the previ-
ous bookmark might be the last bookmark in the file.

Remove All Bookmarks. Select Remove All Bookmarks from the Edit menu to delete
all of the bookmarks in the currently loaded project.

View Menu

The View menu allows you to select the windows you want to display in the ZNEO devel-
oper’s environment. The View menu contains four options, each of which is described in
this section.

Note:

Note:

Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

45
Debug Windows. When you are in Debug mode (running the debugger), you can select
any of the Debug windows. From the View menu, select Debug Windows and then the
appropriate Debug window. For more information about the Debug windows, see the
Debug Windows section on page 329.

The Debug Windows submenu contains the following elements, each of which is
described in the chapter titled Using the Debugger.

• Registers Window – see page 329

• Special Function Registers Window – see page 330

• Clock Window – see page 331

• Memory Window – see page 331

• Watch Window – see page 337

• Locals Window – see page 339

• Call Stack Window – see page 340

• Symbols Window – see page 340

• Disassembly Window – see page 341

• Simulated UART Output Window – see page 342

Workspace. Display or hide the Project Workspace window.

Output. Display or hide the Output windows.

Status Bar. Display or hide the status bar, which resides beneath the Build Output win-
dow.

Project Menu

The Project menu allows you to add files to your project, set configurations for your proj-
ect, and export a make file.

The Project menu contains the following options; the first three are described in this sec-
tion.

• Add Files – see page 46

• Remove Selected File(s) – see page 46

• Settings – see page 46

• Export Makefile – see page 82
UM017105-0511 Menu Bar

46

Zilog Developer Studio II – ZNEO™
User Manual
Add Files

To add files to your project, observe the following procedure:

1. From the Project menu, select Add Files.The Add Files to Project dialog box is dis-
played; see Figure 46.

2. Use the Look In drop-down menu to navigate to the appropriate directory in which the
files you want to add are saved.

3. Click the file you want to add or highlight multiple files by clicking on each file while
holding down the Shift key.

4. Click Add to add these files to your project.

Remove Selected File(s)

Select this option from the Project menu to delete highlighted files in the Project Work-
space window.

Settings

Select Settings from the Project menu to display the Project Settings dialog box, which
allows you to change your active configuration as well as set up your project.

Select the active configuration for the project in the Configuration drop-down menu in
the upper left corner of the Project Settings dialog box. For your convenience, the Debug
and Release configurations are predefined. For more information about project configura-

Figure 46. Add Files to Project Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

47
tions, such as adding your own configuration, see the Set Active Configuration section on
page 83.

The Project Settings dialog box provides various project configuration pages that can be
accessed by selecting the page name in the pane on the left side of the dialog box. There
are several pages grouped together for the C (Compiler) and Linker that allow you to set
up subsettings for that tool. The pages for the C (Compiler) are Code Generation, Listing
Files, Preprocessor, and Advanced. The pages for the Linker are Commands, Objects and
Libraries, Address Spaces, Warnings, and Output.

If you change project settings that affect the build, the following message is displayed
when you click OK to exit the Project Settings dialog box: “The project settings
have changed since the last build. Would you like to rebuild the
affected files?” Click Yes to save and then rebuild the project.

Each of the Project Settings pages is described in this section.

Project Settings—General Page. From the Project Settings dialog box, select the Gen-
eral page. The options on the General page, shown in Figure 47, are described in this sec-
tion.

Note:
UM017105-0511 Menu Bar

48

Zilog Developer Studio II – ZNEO™
User Manual
CPU Family. Allows you to select the appropriate ZNEO family.

CPU. Defines which CPU you want to define for the ZNEO target. To change the CPU for
your project, select the appropriate CPU in the CPU drop-down menu.

Selecting a CPU does not automatically select include files for your C or assembly source
code. Include files must be manually included in your code. Selecting a new CPU automat-
ically updates the compiler preprocessor defines, assembler defines, and, where necessary,
the linker address space ranges and selected debugger target based on the selected CPU.

Show Warnings. This checkbox controls the display of warning messages during all
phases of the build. If the checkbox is enabled, warning messages from the assembler,

Figure 47. General Page of the Project Settings Dialog Box

Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

49
compiler, librarian, and linker are displayed during the build. If the checkbox is disabled,
all these warnings are suppressed.

Generate Debug Information. This checkbox makes the build generate debug informa-
tion that can be used by the debugger to allow symbolic debugging. Enable this option if
you are planning to debug your code using the debugger. The checkbox enables debug
information in the assembler, compiler, and linker.

Enabling this option usually increases your overall code size by a moderate amount for
two reasons. First, if your code makes any calls to the C run-time libraries, the library ver-
sion used is the one that was built using the Limit Optimizations for Easier Debugging
setting (see the Limit Optimizations for Easier Debugging section on page 52). Second,
the generated code sets up the stack frame for every function in your own program. Many
functions (those whose parameters and local variables are not too numerous and do not
have their addresses taken in your code) would not otherwise require a stack frame in the
ZNEO architecture, so the code for these functions is slightly smaller if this checkbox is
disabled.

The Generate Debug Information checkbox interacts with the Limit Optimizations for
Easier Debugging checkbox on the Code Generation page (see the Limit Optimizations
for Easier Debugging section on page 52). When the Limit Optimizations for Easier
Debugging checkbox is selected, debug information is always generated so that debugging
can be performed. The Generate Debug Information checkbox is grayed out (disabled)
when the Limit Optimizations for Easier Debugging checkbox is selected. If the Limit
Optimizations for Easier Debugging checkbox is later deselected (even in a later ZDS II
session), the Generate Debug Information checkbox returns to the setting it had before
the Limit Optimizations for Easier Debugging checkbox was selected.

Ignore Case of Symbols. When the Ignore Case of Symbols checkbox is enabled, the
assembler and linker ignore the case of symbols when generating and linking code. This
checkbox is occasionally required when a project contains source files with case-insensi-
tive labels. This checkbox is only available for Assembly Only projects with no C code.

Intermediate Files Directory. This directory specifies the location where all intermediate
files produced during the build will be located. These files include make files, object files,
and generated assembly source files and listings that are generated from C source code.
This field is provided primarily for the convenience of users who might want to delete
these files after building a project, while retaining the built executable and other, more
permanent files. Those files are placed into a separate directory specified in the Output
page (see the Project Settings—Output Page section on page 72).

Project Settings—Assembler Page. In the Project Settings dialog box, select the
Assembler page. The assembler uses the contents of the Assembler page to determine

Note:
UM017105-0511 Menu Bar

50

Zilog Developer Studio II – ZNEO™
User Manual
which options are to be applied to the files assembled. The options on the Assembler page,
shown in Figure 48, are each described in this section.

Includes. The Includes field allows you to specify the series of paths for the assembler to
use when searching for include files. The assembler first checks the current directory, then
the paths in the Includes field, and finally the default ZDS II include directories.

The ZDS II default include directory is:

<ZDS Installation Directory>\include\std

where <ZDS Installation Directory> is the directory in which Zilog Developer Studio was
installed. By default, this would be C:\Program Files\Zilog\ZDSII_ZNEO_<ver-
sion>, where <version> might be 4.11.0 or 5.0.0.

Defines. The Defines field is equivalent to placing <symbol> EQU <value> in your assem-
bly source code. It is useful for conditionally built code. Each defined symbol must have a

Figure 48. Assembler Page of the Project Settings Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

51
corresponding value (<name>=<value>). Multiple symbols can be defined and must be
separated by commas.

Generate Assembly Listing Files (.lst). When selected, the Generate Assembly List-
ing Files (.lst) checkbox tells the assembler to create an assembly listing file for each
assembly source code module. This file displays the assembly code and directives, as well
as the hexadecimal addresses and op codes of the generated machine code. The assembly
listing files are saved in the directory specified by the Intermediate Files Directory field on
the General page (see the Intermediate Files Directory section on page 49). By default,
this checkbox is selected.

Expand Macros. When selected, the Expand Macros checkbox tells the assembler to
expand macros in the assembly listing files.

Page Length. When the assembler generates the listing files, the Page Length field sets
the maximum number of lines between page breaks. The default is 56.

Page Width. When the assembler generates the listing files, the Page Width field sets the
maximum number of characters on a line. The default is 80; the maximum width is 132.

Project Settings—Code Generation Page. For Assembly Only projects, the Code Gen-
eration page is not available.

Figure 49 shows the Code Generation page.
UM017105-0511 Menu Bar

52

Zilog Developer Studio II – ZNEO™
User Manual
Limit Optimizations for Easier Debugging. Selecting this checkbox causes the compiler
to generate code in which certain optimizations are turned off. These optimizations can
cause confusion when debugging. For example, they might rearrange the order of instruc-
tions so that they are no longer exactly correlated with the order of source code statements
or remove code or variables that are not used. You can still use the debugger to debug your
code without selecting this checkbox, but it might difficult because of the changes that
these optimizations make in the assembly code generated by the compiler.

Selecting this checkbox makes it more straightforward to debug your code and interpret
what you see in the various Debug windows. However, selecting this checkbox also
causes a moderate increase in code size. Many users select this checkbox until they are
ready to go to production code and then deselect it.

Selecting this checkbox can also increase the data size required by your application. This
happens because this option turns off the use of register variables (see the Use Register
Variables section on page 57). The variables that are no longer stored in registers must

Figure 49. Code Generation Page of the Project Settings Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

53
instead be stored in memory (and on the stack if dynamic frames are in use), thereby
increasing the overall data storage requirements of your application. Usually this increase
is fairly small.

You can debug your application when this checkbox is deselected. The debugger contin-
ues to function normally, but debugging might be more confusing due to the factors
described earlier.

The Limit Optimizations for Easier Debugging checkbox interacts with the Generate
Debug Information checkbox (see the Generate Debug Information section on page 49).

Memory Model. The Memory Model drop-down list allows you to choose between the
two memory models supported by the ZNEO C-Compiler, Small or Large. One funda-
mental difference between these models is that the small model can be implemented using
only ZNEO CPU’s internal Flash and RAM memory, but the large model requires the
presence of external RAM. Using the small model also results in more compact code and
often reduces the RAM requirements as well. However, the small model places constraints
on the data space size (not on the code space size) of your application. Some applications
might not be able to fit into the small model’s data space size; the large model is provided
to support such applications. See the Memory Models section on page 161 for full details
of the memory models.

Project Settings—Listing Files Page. Figure 50 shows the Listing Files page.

For Assembly Only projects, the Listing Files page is not available.

Note:

Note:
UM017105-0511 Menu Bar

54

Zilog Developer Studio II – ZNEO™
User Manual
Generate C Listing Files (.lis). When selected, the Generate C Listing Files (.lis)
checkbox tells the compiler to create a listing file for each C source code file in your proj-
ect. All source lines are duplicated in this file, as are any errors encountered by the com-
piler.

With Include Files. When this checkbox is selected, the compiler duplicates the contents
of all files included using the #include preprocessor directive in the compiler listing file.
This can be helpful if there are errors in included files.

Generate Assembly Source Code. When this checkbox is selected, the compiler gener-
ates, for each C source code file, a corresponding file of assembler source code. In this file
(which is a legal assembly file that the assembler will accept), the C source code (com-
mented out) is interleaved with the generated assembly code and the compiler-generated
assembly directives. This file is placed in the directory specified by the Intermediate

Figure 50. (Listing Files Page of the Project Settings Dialog Box)
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

55
Files Directory checkbox in the General page. See the Intermediate Files Directory sec-
tion on page 49.

Generate Assembly Listing Files (.lst). When this checkbox is selected, the compiler
generates, for each C source code file, a corresponding assembly listing file. In this file,
the C source code is displayed, interleaved with the generated assembly code and the com-
piler-generated assembly directives. This file also displays the hexadecimal addresses and
op codes of the generated machine code. This file is placed in the directory specified by
the Intermediate Files Directory field in the General page. See Intermediate Files Direc-
tory on page 49.

Project Settings—Preprocessor Page. Figure 51 shows the Preprocessor page.

For Assembly Only projects, the Preprocessor page is not available.

Figure 51. Preprocessor Page of the Project Settings Dialog Box

Note:
UM017105-0511 Menu Bar

56

Zilog Developer Studio II – ZNEO™
User Manual
Preprocessor Definitions. The Preprocessor Definitions field is equivalent to placing
#define preprocessor directives before any lines of code in your program. It is useful for
conditionally compiling code. Do not put a space between the symbol\name and equal
sign; however, multiple symbols can be defined and must be separated by commas.

Standard Include Path. The Standard Include Path field allows you to specify the series
of paths for the compiler to use when searching for standard include files. Standard
include files are those included with the #include <file.h> preprocessor directive. If
more than one path is used, the paths are separated by semicolons (;). The compiler first
checks the current directory, then the paths in the Standard Include Path field. The default
standard includes are located in the following directories:

<ZDS Installation Directory>\include\std
<ZDS Installation Directory>\include\zilog

where <ZDS Installation Directory> is the directory in which Zilog Developer Studio was
installed. By default, this would be C:\Program Files\Zilog\ZDSII_ZNEO_<ver-
sion>, where <version> might be 4.11.0 or 5.0.0.

User Include Path. The User Include Path field allows you to specify the series of paths
for the compiler to use when searching for user include files. User include files are those
included with the #include “file.h” in the compiler. If more than one path is used, the
paths are separated by semicolons (;). The compiler first checks the current directory, then
the paths in the User Include Path field.

Project Settings—Advanced Page. Figure 52 shows the Advanced page.

For Assembly Only projects, the Advanced page is not available.Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

57
Use Register Variables. Selecting this checkbox allows the compiler to allocate local
variables in registers, rather than on the stack, when possible. This usually makes the
resulting code smaller and faster and, therefore, the default is that this checkbox is
enabled. However, in some applications, this checkbox might produce larger and slower
code when a function contains a large number of local variables.

The effect of this checkbox on overall program size and speed can only be assessed glob-
ally across the entire application, which the compiler cannot do automatically. Usually the
overall application size is smaller but there can be exceptions to that rule. For example, in
an application that contains 50 functions, this checkbox might make 2 functions larger and
the other 48 functions smaller. Also, if those two functions run slower with the checkbox
enabled but the others run faster, then whether the overall program speed is improved or
worsened depends on how much time the application spends in each function.

Because the effect of applying this option must be evaluated across an application as a
whole, user experimentation is required to test this for an individual application. Only a

Figure 52. Advanced Page of the Project Settings Dialog Box
UM017105-0511 Menu Bar

58

Zilog Developer Studio II – ZNEO™
User Manual
small fraction of applications benefit from deselecting the Use Register Variables check-
box.

The Use Register Variables checkbox interacts with the Limit Optimizations for Easier
Debugging checkbox on the C page (see the Limit Optimizations for Easier Debugging
section on page 52). When the Limit Optimizations for Easier Debugging checkbox is
selected, register variables are not used because they can cause confusion when debug-
ging. The Use Register Variables checkbox is disabled (grayed out) when the Limit
Optimizations for Easier Debugging checkbox is selected. If the Limit Optimizations
for Easier Debugging checkbox is later deselected (even in a later ZDS II session), the
Use Register Variables checkbox returns to the setting it had before the Limit Optimiza-
tions for Easier Debugging checkbox was selected.

Using register variables can complicate debugging in at least two ways. One way is that
register variables are more likely to be optimized away by the compiler. If variables you
want to observe while debugging are being optimized away, you can usually prevent this
by any of the following actions:

• Select the Limit Optimizations for Easier Debugging checkbox (see Limit Optimi-
zations for Easier Debugging on page 52)

• Deselect the Use Register Variables checkbox

• Rewrite your code so that the variables in question become global rather than local

The other way in which register variables can lead to confusing behavior when debugging
is when the same register is used to store different variables or temporary results at differ-
ent times in the execution of your code. Because the debugger is not always aware of these
multiple uses, sometimes a value for a register variable might be shown in the Watch win-
dow that is not actually related to that variable at all.

Generate Printfs Inline. Normally, a call to printf() or sprintf() parses the format
string at run time to generate the required output. When the Generate Printfs Inline
checkbox is selected, the format string is parsed at compile time, and direct inline calls to
the lower level helper functions are generated. This results in significantly smaller overall
code size because the top-level routines to parse a format string are not linked into the
project, and only those lower level routines that are actually used are linked in, rather than
every routine that could be used by a call to printf. The code size of each routine that
calls printf() or sprintf() is slightly larger than if the Generate Printfs Inline
checkbox is deselected, but this is more than offset by the significant reduction in the size
of library functions that are linked to your application.

To reduce overall code size by selecting this checkbox, the following conditions are neces-
sary:

Notes:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

59
• All calls to printf() and sprintf() must use string literals, rather than char*
variables, as parameters. For example, the following code allows the compiler to
reduce the code size:

sprintf ("Timer will be reset in %d seconds", reset_time);

But code such as the following results in larger code:

char * timerWarningMessage;
...
sprintf (timerWarningMessage, reset_time);

• The functions vprintf() and vsprintf() cannot be used, even if the format string
is a string literal.

If the Generate Printfs Inline checkbox is selected and these conditions are not met, the
compiler warns you that the code size cannot be reduced. In this case, the compiler gener-
ates correct code, and the execution is significantly faster than with normal printf calls.
However, there is a net increase in code size because the generated inline calls to lower
level functions require more space with no compensating savings from removing the top-
level functions.

In addition, an application that makes over 100 separate calls of printf or sprintf
might result in larger code size with the Generate Printfs Inline checkbox selected
because of the cumulative effect of all of the inline calls. The compiler cannot warn about
this situation. If in doubt, simply compile the application both ways and compare the
resulting code sizes.

The Generate Printfs Inline checkbox is selected by default.

Distinct Code Segment for Each Module. For most applications, the code segment for
each module compiled by the ZNEO compiler is named CODE. Later, in the linker step of
the build process, the linker gathers all these small CODE segments into a single large
CODE segment and then places that segment in the appropriate address space, thus ensur-
ing that all of the executable code is kept in a single contiguous block within a single
address space. However, some users might need a more complex configuration in which
particular code modules are put in different address spaces.

Such users can select the Distinct Code Segment for Each Module checkbox to accom-
plish this purpose. When this checkbox is selected, the code segment for every module
receives a distinct name; for example, the code segment generated for the myModule.c
module is given the name myModule_TEXT. You can then add linker directives to the
linker command file to place selected modules in the appropriate address spaces. This
checkbox is deselected by default.

An example of the use of this feature is to place most of the application’s code in the usual
EROM address space (see the Project Settings—Address Spaces Page section on page 68
UM017105-0511 Menu Bar

60

Zilog Developer Studio II – ZNEO™
User Manual
for a discussion of the ZNEO address spaces) except for a particular module that is to be
run from the RAM (16-bit addressable RAM) space. See the Special Case: Partial Down-
load to RAM section on page 317 for an example of how to configure the linker command
file for this type of application.

It is the user’s responsibility to configure the linker command file properly when the Dis-
tinct Code Segment for Each Module checkbox is selected.

Default Type of Char. The ANSI C Standard permits the compiler to regard char vari-
ables that are not otherwise qualified as either signed or unsigned, at the compiler’s
discretion; the compiler is only required to consistently apply the choice to all such vari-
ables. So in the following declarations:

signed char sc;
unsigned char uc;
char cc;

the signedness of cc is left to the compiler. The Default Type of Char drop-down menu
allows you to make this decision. The selection, Signed or Unsigned, is applied to all
char variables whose signedness is not explicitly declared. The default value for ZNEO is
Unsigned.

Project Settings—Librarian Page. This page is available for Static Library projects only.

To configure the librarian, observe the following procedure:

1. Select Settings from the Project menu. The Project Settings dialog box is dis-
played.

2. Click the Librarian page.

3. Use the Output File Name field to specify where your static library file is saved.

Project Settings—Commands Page. Figure 56 shows the Commands page.

Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

61
Always Generate from Settings. When this button is selected, the linker command file is
generated afresh each time you build your project; the linker command file uses the proj-
ect settings that are in effect at the time. This button is selected by default, which is the
preferred setting for most users. Selecting this button means that all changes you make in
your project, such as adding more files to the project or changing project settings, are auto-
matically reflected in the linker command file that controls the final linking stage of the
build. If you do not want the linker command file generated each time your project builds,
select the Use Existing button (see the Use Existing section on page 63).

Even though selecting Always Generate from Settings causes a new linker command file
to be generated when you build your project, any directives that you have specified in the
Additional Linker Directives dialog box are not erased or overridden.

Figure 53. (Commands Page of the Project Settings Dialog Box

Note:
UM017105-0511 Menu Bar

62

Zilog Developer Studio II – ZNEO™
User Manual
Additional Directives. To specify additional linker directives that are to be added to those
that the linker generates from your settings when the Always Generate from Settings
button is selected, perform the following brief procedure.

1. Select the Additional Directives checkbox.

2. Click Edit. The Additional Linker Directives dialog box is displayed; see Figure 54.

3. Add new directives or edit existing directives.

4. Click OK.

You can use the Additional Directives checkbox if you must make some modifications or
additions to the settings that are automatically generated from your project settings, but
you still want all your project settings and newly added project files to take effect automat-
ically on each new build.

You can add or edit your additional directives in the Additional Linker Directives dialog
box. The manually inserted directives are always placed in the same place in your linker
command file: after most of the automatically generated directives and just before the final
directive that gives the name of the executable to be built and the modules to be included
in the build. This position makes your manually inserted directives override any conflict-
ing directives that occur earlier in the file, so it allows you to override particular directives
that are autogenerated from the project settings. (The RANGE and ORDER linker direc-
tives are exceptions to this rule; they do not override earlier RANGE and ORDER direc-
tives but combine with them.) Use caution with this override capability because some of
the autogenerated directives might interact with other directives and because there is no

Figure 54. Additional Linker Directives Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

63
visual indication to remind you that some of your project settings might not be fully taking
effect on later builds. If you need to create a complex linker command file, contact Zilog
Technical Support for assistance. See Zilog Technical Support on page vii.

If you have selected the Additional Directives checkbox, your manually inserted direc-
tives are not erased when you build your project. They are retained and re-inserted into the
same location in each newly created linker command file every time you build your proj-
ect.

In earlier releases of ZDS II, it was necessary to manually insert a number of directives if
you had a C project and did not select the Standard C Start-up Module. This is no longer
necessary. The directives required to support a C start-up module are now always added to
the linker command file. The only time these directives are not added is if the project is an
Assembly Only project.

Use Existing. Observe the following procedure if you do not want a new linker command
file to be generated when you build your project:

1. Select the Use Existing button.

2. Click the Browse button (). The Select Linker Command File dialog box is dis-
played; see Figure 55.

3. Use the Look In drop-down menu to navigate to the linker command file that you
want to use.

Figure 55. Select Linker Command File Dialog Box

Note:
UM017105-0511 Menu Bar

64

Zilog Developer Studio II – ZNEO™
User Manual
4. Click Select.

The Use Existing button is the alternative to the Always Generate from Settings button
(see the Always Generate from Settings section on page 61). When this button is selected,
a new linker command file is not generated when you build your project. Instead, the
linker command file that you specify in this field is applied every time.

When the Use Existing button is selected, many project settings are grayed out, including
all of the settings on the Objects and Libraries page, Warnings page, and Output page.
These settings are disabled because when you have specified that an existing linker com-
mand file is to be used, those settings have no effect.

When the Use Existing button is selected, some other changes that you make in your proj-
ect such as adding new files to the project also do not automatically take effect. To add new
files to the project, you must not only add them to the Project Workspace window (see the
Project Workspace Window section on page 23), but you must also edit your linker com-
mand file to add the corresponding object modules to the list of linked modules at the end
of the linker command file.

Project Settings—Objects and Libraries Page. Figure 56 shows the Objects and
Libraries page.

Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

65
Additional Object/Library Modules. Use the Additional Object/Library Modules field
to list additional object files and modules that you want linked with your application. You
do not need to list modules that are otherwise specified in your project, such as the object
modules of your source code files that appear in the Project Workspace window, the C
start-up module, and the Zilog default libraries listed in the Objects and Libraries page.
Separate multiple module names with commas.

Modules listed in this field are linked before the Zilog default libraries. Therefore, if there
is a name conflict between symbols in one of these user-specified additional modules and
in a Zilog default library, the user-specified module takes precedence and its version of the
symbol is the one used in linking. You can take advantage of this to provide your own
replacement for one or more functions (for example, C run-time library functions) by com-
piling the function and then including the object module name in this field. This is an alter-

Figure 56. Objects and Libraries Page of the Project Settings Dialog Box

Note:
UM017105-0511 Menu Bar

66

Zilog Developer Studio II – ZNEO™
User Manual
native to including the source code for the revised function explicitly in your project, which
would also override the function in the default run-time library.

C Start-up Module. The buttons and checkbox in this area (which are not available for
Assembly Only projects) control which start-up module is linked to your application. All
C programs require some initialization before the main function is called, which is typi-
cally done in a start-up module.

Standard. If the Standard button is selected, the precompiled start-up module shipped
with ZDS II is used. This standard start-up module performs a minimum amount of initial-
ization to prepare the run-time environment as required by the ANSI C Standard and also
does some ZNEO-specific configuration such as interrupt vector table initialization. See
the Language Extensions section on page 156 for details about the operations performed
in the standard start-up module.

Some of these steps carried out in the standard start-up module might not be required for
every application; therefore if code space is extremely tight, you might want to make some
judicious modifications to the start-up code. The source code for the start-up module is
located in the following file:

<ZDS Installation Directory>\src\boot\common\startupX.asm

Here, <ZDS Installation Directory> is the directory in which Zilog Developer Studio was
installed. By default, this is C:\Program Files\Zilog\ZDSII_ZNEO_<version>,
where <version> might be 4.11.0 or 5.0.0. The X in startupX.asm is s for the small
model or l for the large model.

Included in Project. If the Included in Project button is selected, then the standard start-
up module is not linked to your application. In this case, you are responsible for including
suitable start-up code, either by including the source code in the Project Workspace win-
dow or by including a precompiled object module in the Additional Object/Library Mod-
ules field. If you modify the standard start-up module to tailor it to your project, you must
select the Included in Project button for your changes to take effect.

Use Standard Startup Linker Commands. If you select this checkbox, the same linker
commands that support the standard start-up module are inserted into your linker com-
mand file, even though you have chosen to include your own, nonstandard start-up module
in the project. This option is usually helpful in getting your project properly configured
and initialized because all C start-up modules have to do most of the same tasks. Formerly,
these linker commands had to be inserted manually when you were not using the standard
startup.

The standard startup commands define a number of linker symbols that are used in the
standard start-up module for initializing the C run-time environment. You do not have to
refer to those symbols in your own start-up module, but many users will find it useful to
do so, especially since user-customized start-up modules are often derived from modifying
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

67
the standard start-up module. There are also a few linker commands (such as CHANGE,
COPY, ORDER, and GROUP) that are used to configure your memory map. See the Linker
Commands section on page 260 for a description of these commands.

This option is only available when the Included in Project button has been selected. The
default for newly created projects is that this checkbox, if available, is selected.

Use Default Libraries. These controls determine whether the available default libraries
that are shipped with Zilog Developer Studio II are to be linked with your application. For
ZNEO, there is essentially one available library, the C run-time library. The subset of the
run-time library dedicated to floating-point operations also has a separate control to allow
for special handling, as explained in the Floating Point Library section on page 67.

Use C Runtime Library. The C run-time library included with ZDS II provides selected
functions and macros from the Standard C Library. Zilog’s version of the C run-time
library supports a subset of the Standard Library adapted for embedded applications, as
described more fully in the Using the ANSI C-Compiler chapter on page 155. If your proj-
ect makes any calls to standard library functions, you must select the Use C Runtime
Library checkbox unless you prefer to provide your own code for all library functions that
you call. As noted in the Additional Object/Library Modules section on page 65, you can
also set up your application to call a mixture of Zilog-provided functions and your own
customized library functions. To do so, select the Use C Runtime Library checkbox. Calls
to standard library functions will then call the functions in the Zilog default library except
when your own customized versions exist.

Zilog’s version of the C run-time library is organized with a separate module for each
function or, in a few cases, for a few closely related functions. Therefore, the linker links
only those functions that you actually call in your code. This means that there is no unnec-
essary code size penalty when you select the Use C Runtime Library checkbox; only
functions you call in your application are linked into your application.

Floating Point Library. The Floating Point Library drop-down menu allows you to
choose which version of the subset of the C run-time library that deals with the floating-
point operations will be linked to your application:

• Real

If you select Real, the true floating-point functions are linked in, and you can perform
any floating-point operations you want in your code.

• Dummy

If you select Dummy, your application is linked with alternate versions that are
stubbed out and do not actually carry out any floating-point operations. This dummy
floating-point library has been developed to reduce code bloat caused by including
calls to printf() and related functions such as sprintf(). Those functions in turn
make calls to floating-point functions for help with formatting floating-point expres-
sions, but those calls are unnecessary unless you actually need to format floating-point
UM017105-0511 Menu Bar

68

Zilog Developer Studio II – ZNEO™
User Manual
values. For most users, this problem has now been resolved by the Generate Printfs
Inline checkbox (see the Generate Printfs Inline section on page 58 for a full discus-
sion). You only need to select the dummy floating-point library if you have to disable
the Generate Printfs Inline checkbox and your application uses no floating-point
operations. In that case, selecting Dummy keeps your code size from bloating unnec-
essarily.

• None

If you can select None, no floating-point functions are linked to your application at
all. This can be a way of ensuring that your code does not inadvertently make any
floating-point calls, because, if it does and this option is selected, you receive a warn-
ing message about an undefined symbol.

None of the libraries mentioned here are available for Assembly Only projects.

Project Settings—Address Spaces Page. Figure 57 shows the Address Spaces page.

Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

69
The memory range fields in the Address Spaces page allow you to inform ZDS II about the
amount and location of memory and I/O on your target system. The appropriate settings
for these fields depend on the CPU selection and target system design. ZDS II uses the
memory range settings to let you know when your code or data has grown beyond your
system’s capability. The system also uses memory ranges to automatically locate your
code or data.

See the Programmer’s Model of ZNEO Memory section on page 303 for details about
address range functions. The ZDS II address ranges are:

Constant data (ROM). This range is typically 000000-001FFF for devices with 32 KB
of internal Flash, 000000-003FFF for devices with 64 KB of internal Flash, and
000000-007FFF for devices with 128 KB of internal Flash. The lower boundary must be
00_000H. The upper boundary can be lower than 007FFF, but no higher.

Figure 57. Address Spaces Page of the Project Settings Dialog Box
UM017105-0511 Menu Bar

70

Zilog Developer Studio II – ZNEO™
User Manual
Program space (EROM). This range is typically 002000-007FFF for devices with 32
KB of internal Flash, 004000-00FFFF for devices with 64 KB of internal Flash, or
008000-01FFFF for devices with 128 KB of internal Flash. Specify a larger range only if
the target system provides external nonvolatile memory.

To use any external memory provided on the target system, you must configure the mem-
ory’s chip select in the Configure Target dialog box. See the Project Settings—Debugger
Page section on page 74.

Extended RAM (ERAM). Specify an ERAM range only if the target system provides
external random access memory below FF8000. The ERAM field does not accept a start-
ing address below 800000.

Internal RAM (RAM). This range is typically FFB700-FFBFFF for devices with 2 KB of
internal RAM or FFB000-FFBFFF for devices with 4 KB of internal RAM. Despite its
name, this range can be expanded up to FF8000-FFBFFF if the target system provides
external random access memory to fill out this address range. This field does not allow a
high RAM address boundary above FFBFFF.

Special Function Registers and IO (IODATA). Typically FFC000-FFFFFF. The micro-
controller reserves addresses FFE000 and above for its special function registers, on-chip
peripherals, and I/O ports. The ZDS II GUI expects addresses FFC000 to FFDFFF to be
used for external I/O (if any) on the target system.

Address range settings must not overlap. The following example presents the syntax used
in the address range fields:

<low address> – <high address> [,<low address> – <high address>] ...

where <low address> is the hexadecimal lower boundary of a range and <high address> is
the hexadecimal higher boundary of the range. The following are legal memory ranges:

0000-7fff
ffb000-ffbfff
008000-01ffff,050000-07ffff

The last example line shows how a comma is used to define holes in a memory range for
the linker. The linker does not place any code or data outside of the ranges specified here.
If your code or data cannot be placed within the ranges, a range error is generated.

The C-Compiler does not support gaps (holes) within the ERAM or RAM ranges.

Project Settings—Warnings Page. Figure 58 shows the Warnings page.

Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

71
Treat All Warnings as Fatal. When selected, this checkbox causes the linker to treat all
warning messages as fatal errors. When the checkbox is selected, the linker does not gen-
erate output file(s) if there are any warnings while linking. By default, this checkbox is
deselected, and the linker proceeds with generating output files even if there are warnings.

Selecting this checkbox displays any warning as an error, regardless of the state of the
Show Warnings checkbox in the General page (see the Show Warnings section on
page 48).

Treat Undefined Symbols as Fatal. When selected, this checkbox causes the linker to
treat undefined external symbol warnings as fatal errors. If this checkbox is selected, the
linker quits generating output files and terminates with an error message immediately if
the linker cannot resolve any undefined symbol. By default, this checkbox is selected

Figure 58. Warnings Page of the Project Settings Dialog Box

Note:
UM017105-0511 Menu Bar

72

Zilog Developer Studio II – ZNEO™
User Manual
because a completely valid executable cannot be built when the program contains refer-
ences to undefined external symbols. If this checkbox is deselected, the linker proceeds
with generating output files even if there are undefined symbols.

Selecting this checkbox displays any undefined external symbol warning as an error,
regardless of the state of the Show Warnings checkbox in the General page (see the Show
Warnings section on page 48).

Warn on Segment Overlap. This checkbox enables or disables warnings when overlap
occurs while binding segments. By default, the checkbox is selected, which is the recom-
mended setting for ZNEO. For some Zilog processors, benign segment overlaps can occur,
but, for the ZNEO, an overlap condition usually indicates an error in project configuration
that must be corrected. These errors in ZNEO can be caused either by user assembly code
that erroneously assigns two or more segments to overlapping address ranges or by user
code defining the same interrupt vector segment in two or more places.

Project Settings—Output Page. Figure 59 shows the Output page.

Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

73
Output File Name. You can change the name (including the full path name) of your exe-
cutable in the Output File Name field. After your program is linked, the appropriate exten-
sion is added.

Generate Map File. This checkbox determines whether the linker generates a link map
file each time it is run. The link map file is named with your project’s name with the .map
extension and is placed in the same directory as the executable output file. See the MAP
command on page 267 and How much memory is my program using? on page 295. Inside
the map file, symbols are listed in the order specified by the Sort Symbols By area (see
Sort Symbols By on page 74).

The link map is an important place to look for memory restriction or layout problems.

Figure 59. Output Page of the Project Settings Dialog Box

Note:
UM017105-0511 Menu Bar

74

Zilog Developer Studio II – ZNEO™
User Manual
Sort Symbols By. You can choose whether to have symbols in the link map file sorted by
name or address.

Show Absolute Addresses in Assembly Listings. When this checkbox is selected, all
assembly listing files that are generated in your build are adjusted to show the absolute
addresses of the assembly code statements. If this checkbox is deselected, assembly listing
files use relative addresses beginning at zero.

For this option to be applied to listing files generated from assembly source files, the Gen-
erate Assembly Listing Files (.lst) checkbox in the Assembler page of the Project Set-
tings dialog box must be selected.

For this option to be applied to listing files generated from C source files, both the Gener-
ate Assembly Source Code and Generate Assembly Listing Files (.lst) checkboxes in
the Listing Files page of the Project Settings dialog box must be selected.

Executable Formats. These checkboxes determine which object format is used when the
linker generates an executable file. The linker supports the following formats: IEEE 695
(.lod) and Intel Hex32 Records (.hex). IEEE 695 is the default format for debugging.
Selecting Intel Hex32 - Records generates a hex file in the Intel Hex32 format, which is a
backward-compatible superset of the Intel Hex16 format. You can also select both check-
boxes, which produces executable files in both formats.

Fill Unused Hex File Bytes with 0xFF. This checkbox is available only when the Intel
Hex32 Records executable format is selected. When the Fill Unused Hex File Bytes with
0xFF checkbox is selected, all unused bytes of the hex file are filled with the value 0xFF.
This option is sometimes required so that when interoperating with other tools that set oth-
erwise uninitialized bytes to 0xFF, the hex file checksum calculated in ZDS II will match
that in the other tools.

Use caution when selecting this option. The resulting hex file begins at the first hex address
(0x0000) and ends at the last page address that the program requires. This significantly
increases the programming time when using the resulting output hex file. The hex file
might try to fill nonexistent external memory locations with 0xFF.

Maximum Bytes per Hex File Line. This drop-down menu sets the maximum length of a
hex file record. This option is provided for compatibility with third-party or other tools
that might have restrictions on the length of hex file records. This option is available only
when the Intel Hex32 Records executable format is selected.

Project Settings—Debugger Page. In the Project Settings dialog box, select the
Debugger page; see Figure 60.

Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

75
The source-level debugger is a program that allows you to find problems in your code at
the C or assembly level. The Windows interface is quick and easy to use. You can also
write batch files to automate debugger tasks.

Your understanding of the debugger design can improve your productivity because it
affects your view of how things work. The debugger requires target and debug tool set-
tings that correspond to the physical hardware being used during the debug session. A tar-
get is a logical representation of a target board. A debug tool represents debug
communication hardware such as the USB Smart Cable or an emulator. A simulator is a
software debug tool that does not require the existence of physical hardware. Currently,
the debugger supports debug tools for the ZNEO simulator and the USB Smart Cable.

Use Page Erase Before Flashing. Select the Use Page Erase Before Flashing check-
box to configure the internal Flash memory of the target hardware to be page-erased. If
this checkbox is not selected, the internal Flash is configured to be mass-erased.

Figure 60. Debugger Page of the Project Settings Dialog Box
UM017105-0511 Menu Bar

76

Zilog Developer Studio II – ZNEO™
User Manual
Target. Select the appropriate target from the Target list box.

Setup. Click Setup in the Target area to display the Configure Target dialog box; see
Figure 61.

The options displayed in the Configure Target dialog box depend on the CPU you selected
in the New Project dialog box (see the New Project section on page 32) or the General
page of the Project Settings dialog box (see the Project Settings—General Page section
on page 47). Chip select and external bus interface settings are only available for CPUs that
support an external bus.

1. Select an 8-bit, 16-bit, or no external bus interface. Selecting an external bus interface
is appropriate only for target designs that use an external bus.

2. If an external bus interface is selected, do the following steps for each chip select that
is used by the target system for external memory or I/O. The settings appropriate for
each chip select depend on the target system design.

a. Choose the chip select register (CS0–CS5) from the Chip Select Registers drop-
down menu.

b. Select the Enabled checkbox to enable the chip select. Do not enable chip selects
that the target does not use.

Figure 61. Configure Target Dialog Box

Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

77
c. To use ISA-compatible mode, select the ISA Mode Enabled checkbox.

d. To use Active High polarity, select the Polarity Active High checkbox.

e. To use 16-bit data width, select the 16 Bit Data Width checkbox.

f. Select the number of wait states from the Wait States drop-down menu.

g. Select the number of post-read wait states from the Post Read Wait States drop-
down menu.

h. Select the appropriate GPIO port from the GPIO Port drop-down menu. This list
box is only available if the chip select is an alternate function on more than one
GPIO port.

3. Select the internal, watchdog, or external clock source in the Source area.

4. Select the appropriate clock frequency in the Clock Frequency (MHz) area or enter the
clock frequency in the Other field. For the emulator, this frequency must match the
clock oscillator on Y4. For the development kit, this frequency must match the clock
oscillator on Y1. The emulator clock cannot be supplied from the target application
board.

The Clock Frequency value is used even when the Simulator is selected as the Debug Tool.
The frequency is used when converting clock cycles to elapsed times in seconds, which can
be viewed in the Debug Clock window when running the simulator.

5. Click Configure Flash. The Target Flash Settings dialog box is displayed; see
Figure 62.

Note:
UM017105-0511 Menu Bar

78

Zilog Developer Studio II – ZNEO™
User Manual
a. Select the Internal Flash checkbox if you want to use internal Flash. The internal
Flash memory configuration is defined in the CpuFlashDevice.xml file. The
device is the currently selected microcontroller or microprocessor.

b. If you want to use external Flash, select which Flash devices you want to program.
The Flash devices are defined in the FlashDevice.xml file.

c. The device is the current external Flash device’s memory arrangement. The exter-
nal Flash device options are predefined Flash memory arrangements for specific
Flash devices such as the Micron MT28F008B3. The Flash Loader uses the exter-
nal Flash device option arrangements as a guide for erasing and loading data to the
appropriate blocks of Flash memory.

d. In the External Flash Base field, enter the location in which you want external
Flash to start.

e. In the Units drop-down menu, select the number of Flash devices present.

For example, if you have two devices stacked on top of each other, select 2 in the
Units list box.

f. Click OK to return to the Configure Target dialog box.

6. Click OK.

Add. Click Add to display the Create New Target Wizard dialog box; see Figure 63.

Figure 62. Target Flash Settings Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

79
Type a unique target name in the field, select the Place Target File in Project Directory
checkbox if you want your new target file to be saved in the same directory as the cur-
rently active project, and click Finish.

Copy. Click Copy to display the Target Copy or Move dialog box; see Figure 64.

Figure 63. Create New Target Wizard Dialog Box
UM017105-0511 Menu Bar

80

Zilog Developer Studio II – ZNEO™
User Manual
1. Select the Use Selected Target button if you want to use the target listed to the right
of this button description or select the Target File button to use the Browse button
() to navigate to an existing target file.

If you select the Use Selected Target button, enter the name of the new target in the
Name for New Target field.

2. Select the Delete Source Target After Copy checkbox if you do not want to keep the
original target.

3. In the Place Target File In area, select the location in which you want the new target
file saved, whether in the project directory, the ZDS default directory, or another loca-
tion.

4. Click OK.

Delete. Click Delete to remove the currently-highlighted target. The following message is
displayed: “Delete target_name Target?”. Click Yes to delete the target or No to can-
cel the command.

Debug Tool. Select the appropriate debug tool in the Current drop-down menu.

• If you select EthernetSmartCable and click Setup in the Debug Tool area, the
Setup Ethernet Smart Cable Communication dialog box is displayed; see
Figure 65.

Figure 64. Target Copy or Move Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

81
If a Windows Security Alert is displayed with the following message: “Do you want to
keep blocking this program?”, click Unblock.

a. Click Refresh to search the network and update the list of available Ethernet
Smart Cables. The number in the Broadcast Address field is the destination
address to which ZDS II sends the scan message to determine which Ethernet
Smart Cables are accessible. The default value of 255.255.255.255 can be
used if the Ethernet Smart Cable is connected to your local network. Other values
such as 192.168.1.255 or 192.168.1.50 can be used to direct or focus the
search. ZDS II uses the default broadcast address if the Broadcast Address field
is empty.

b. Select an Ethernet Smart Cable from the list of available Ethernet Smart Cables by
checking the box next to the Smart Cable you want to use. Alternately, select the
Ethernet Smart Cable by entering a known Ethernet Smart Cable IP address in the
IP Address field.

c. Enter the port number in the TCP Port field.

d. Click OK.

Figure 65. Setup Ethernet Smart Cable Communication Dialog Box

Note:
UM017105-0511 Menu Bar

82

Zilog Developer Studio II – ZNEO™
User Manual
• If you select USBSmartCable and click Setup in the Debug Tool area, the Setup
USB Communication dialog box is displayed; see Figure 66.

a. Use the Serial Number drop-down menu to select the appropriate serial number.

b. Click OK.

Export Makefile. Export Makefile exports a buildable project in an external make file for-
mat via the following procedure.

1. From the Project menu, select Export Makefile. The Save As dialog box is dis-
played; see Figure 67.

Figure 66. Setup USB Communication Dialog Box

Figure 67. Save As Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

83
2. Use the Save In drop-down menu to navigate to the directory in which you want to
save your project. The default location is in your project directory.

3. Enter the makefile name in the File Name field and click Save. The project is now
available as an external make file.

You do not have to enter the .mak extension; it is added automatically.

Build Menu

With the Build menu, you can build individual files as well as your project. You can also
use this menu to select or add configurations for your project.

The Build menu contains a number of elements, each of which is described in this section.

Compile. Compile or assemble the active file in the Edit window.

Build. Compiles and/or assembles any files that have changed since the last build and then
links the project.

Rebuild All. Rebuild all of the files in your project. This option also links the project.

Stop Build. Stop a build in progress.

Clean. Remove intermediate build files.

Update All Dependencies. Update your source file dependencies.

Set Active Configuration

You can use the Select Configuration dialog box to select the active build configuration
you want:

1. From the Build menu, select Set Active Configuration to display the Select Config-
uration dialog box, shown in Figure 68.

Figure 68. Select Configuration Dialog Box

Note:
UM017105-0511 Menu Bar

84

Zilog Developer Studio II – ZNEO™
User Manual
2. Highlight the configuration that you want to use and click OK.

There are two standard configuration build configurations:

Debug. This configuration contains all of the project settings for running the project in
Debug mode.

Release. This configuration contains all of the project settings for creating a Release ver-
sion of the project.

For each project, you can modify the settings, or you can create your own configurations.
These configurations allow you to easily switch between project setting types without hav-
ing to remember all of the setting changes that must be made for each type of build that
might be necessary during the creation of a project. All changes to project settings are
stored in the current configuration setting.

To add your own configuration(s), see the Manage Configurations section on page 84.

Use one of the following methods to activate a build configuration:

• Use the Select Configuration dialog box. See the Set Active Configuration section
on page 83.

• Use the Build toolbar. See the Select Build Configuration List Box section on page 18.

• Use the Project Settings dialog box to modify build configuration settings. See the
Settings section on page 46
.

Manage Configurations

For your specific needs, you can add different configurations for your projects. To add a
customized configuration, perform the following brief procedure.

1. From the Build menu in ZDS II, select Manage Configurations. The Manage Con-
figurations dialog box is displayed; see Figure 69.

Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

85
2. Click the Add button. The Add Project Configuration dialog box appears, as shown
in Figure 70.

3. In the Configuration Name field, enter the name of the new configuration.

4. Select a similar configuration from the Copy Settings From drop-down menu.

5. Click OK. Your new configuration is displayed in the configurations list in the Man-
age Configurations dialog box.

6. Click Close. The new configuration is the current configuration as shown in the
Select Build Configuration drop-down menu on the Build toolbar.

7. Now that you have created a blank template, you are ready to select the settings for
this new configuration. From the Project menu, select Settings. The Project Set-
tings dialog box is displayed.

8. Select the settings for the new configuration and click OK.

9. From the File menu, select Save All.

Figure 69. Manage Configurations Dialog Box

Figure 70. Add Project Configuration Dialog Box
UM017105-0511 Menu Bar

86

Zilog Developer Studio II – ZNEO™
User Manual
Debug Menu

Use the Debug menu to access a number of functions in the ZDS II debugger. Each of
these functions is described in this section. For more information about the Debugger, see
the chapter titled Using the Debugger on page 327.

Connect to Target. The Connect to Target command starts a debug session and initializes
the communication to the target hardware. This command does not download the software
or reset to main. Use this button to access target registers, memory, and so on, without
loading new code or to avoid overwriting the target’s code with the same code. This com-
mand is not enabled when the target is the simulator.

Download Code. The Download Code command downloads the executable file for the
currently open project to the target for debugging. The command also initializes the com-
munication to the target hardware if it has not been done yet. Use this command anytime
during a debug session. This command is not enabled when the target is the simulator.

When using the Download Code command, the current code on the target will be overwrit-
ten.

Verify Download. Select Verify Download from the Debug menu to determine download
correctness by comparing executable file contents to target memory.

Stop Debugging. Select Stop Debugging from the Debug menu to end the current
debug session. To stop program execution, select the Break command.

Reset. Select Reset from the Debug menu to reset the program counter to the beginning
of the program. If not in Debug mode, a debug session is started. By default and if possi-
ble, the Reset command resets the program counter to Symbol 'main'. If you deselect the
Reset to Symbol 'main' (Where Applicable) checkbox on the Debugger tab of the
Options dialog box (see page 102), the program counter resets to the first line of the pro-
gram.

Go. Select Go from the Debug menu to execute project code from the current program
counter. If not in Debug mode when the command is selected, a debug session is started.

Run to Cursor. Select Run to Cursor from the Debug menu to execute the program code
from the current program counter to the line containing the cursor in the active file or the
Disassembly window. The cursor must be placed on a valid code line (a C source line with
a blue dot displayed in the gutter or any instruction line in the Disassembly window).

Break. Select Break from the Debug menu to stop program execution at the current pro-
gram counter.

Note:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

87
Step Into. Select Step Into from the Debug menu to execute one statement or instruction
from the current program counter, following execution into function calls. When com-
plete, the program counter resides at the next program statement or instruction unless a
function was entered, in which case the program counter resides at the first statement or
instruction in the function.

Step Over. Select Step Over from the Debug menu to execute one statement or instruc-
tion from the current program counter without following execution into function calls.
When complete, the program counter resides at the next program statement or instruction.

Step Out. Select Step Out from the Debug menu to execute the remaining statements or
instructions in the current function and returns to the statement or instruction following the
call to the current function.

Set Next Instruction. Select Set Next Instruction from the Debug menu to set the pro-
gram counter to the line containing the cursor in the active file or the Disassembly win-
dow.

Tools Menu

The Tools menu lets you set up the Flash Loader, customize the appearance of the ZNEO
developer’s environment, update your firmware, and perform a cyclic redundancy check.

The Tools menu features the following selections, each of which is described in this sec-
tion.

• Flash Loader – see page 87

• Firmware Upgrade – see page 91

• Show CRC – see page 91

• Calculate File Checksum – see page 92

• Customize – see page 93

• Options – see page 96

Flash Loader

Observe the following procedure to program internal and external Flash for the ZNEO
processors:

1. Ensure that the target board is powered up and the emulator is connected and operat-
ing properly.

2. In the Configure Target dialog box (see page 76), perform the following brief proce-
dure:
UM017105-0511 Menu Bar

88

Zilog Developer Studio II – ZNEO™
User Manual
a. If external memory is used on the target, ensure that the appropriate external bus
interface is selected and that each chip select register used on the target is enabled
and configured properly.

b. Configure the Clock Source and Frequency settings to match the clock source
and frequency used on the target.

3. In the Address Spaces page (see page 68), configure the address range for each type
of memory that is present on the target.

4. Select Flash Loader from the Tools menu. The Flash Loader connects to the target
and sets up communication. The Flash Loader Processor dialog box is displayed
(see Figure 71) with the appropriate Flash target options for the selected CPU.

5. Click the Browse button () to navigate to the hex file to be flashed.

6. Select the Flash targets in the Flash Options area. The Flash Options are displayed in
the Flash Loader Processor dialog box depend on the CPU you selected in the Gen-

Figure 71. Flash Loader Processor Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

89
eral page of the Project Settings dialog box (see the Project Settings—General Page
section on page 47).

7. Select at least one of the following checkboxes in the Flash Options area before eras-
ing or flashing a target:

– Internal Flash: The internal Flash memory configuration is defined in the Cpu-
FlashDevice.xml file. The device is the currently selected microcontroller or
microprocessor. When internal Flash is selected, the address range is displayed in
the Flash Configuration area with an INT extension.

– External Flash: If you select the External Flash checkbox, select which Flash
devices you want to program. The Flash devices are defined in the FlashDe-
vice.xml file.

The device is the current external Flash device’s memory arrangement. When an
external Flash device is selected, the Flash Loader uses the address specified in
the Flash Base field to begin searching for the selected Flash device. The Flash
Loader reads each page of memory from the FlashDevice.xml file, checking if
the page is enabled by the chip select register settings. It then queries the actual
address to verify that the correct Flash device is found. If the correct Flash device
is found, the page’s range with an EXT extension and chip select register are dis-
played in the Flash Configuration area.

The external Flash device options are predefined Flash memory arrangements for spe-
cific Flash devices such as the Micron MT28F008B3. The Flash Loader uses the
external Flash device option arrangements as a guide for erasing and loading the
Intel hexadecimal file in the appropriate blocks of memory.

The Flash Loader is unable to identify, erase or write to a page of Flash that is protected
through hardware. For example, a target might have a write enable jumper to protect the
boot block. In this case, the write enable jumper must be set before flashing the area of
Flash. The Flash Loader displays this page as disabled.

8. To perform a cyclic redundancy check on the entire range of internal Flash memory,
click CRC. The checksum is displayed in the Status area of the Flash Loader Pro-
cessor dialog box.

9. In the Flash Base field, enter where you want the Flash programming to start. The
Flash base defines the start of external Flash.

10. In the Units drop-down menu, select the number of Flash devices to program. For
example, if you have two devices stacked on top of each other, select 2 in the Units
list box.

11. Select the pages to erase before flashing in the Flash Configuration area. Pages that
are grayed out are not available.

Note:
UM017105-0511 Menu Bar

90

Zilog Developer Studio II – ZNEO™
User Manual
12. Enter the appropriate offset values in the File Offset field to offset the base address of
the hex file. The hex file address is shifted by the offset defined in the Start Address
area; however, you must allow for the shift in any defined jump table index. This off-
set value also shifts the erase range for the Flash.

13. Select the Erase Before Flashing checkbox to erase all Flash memory before writing
the hex file to Flash memory.

Be careful when selecting pages from which to delete Flash memory. Clicking
ERASE deletes only the pages that are selected.

14. If appropriate, select the Close Dialog When Complete checkbox to close the dialog
box after writing the hex file to Flash memory.

15. To use the serialization feature, observe the following procedure.

a. Select the Include Serial in Programming checkbox. This option programs the
serial number after the selected hex file has been written to Flash.

b. Select the Enable checkbox.

c. Enter the start value for the serial number in the Serial Value field and select the
Dec button for a decimal serial number or the Hex button for a hexadecimal serial
number.

d. Enter the location in which you want the serial number to be located in the
Address Hex field.

e. Select the number of bytes that you want the serial number to occupy in the #
Bytes drop-down menu.

f. Enter the decimal interval that you want the serial number incremented by in the
Increment Dec (+/–) field. If you want the serial number to be decremented, enter
a negative number. After the current serial number is programmed, the serial num-
ber is then incremented or decremented by the amount in the Increment Dec (+/–)
field.

g. Select the Erase Before Flashing checkbox. This option erases the Flash before
writing the serial number.

h. Click Burn Serial to write the serial number to the current device or click Pro-
gram or Program and Verify to program the Flash memory with the specified
hex file and write the serial number.

16. If you want to check a serial number that has already been programmed at an address,
perform the following brief procedure.

a. Select the Enable checkbox.

b. Enter the address that you want to read in the Address Hex field.

c. Select the number of bytes to read from # Bytes drop-down menu.

Caution:
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

91
d. Click Read Serial to check the serial number for the current device.

17. Program the Flash memory by clicking one of the following buttons:

– Click Program to write the hex file to Flash memory and perform no checking
while writing.

– Click Program and Verify to write the hex file to Flash memory by writing a seg-
ment of data and then reading back the segment and verifying that it has been
written correctly.

18. Click Verify to verify Flash memory. The Flash Loader reads and compares the hex
file contents with the current contents of Flash memory. This function does not change
target Flash memory.

Firmware Upgrade

This command is available only when a supporting debug tool is selected (see the Debug
Tool section on page 80).

• USB Smart Cable

<ZDS Installation Directory>\bin\firmware\USBSmartCable\USBSmartCa-
ble upgrade information.txt

• Serial Smart Cable

This product is not available for this release.

• Ethernet Smart Cable

<ZDS Installation Directory>\bin\firmware\EthernetSmartCable\Ether-
netSmartCable upgrade information.txt

Show CRC

This command is only available when the target is not a simulator.

Observe the following procedure to perform a cyclic redundancy check (CRC):

1. Select Show CRC from the Tools menu. The Show CRC dialog box is displayed; see
Figure 72.

Note:

Note:
UM017105-0511 Menu Bar

92

Zilog Developer Studio II – ZNEO™
User Manual
2. Enter the start address in the Start Address field. The start address must be on a 4K
boundary. If the address is not on a 4K boundary, ZDS II produces an error message.

3. Enter the end address in the End Address field. If the end address is not a 4K incre-
ment, it is rounded up to a 4K increment.

4. Click Read. The checksum is displayed in the CRC field.

Calculate File Checksum

Observe the following procedure to calculate the file checksum:

1. Select Calculate File Checksum from the Tools menu. The Calculate Checksum
dialog box is displayed; see Figure 73.

2. Click the Browse button () to select the .hex file for which you want to calcu-
late the checksum. The IDE adds the bytes in the files and displays the result in the
checksum field; see Figure 74.

Figure 72. Show CRC Dialog Box

Figure 73. Calculate Checksum Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

93
3. Click Close.

Customize

The Customize dialog box contains two tabs; a description of each follows.

Customize—Toolbars Tab. The Toolbars tab, shown in Figure 75, lets you select the
toolbars you want to display in the ZNEO developer’s environment, change the way the
toolbars are displayed, or create a new toolbar. You cannot delete, customize, or change
the names of the default toolbars.

Figure 74. Calculate Checksum Dialog Box
UM017105-0511 Menu Bar

94

Zilog Developer Studio II – ZNEO™
User Manual
To create a new toolbar, observe the following procedure:

1. Select Customize from the Tools menu. The Customize dialog box is displayed.

2. Click the Toolbars tab.

3. Click New. The New Toolbar dialog box is displayed; see Figure 76.

4. In the Toolbar Name field, enter the name of the new toolbar.

Figure 75. Customize Dialog Box–Toolbars Tab

Figure 76. New Toolbar Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

95
5. Click OK. The new toolbar is displayed as a gray box. You can change the name by
selecting the new toolbar in the Toolbars list box, entering a new name in the Toolbar
Name field, and pressing the Enter key.

6. Click the Commands tab.

7. Drag buttons from any category to your new toolbar. To delete the new toolbar, select
the new toolbar in the Toolbars list box and click Delete.

8. Click OK to apply your changes or click Cancel to close the dialog box without mak-
ing any changes.

Customize—Commands Tab. The Commands tab lets you modify the following func-
tions by selecting the appropriate categories.

• File Toolbar – see page 17

• Find Toolbar – see page 19

• Build Toolbar – see page 18

• Debug Toolbar – see page 20

• Debug Windows Toolbar – see page 22

• Command Processor Toolbar – see page 19

• Menu Bar – see page 31

To see a description of each toolbar button, highlight the icon as shown in Figure 77.
UM017105-0511 Menu Bar

96

Zilog Developer Studio II – ZNEO™
User Manual
Options

The Options dialog box contains the following tabs:

• Options—General Tab – see page 96

• Options—Editor Tab – see page 97

• Options—Editor—Advance Editor Options – see page 100

• Options—Debugger Tab – see page 102

Options—General Tab

The General tab has the following checkboxes:

• Select the Save Files Before Build checkbox to save files before you build. This
option is selected by default.

• Select the Always Rebuild After Configuration Activated checkbox to ensure that
the first build after a project configuration (such as Debug or Release) is activated
results in the reprocessing of all of the active project’s source files. A project configu-

Figure 77. Customize Dialog Box–Commands Tab
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

97
ration is activated by being selected (using the Select Configuration dialog box or the
Select Build Configuration drop-down list box) or created (using the Manage Con-
figurations dialog box). This option is not selected by default.

• Select the Automatically Reload Externally Modified Files checkbox to automati-
cally reload externally modified files. This option is not selected by default.

• Select the Load Last Project on Startup checkbox to load the most recently active
project when you start ZDS II. This option is not selected by default.

• Select the Show the Full Path in the Document Window’s Title Bar checkbox to
add the complete path to the name of each file open in the Edit window.

• Select the Save/Restore Project Workspace checkbox to save the project workspace
settings each time you exit from ZDS II. This option is selected by default.

Select a number of commands to save in the Commands to Keep field or click Clear to
delete the saved commands.

Options—Editor Tab

Use the Editor tab to change the default settings of the editor for your assembly, C, and
default files. The syntax style of each file can be configured individually.

Figure 78. Options Dialog Box—General Tab
UM017105-0511 Menu Bar

98

Zilog Developer Studio II – ZNEO™
User Manual
1. From the Tools menu, select Options. The Options dialog box is displayed; see
Figure 79.

2. Click the Editor tab.

3. Select a file type from the File Type drop-down list box, in which you can select C
files, assembly files, or other files and windows.

4. In the Tabs area, perform the following tasks:

– Use the Tab Size field to change the number of spaces that a tab indents code.

– Select the Insert Spaces button or the Keep Tabs button to indicate how to for-
mat indented lines.

– Select the Auto Indent checkbox if you want the IDE to automatically add inden-
tation to your files.

Figure 79. Options Dialog Box—Editor Tab
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

99
5. The syntax style of each file type can have its own configuration for background, fore-
ground and font. Select an item in the Syntax Style: drop-down list box.

6. To configure the background or foreground color of the selected item, make sure that
the Use Default checkboxes are not selected, then select the color of your choice in
the Foreground or Background fields to display its respective Color dialog box (see
Figure 80).

7. If you want to use the default foreground or background color for the selected syntax
style, enable the Use Default checkbox next to the Foreground or Background
checkbox (see Figure 79). The default color configuration can be changed by selecting
Default from the Syntax Style drop-down list box.

8. Click OK to close the Color dialog box.

9. To change the font of the selected syntax style, make sure that the Default Font check-
boxes are not selected in the Options dialog box, then click the Select Font button to
display the Font dialog box, in which you can change the font, font style and font size;
see Figure 81.

Figure 80. Color Dialog Box
UM017105-0511 Menu Bar

100

Zilog Developer Studio II – ZNEO™
User Manual
10. Click OK to close the Font dialog box.

11. Click OK to close the Options dialog box.

Options—Editor—Advance Editor Options

You can enable or disable some of the intelligent editor behavior using the Advanced Edi-
tor options. To open the Advanced Editor Options dialog from the Options dialog box,
click the Editor tab, then click the button labeled Advanced Editor Options (all file
types).

A description of each of the Advanced Editor Options follows Figure 82.

Figure 81. Font Dialog Box
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

101
Display Line Number Margin

The Display Line Number Margin option allows you to show or hide the line number
margin in the Editor window. To learn more, see the Line Number Margin section on
page 137.

Show Auto Completion List

The Show Auto Completion List option allows you to enable or disable automatic com-
pletion of keyboarded elements. It launches a pop-up window that lists all of the relevant
choices as you enter characters from your keyboard and allows you to choose the appro-
priate one. To learn more, see the Auto Completion section on page 111.

Show Call Tips Window

The Show Call Tips Window option allows you to enable or disable the Call Tips win-
dow. Call Tips is a hovering and short-lived small window that displays the prototype of a
function whenever you use your keyboard to type the function followed by a left parenthe-
sis, or “(”. To learn more, see the Call Tips section on page 115.

Support UNICODE

The Support Unicode option allows you to enable or disable UNICODE support.
Enabling UNICODE support allows you to use non-English language scripts as part of a
comment section and string in your source code. To learn more, see the UNICODE Sup-
port section on page 131.

Figure 82. Options Dialog Box—Editor Tab—Advanced Editor Options Dialog Box
UM017105-0511 Menu Bar

102

Zilog Developer Studio II – ZNEO™
User Manual
Display Indentation Guide

The Display Indentation Guide option allows you to enable or disable the indentation
guides in the Editor window. Indentation guides allow you easily identify the boundaries
of a block of code. To learn more, see the Indentation Guides section on page 143.

Auto Insert })] and Quotation Marks

The Auto Insert })] and Quotes option allows you to enable or disable the automatic
insertion of the },),], ', and " closing characters. To learn more, see the Auto Insertion
of Braces and Quotes section on page 127.

Highlight PC Line in Debug Mode

The Highlight PC line in Debug Mode option allows you to enable or disable Program
Counter line highlighting in the Editor window. To learn more, see the Highlighting a Pro-
gram Counter Line section on page 149.

Display Code Folding Margin

The Display Code Folding Margin option allows you to show or hide the code folding
margin in the Editor window. To learn more, see the Code Folding Margin section on
page 135.

Wrap Long Lines

The Wrap Long Lines option allows you to enable or disable the wrapping of long lines
of characters in the Editor window. To learn more, see the Wrap Long Lines section on
page 142.

Display Long Line Indicator

The Display Long Line Indicator option allows you to show or hide the long line indica-
tor in the Editor window. To learn more, see the Long Line Indicator section on page 129.

Options—Debugger Tab

The Debugger tab contains the following checkboxes:

• Select the Save Project Before Start of Debug Session checkbox to save the current
project before entering Debug mode. This option is selected by default.

• Select the Reset to Symbol 'main' (Where Applicable) checkbox to skip the start-up
(boot) code and start debugging at the main function for a project that includes a C
language main function. When this checkbox is selected, a user reset (clicking the
Reset button on the Build and Debug toolbars, selecting Reset from the Debug
menu, or using the reset script command) results in the program counter (PC) point-
ing to the beginning of the main function. When this checkbox is not selected, a user
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

103
reset results in the PC pointing to the first line of the program (the first line of the
start-up code).

• When the Show DataTips Pop-Up Information checkbox is selected, holding the
cursor over a variable in a C file in the Edit window in Debug mode displays the
value.

• Select the Hexadecimal Display checkbox to change the values in the Watch and
Locals windows to hexadecimal format. Deselect the checkbox to change the values
in the Watch and Locals windows to decimal format.

• Select the Verify File Downloads—Read After Write checkbox to perform a read
after write verify of the Code Download function. Selecting this checkbox increases
the time taken for the code download to complete.

• Select the Verify File Downloads—Upon Completion checkbox to verify the code
that you downloaded after it has downloaded.

• Select the Load Debug Information (Current Project) checkbox to load the debug
information for the currently open project when the Connect to Target command is
executed (from the Debug menu or from the Connect to Target button). This option
is selected by default.

• Select the Activate Breakpoints checkbox for the breakpoints in the current project
to be active when the Connect to Target command is executed (from the Debug
menu or from the Connect to Target button). This option is selected by default.

• Select the Disable Warning on Flash Optionbits Programming checkbox to prevent
messages from being displayed before programming Flash option bits.
UM017105-0511 Menu Bar

104

Zilog Developer Studio II – ZNEO™
User Manual
Window Menu

The Window menu allows you to select the way you want to arrange your files in the Edit
window and allows you to activate the Project Workspace window or the Output window.

This section describes the six Windows menu options.

New Window

Select New Window to create a copy of the file you have active in the Edit window.

Close

Select Close to close the active file in the Edit window.

Close All

Select Close All to close all of the files in the Edit window.

Cascade

Select Cascade to cascade the files in the Edit window. Use this option to display all open
windows whenever you cannot locate a window.

Figure 83. Options Dialog Box—Debugger Tab
Menu Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

105
Tile

Select Tile to tile the files in the Edit window so that you can see all of them simultane-
ously.

Arrange Icons

Select Arrange Icons to arrange files alphabetically in the Edit window.

Help Menu

The Help menu contains three options, each described here.

Help Topics

Select Help Topics to display the ZDS II online help.

Technical Support

Select Technical Support to access the Technical Support page on the Zilog website.

About

Select About to display installed product and component version information.

Shortcut Keys

This section describes keyboard shortcuts to alternatively access the Zilog Developer Stu-
dio II menus.

File Menu Shortcuts

The five File menu options and their shortcuts are described below.

Table 2. File Menu Shortcuts

Option Shortcut Description

New File Ctrl+N To create a new file in the Edit window.

Open File Ctrl+O To display the Open dialog box for you to find the appropriate file.

Save Ctrl+S To save the file.

Save All Ctrl+L To save all files in the project.

Print Ctrl+P To print a file.
UM017105-0511 Shortcut Keys

106

Zilog Developer Studio II – ZNEO™
User Manual
Edit Menu Shortcuts

Sixteen Edit menu options and their shortcuts are described below.

Project Menu Shortcuts

The Project menu option and its shortcut is described below.

Table 3. Edit Menu Shortcuts

Option Shortcut Description

Undo Ctrl+Z To undo the last edit made to the active file.

Redo Ctrl+Y To redo the last edit made to the active file.

Cut Ctrl+X To delete selected text from a file and put it on the clipboard.

Copy Ctrl+C To copy selected text from a file and put it on the clipboard.

Paste Ctrl+V To paste the current contents of the clipboard into a file.

Delete Ctrl+D To remove a file from the current project.

Select All Ctrl+A To highlight all text in the active file.

Show Whitespaces Ctrl+Shift+8 To display all whitespace characters such as spaces and tabs.

Find Ctrl+F To find a specific value in the designated file.

Find Again F3 To repeat the previous search.

Replace Ctrl+H To replace a specific value to the designated file.

Go to Line Ctrl+G To jump to a specified line in the current file.

Toggle Bookmark Ctrl+F2 To insert a bookmark in the active file for the line in which your cur-
sor is located or to remove the bookmark for the line in which your
cursor is located.

Next Bookmark F2 To position the cursor at the line in which the next bookmark in the
active file is located. The search for the next bookmark does not
stop at the end of the file; the next bookmark might be the first
bookmark in the file.

Previous Bookmark Shift+F2 To position the cursor at the line in which the previous bookmark in
the active file is located. The search for the previous bookmark
does not stop at the beginning of the file; the previous bookmark
might be the last bookmark in the file.

Remove All Book-
marks

Ctrl+Shift+F2 To delete all of the bookmarks in the currently loaded project.

Table 4. Project Menu Shortcuts

Option Shortcut Description

Settings Alt+F7 To display the Project Settings dialog box.
Shortcut Keys UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

107
Build Menu Shortcuts

The Build menu options and their shortcuts are described below.

Debug Menu Shortcuts

These are the shortcuts for the options on the Debug menu.

Table 5. Build Menu Shortcuts

Option Shortcut Description

Build F7 To build your file and/or project.

Stop Build Ctrl+Break To stop the build of your file and/or project.

Table 6. Debug Menu Shortcuts

Option Shortcut Description

Stop Debugging Shift+F5 To stop debugging of your program.

Reset Ctrl+Shift+F5 To reset the debugger.

Go F5 To invoke the debugger (go into Debug mode).

Run to Cursor Ctrl+F10 To make the debugger run to the line containing the cursor.

Break Ctrl+F5 To break the program execution.

Step Into F11 To execute the code one statement at a time.

Step Over F10 To step to the next statement regardless of whether the current
statement is a call to another function.

Step Out Shift+F11 To execute the remaining lines in the current function and return to
execute the next statement in the caller function.

Set Next Instruction Shift+F10 To set the next instruction at the current line.
UM017105-0511 Shortcut Keys

108

Zilog Developer Studio II – ZNEO™
User Manual
Shortcut Keys UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

109
Chapter 3. Using the Editor

ZDS II provides an intelligent editor that comprises a number of features to shorten your
application development time. The editor allows you to read and write code faster, navi-
gate intelligently and identify and correct mistakes.

The editor offers the following key features.

Write Code Faster

• Auto Completion – see page 111

• Call Tips – see page 115

• Auto Indentation – see page 117

• Multiple Clipboards – see page 119

• Line and Block Comments – see page 121

• Abbreviations and Expansions – see page 121

• Auto Insertion of Braces and Quotes – see page 127

• Long Line Indicator – see page 129

• UNICODE Support – see page 131

Read Code Faster

• Auto Syntax Styler – see page 132

• Code Folding Margin – see page 135

• Line Number Margin – see page 137

• Type Info Tips – see page 139

• Highlighting and Finding Matched Braces – see page 140

• Matching Preprocessor Conditional Macros – see page 141

• Wrap Long Lines – see page 142

• Indentation Guides – see page 143

• Zoom In/Out – see page 145

Navigate Intelligently

• Bookmarks – see page 145

• Opening an Include File – see page 148
UM017105-0511 Using the Editor

110

Zilog Developer Studio II – ZNEO™
User Manual
• Opening an Include File – see page 148

Identify and Correct Mistakes

• Mismatched Brace Highlighting – see page 151

• Auto Conversion of “.” to “→” – see page 153

In addition to the above feature set, the editor supports many useful hot keys to help
improve your productivity. The hot keys can save you valuable time by allowing you to
keep your hands near the keyboard rather than having to repeatedly reach for the mouse.

A complete reference of the hot keys supported by ZDS II, as well as other supported tools
(including the editor), can be found in the ZDS II help files. Simply navigate via the ZDS II
Help menu to Hotkeys.

Tables 7 through 10 list a number of useful hot keys.

Table 7. Working with Words

Command name Hotkey Description

Word Left Ctrl+Left Arrow Moves back one word.

Word Right Ctrl+Right Arrow Moves forward one word.

Word Left Select Ctrl+Shift+Left Arrow Extends the selection back one word.

Word Right Select Ctrl+Shift+Right Arrow Extends the selection forward one word.

Word Backward Delete Ctrl+BackSpace Deletes a word to the left.

Word Forward Delete Ctrl+Delete Deletes a word to the right.

Table 8. Working with Lines

Command name Hotkey Description

Line Join Ctrl+J Joins the selected lines.

Line Split Ctrl+Shift+J Splits the selected line that is not fit within the visible window area.

Line Cut Ctrl+L Deletes the cursor line or the selected lines and puts them on the
Clipboard.

Line Delete Ctrl+Shift+L Deletes the cursor line or selected lines.

Line Copy Ctrl+T Copies the current line or selected lines and put them in the Clip-
board.

Line Transpose Ctrl+Shift+T Swaps the current and previous line.
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

111
Auto Completion

You can accelerate your keyboarding with an autocompletion list that appears as you type.
Essentially, when you begin typing the first few characters of a word, a window will pop
up to display a list of all relevant choices and allow you to choose the appropriate one; see
Figure 84 for an example.

Line or Block Dupli-
cate

Ctrl+D Duplicates the cursor line or the selected lines.

Line Start Delete Ctrl+Shift+Back-
Space

Deletes the line contents to its start.

Line End Delete Ctrl+Shift+Delete Deletes the line contents to its end.

Indent Tab Indents the cursor line or selected lines.

Un-indent Shift+Tab Un-indents the cursor line or selected lines.

Table 9. Working with Paragraphs

Command name Hotkey Description

Paragraph Previous Ctrl+[Moves to the start of the previous paragraph.

Paragraph Next Ctrl+] Moves to the start of the next paragraph.

Paragraph Previous
Select

Ctrl+Shift+[Extends the selection to the start of the previous paragraph.

Paragraph Next Select Ctrl+Shift+] Extends the selection to the start of the next paragraph.

Table 10. Working with Files

Command name Hotkey Description

File Forward Navigate Ctrl+Tab Navigates to the next opened file.

File Backward Navigate Ctrl+Shift+Tab Navigates to the previous opened file.

File Close Ctrl+F4 Closes the active file.

Table 8. Working with Lines (Continued)
UM017105-0511 Using the Editor

112

Zilog Developer Studio II – ZNEO™
User Manual
Typing one or two characters is typically enough for the editor to show the autocompletion
list; simply enter more characters to refine your choices. Typing within commented lines
or in a string does not launch the autocompletion list box.

Use your arrow keys to scroll through the list; press the Tab or Enter key to insert a cur-
rently-selected item into your document, or press the Esc key to cancel a pop-up list.

Press Ctrl+Enter to open the autocompletion list anytime, provided that the text caret is
positioned anywhere on a word or at the end of a word.

Data Structure Member List box

The C data structure construct members, struct and union, are listed upon entering “.”
or “→” after a variable or pointer of either type. With your keyboard, enter a few charac-
ters of the member to refine the choices and select the relevant one.

Upon typing the period character “.” following the structure variable name, the editor
shows the autocompletion list of all of the members of that structure. See the code snap-
shot in Figure 85.

Figure 84. Auto Completion
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

113
Include file list box

The editor opens a list box of all possible header file entries after you type #include and
a double quote or a angle bracket, as shown in Figure 86. Enter more characters to refine
the choices and include the appropriate header file.

Figure 85. Autocompletion of Members

Figure 86. Autocompletion of Header File Inclusion
UM017105-0511 Using the Editor

114

Zilog Developer Studio II – ZNEO™
User Manual
When you type an angle bracket following an #include directive, the editor shows a list
of all system include header files.

When you type a double quote following an #include directive, the editor shows a list of
all system and user include header files.

Autocompletion of Tags in an HTML file

When you enter a starting tag in an HTML file, the editor automatically adds its end tag
and places the text caret in between them to allow you to enter the content. See the exam-
ple in Figure 87.

To enable or disable autocompletion, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed, as shown in Figure 88.

4. Select the Show Autocompletion List checkbox to enable the autocompletion. This
option is selected by default.

Figure 87. Autocompletion of HTML Tags
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

115
When autocompletion is disabled, you can still bring up the autocompletion list box by
pressing Ctrl+Enter. Autocompletion is not supported for assembly files.

Call Tips

Call Tips is a hovering and short-lived small window that displays the prototype of a func-
tion whenever you type a function followed by a left parenthesis. As each parameter is
entered via the keyboard, the Call Tips function guides you by highlighting the corre-
sponding argument of the function prototype within the hovering window.

An example of the Call Tips window is shown in Figure 89.

Figure 88. Advance Editor Options—Show Autocompletion List

Note:
UM017105-0511 Using the Editor

116

Zilog Developer Studio II – ZNEO™
User Manual
Call Tips becomes available for virtually all of the functions declared or defined in your
project code and all standard include files. You are not required to build the project for the
call tips to become available. Typing within commented lines or in a string does not bring
up the Call Tips window.

If you return to the middle of a parameter list in a function call, press Ctrl+Shift+Enter to
cause the call tips to reappear. To hide the call tips window, press ESC.

To enable or disable the call tips, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed., as shown in Figure 90.

4. Select the Show Call Tips checkbox to enable the call tips. This option is selected by
default.

Figure 89. Call Tips Window
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

117
When call tips are disabled, you can still bring up the Call Tips window by pressing
Ctrl+Shift+Enter. Call tips are not supported for assembly files.

Auto Indentation

Indentation of statements is often used to clarify the program structure both in C and in
assembly code; it is one of the indispensable coding standards. While the Tab key is often
used to indent the statements belonging to a particular code block, manual indentation is
cumbersome and time-consuming.

The ZDS II editor provides automatic indentation that indent lines in a smart way based on
the syntax and formats while you are typing.

Figure 91 shows an example of autoindentation in a C file; note that the closing brace is
added automatically upon entering the opening brace because Auto Insertion of Braces
and Quotes is enabled.

Figure 90. Advance Editor Options—Show Call Tips Window

Note:
UM017105-0511 Using the Editor

Using_the_Editor_-_Auto_Insertion_of_Braces_and_Quotes.htm#Using_the_Editor_7098_81182
Using_the_Editor_-_Auto_Insertion_of_Braces_and_Quotes.htm#Using_the_Editor_7098_81182

118

Zilog Developer Studio II – ZNEO™
User Manual
In C program code, auto indentation is supported with brace characters { } and keywords
if, else, while, for, do, case, default.

In assembly program code, the auto indentation is supported with macros and conditional
directives such as ifdef, ifndef, if, else, elif, elseif, ifsame, ifma, macro,
$while, $repeat, with, endif, endmac, endm, endmacro, macend, $wend, $until
and endwith.

Figure 92 shows an example of autoindentation with an assembly program. Note that all of
the lines between ifdef and endif are automatically indented.

Figure 91. Auto Indentation in C Program

Figure 92. Auto Indentation With Assembly Program
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

119
To enable or disable auto indentation, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Select Auto Indent checkbox to enable the automatic indentation of code. This option
is selected by default.

Multiple Clipboards

The limitation of built-in clipboard in windows is that at any time you can hold only one
copied item, and as soon as you cut or copy something else, the previous item is removed,
in fact overwritten, by the newer item.

The ZDS II editor provides multiple clipboards that can improve your productivity by
allowing you to keep a history of up to 10 previous cuts and copies you have added to the

Figure 93. Options Dialog Box—Auto Indent
UM017105-0511 Using the Editor

120

Zilog Developer Studio II – ZNEO™
User Manual
system clipboard. It works alongside the regular Windows Clipboard and records every
piece of data that you cut or copy.

Simply use the keyboard hotkey Ctrl+Shift+V to retrieve earlier copies. You can scan
through the list of clipboarded items and select any item you prefer.

Press the Up or Down arrow in the keyboard to select your appropriate entry from the list.
Press Enter to paste the selected entry at the text caret position.

Clipboards are listed in the order in which they are copied. Pasting from the pop-up list
moves a clipboard to the top of the list.

Use the regular paste command, Ctrl+V, to efficiently paste the most recent clipboard con-
tent.

Clipboards are saved between instances of the IDE sessions and will not become lost, even
if you restart Windows.

Figure 94. Multiple Clipboards
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

121
Line and Block Comments

In a C file, line comments are framed using two diagonal characters (//), a format which is
derived from C++. Block comments are framed by the character sets “/*” and “*/” , which
are inherent in C. In an assembly file, line comments are framed using semicolons (;) and
there are no character sets for block comments.

The ZDS II editor provides two hot keys to comment or un-comment a line or a block of
code; each is described below.

Line Comment in C file

To comment or un-comment a single line of text, place the text caret anywhere on the
appropriate line, then press Ctrl+Q.

To comment or un-comment multiple lines of text, select all of the appropriate lines and
press Ctrl+Q.

Ctrl+Q does not un-comment lines that don't start with line comment characters at the first
column.

Block Comments in a C File

To comment a block of code, select the block and press Ctrl+M.

You cannot un-comment a commented block of text using this hotkey. Instead, undo the
change by pressing Ctrl+Z.

Line Comments in an Assembly File

To comment or un-comment a single line of text, place the text caret anywhere on the
appropriate line, then press either Ctrl+Q or Ctrl+M.

To comment or un-comment multiple lines of text, select all of the appropriate lines and
then press either Ctrl+Q or Ctrl+M.

Abbreviations and Expansions

An abbreviation is a shortened word assigned to an expansion. An expansion is a text
string that can be a single line of code, a code block or a comment section such as a func-
tion/file header; an expansion can even be a combination of code and comments.

Note:

Note:
UM017105-0511 Using the Editor

122

Zilog Developer Studio II – ZNEO™
User Manual
ZDS II allows you to define an Abbreviation and Expansion pair (See the Adding an
Abbreviation section on page 124) and to expand an abbreviation to its expansion by sim-
ply pressing a hotkey. This feature improves your productivity by saving the time involved
in typing repeating code blocks and comment sections.

To expand an abbreviation, type an abbreviation at the appropriate location of your code in
the editor, then press Ctrl+B. The abbreviation is not case-sensitive.

Figures 95 and 96 show two examples of abbreviation and expansion.

Figure 95. Abbreviation Example 1
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

123
Abbreviation and Expansion pairs are saved between instances of the IDE sessions and
will not become lost, even if you restart Windows.

ZDS II provides some common Abbreviation and Expansion pairs by default that help you
to learn various generic syntactical notations applicable to Expansion text. You are free to
modify or remove them.

To manage abbreviation and expansion pairs, select Manage Abbreviations from the Edit
menu. The Abbreviations dialog box is displayed as shown in Figure 97.

Figure 96. Abbreviation Example 2

Note:
UM017105-0511 Using the Editor

124

Zilog Developer Studio II – ZNEO™
User Manual
In the Abbreviations dialog box, you can perform the following operations; each is linked
to below and further described in this section.

• Adding an Abbreviation

• Modifying an Abbreviation

• Removing an Abbreviation

• Expanding an Abbreviation

Adding an Abbreviation

To add a new abbreviation and expansion pair, perform the following steps:

1. Select Manage Abbreviations from the Edit menu to display the Abbreviations dia-
log box.

2. Enter an appropriate abbreviation in the text entry combo box labeled Abbreviation
(see Figure 97). You cannot enter a space nor special symbols except for an under-
score (_) as part of the name.

3. Press the Tab key. The multi-line text edit box, labeled Expansion, displays your key-
board entries.

4. Type the expansion, or use another editor (such as Notepad) from which to copy and
paste into the Expansion edit box.

Figure 97. Abbreviations Dialog Box
Using the Editor UM017105-0511

Using_the_Editor_-_Modifying_an_Abbreviation.htm#Using_the_Editor_7098_36662
Using_the_Editor_-_Modifying_an_Abbreviation.htm#Using_the_Editor_7098_36662
Using_the_Editor_-_Abbreviation_and_Expansion.htm#Using_the_Editor_7098_96968

Zilog Developer Studio II – ZNEO™
User Manual

125
– To indent a block of code, precede the code block with the two-character string
\t.

– To add a blank line, enter the two-character string \n.

– To place the text caret, use the pipe (|) character, which helps you to continue typ-
ing within the expanded text. To include a literal pipe character, enter two pipe
characters (||). If no pipe character is added, the text caret is moved to the end of
the expanded text.

5. Click the Add button to add the new abbreviation and expansion pair.

6. Click the Close button to close the dialog.

Modifying an Abbreviation

To modify the expansion of an abbreviation, perform the following steps:

1. Select Manage Abbreviations from the Edit menu to display the Abbreviations dia-
log box.

2. Perform either of the following two actions:

– Enter the abbreviation name in the Abbreviation combo box

– Click the Abbreviation combo box down arrow and select the appropriate abbre-
viation from the pop-up list. The Expansion box displays the expansion of the
selected abbreviation.

3. Modify the expansion by performing either of the following actions:

– To indent a block of code, precede the code block with the two-character string
\t.

– To add a blank line, enter the two-character string \n.

To place the text caret, use the pipe (|) character, which helps you to continue typing
within the expanded text string. To include a literal pipe character enter two pipe char-
acters. If no pipe character is added, the text caret is moved to the end of the expanded
text.

4. Click the Save button.

5. Click the Close button to close the dialog.

The abbreviation name cannot be modified.

Removing an Abbreviation

To remove an abbreviation and expansion pair, perform the following steps:

Note:
UM017105-0511 Using the Editor

Using_the_Editor_-_Removing_an_Abbreviation.htm#Using_the_Editor_7098_32077
Using_the_Editor_-_Adding_an_Abbreviation.htm#Using_the_Editor_7098_50252
Using_the_Editor_-_Adding_an_Abbreviation.htm#Using_the_Editor_7098_50252

126

Zilog Developer Studio II – ZNEO™
User Manual
1. Select Manage Abbreviations from the Edit menu to display the Abbreviations dia-
log box.

2. Perform either of the following two actions:

– Enter the abbreviation in the Abbreviation combo box.

– Click the Abbreviation combo box down arrow and select the appropriate abbrevi-
ation name from the pop-up list. The Expansion box displays the expansion of
the selected abbreviation.

3. Click the Remove button to delete the abbreviation.

4. Click the Close button to close the dialog.

You cannot restore an abbreviation after it is deleted.

Expanding an Abbreviation

There are two ways to expand an abbreviation; one way is with a hotkey, the other is via
the Manage Abbreviations dialog box, as this section describes.

Using the hotkey

1. Move the text caret to the appropriate location in your code.

2. Using your keyboard, enter the appropriate abbreviation.

3. Press Ctrl+B to expand the abbreviation to its expansion at the caret position.

Using the Manage Abbreviations Dialog Box

1. Select Manage Abbreviations from the Edit menu to display the Abbreviations dia-
log box.

2. Perform either of the following two actions:

– Enter the abbreviation in the Abbreviation combo box.

– Click the Abbreviation combo box down arrow and select the appropriate abbrevi-
ation name from the pop-up list. The Expansion box displays the expansion of
the selected abbreviation.

3. Click the Insert in File button. The expansion of the selected abbreviation is inserted
at the text caret position.

Note:
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

127
Because the Abbreviations dialog is non-modal, you can use Insert in File to insert the
expansions of abbreviations across many files that belong to a project. Essentially, while
the Abbreviations dialog remains open, you are allowed to open any file, move the text
caret anywhere in that file, and insert the selected abbreviation.

Auto Insertion of Braces and Quotes

When typing an opening symbol such as a left parenthesis “(”, left brace “{”, left bracket
“[”, single left quote “'” or double left quote “"”, its matching closing symbol is automati-
cally inserted and the text caret remains between the characters, as shown in Figures 98
and 99.

Figure 98. Auto Insertion of Closing Brace

Note:
UM017105-0511 Using the Editor

128

Zilog Developer Studio II – ZNEO™
User Manual
Press Delete or Backspace to delete an autoinserted character.

Closing characters are not inserted inside comments and strings.

To enable or disable the auto insertion of the closing symbols })] ' and ", perform the fol-
lowing steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select the Auto Insert })] and Quotes checkbox to enable autoinsertion of closing
braces and quotes (see Figure 100). Disable this option if you prefer to manually enter
all of the closing characters. This option is deselected by default.

Figure 99. Auto Insertion of Closing Parenthesis

Note:
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

129
Long Line Indicator

A Long Line indicator is a vertical line that appears in the editor to mark a fixed number of
character columns. Use this indicator to wrap all of your long lines manually for better
readability. See Figure 101.

Figure 100. Advance Editor Options—Auto Insertion of Brace and Quotes
UM017105-0511 Using the Editor

130

Zilog Developer Studio II – ZNEO™
User Manual
The Long Line indicator works well only for monospaced fonts (for example: the Courier
New font).

To show or hide the Long Line Indicator, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select the Display Long Line Indicator checkbox to display the long line indicator.
This option is deselected by default; see Figure 102.

Figure 101. Long Line Indicator

Note:
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

131
5. To move the indicator to a particular column, enter the number of character columns
in the Number of Characters text entry box. The allowed range of values is between
1 and 999. It is set to 80 by default.

UNICODE Support

You can use a non-English language that is supported by UNICODE in the comments and
strings to better document your code in your native language. You can type the sentences
in your native language script in a UNICODE-supported editor, such as Microsoft Word,
and copy/paste them into the ZDS II editor.

You cannot use a bilingual keyboard to enter your native language scripts directly into the
ZDS II editor.

To enable or disable the UNICODE support, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select Support UNICODE checkbox to enable UNICODE support. This option is
deselected by default.

Figure 102. Advance Editor Options—Long Line Indicator Settings

Note:
UM017105-0511 Using the Editor

132

Zilog Developer Studio II – ZNEO™
User Manual
Auto Syntax Styler

The Auto Syntax Styler displays the language constructs of your code in different colors.
It enables you to read your code more easily by providing visual color cues as to the struc-
ture and purpose of the code. It also helps you to avoid any typing mistakes by employing
the basic building blocks of the language constructs such as keywords, preprocessor
reserved words, comments, etc.

Figure 104 shows an incomplete string and char highlighted by the Auto Syntax Styler,
which allows you to easily correct mistakes in the code.

Figure 103. Advance Editor Options—Support UNICODE
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

133
The colors used by the editor’s Auto Syntax Styler are completely configurable. To change
the color of a language construct, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

Figure 104. Auto Syntax Styler
UM017105-0511 Using the Editor

134

Zilog Developer Studio II – ZNEO™
User Manual
3. Select an appropriate color from the Color Style list box, and make sure that the Use
Default checkboxes are deselected.

4. Click the Foreground or Background color to display the Color dialog box (see
Figure 106). In the Color dialog box, select the appropriate color.

Figure 105. Options Dialog Box—Editor Tab
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

135
If you want to use the default foreground or background color for the selected item, select
the Use Default checkbox.

5. Click OK to close the Color dialog box.

6. Click OK to close the Options dialog box.

Code Folding Margin

Code folding allows you to selectively hide and display various sections of the code as a
part of your routine editing operations. It also helps you to understand and analyze the
code faster by letting you concentrate on a particular section of complex or problematic
code and ignore all other sections.

The code folding margin displays the fold and unfold symbols, as shown in Figure 107.

Figure 106. Color Dialog Box

Note:
UM017105-0511 Using the Editor

136

Zilog Developer Studio II – ZNEO™
User Manual
The folding points of a document are based on the hierarchical structure of the document
contents. In C programming code, the document hierarchy is determined by the brace
characters, conditional preprocessor macros, commented code block and file/function
header.

Code folding is available only with C and HTML files; it is not available with assembly
files.

Folding and unfolding the code does not change the content or structure of the code.

To contract or expand single foldable block of code, click the fold point, or press Ctrl + =
while the text caret is positioned on the fold pointing line of code or within the block of
code.

To contract or expand all foldable blocks of code, click anywhere on the fold margin while
pressing the Ctrl key.

To show or hide the folding margin of a codeset, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

Figure 107. Code Folding Margin
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

137
2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select the Display Code Folding Margin checkbox to display the code folding mar-
gin. This option is selected by default.

5. Select any one of the fold symbol option buttons Simple, Arrow, Circle or Box to
change the look and feel of the fold points. By default, Simple is selected.

6. Select the Fold Comments checkbox to display fold points for all of the commented
lines of code and text.

7. Select the Fold Preprocessors checkbox to display fold points for all of the prepro-
cessor conditional macro statements.

If you enable the Code Folding Margin function, the Wrap long Lines function will be dis-
abled automatically, and vice-versa.

Line Number Margin

Line numbers can orient you when working in a long file. It allows you to quickly navi-
gate to a specific line of code or to identify easily a given line of code. It would also be
helpful to have the line numbers appear in the margin to aid debugging.

Figure 108. Advance Editor Options—Display Code Folding Margin

Note:
UM017105-0511 Using the Editor

138

Zilog Developer Studio II – ZNEO™
User Manual
You can select a line of text by clicking the associated line number on the line number
margin.

You can select multiple lines either by clicking and dragging the mouse on the line number
margin or by clicking the appropriate start line number and with the Shift key pressed,
clicking the appropriate end line number.

You can select all of the text in the document by clicking on the line number margin with
Ctrl key pressed.

To show or hide the line number margin, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select the Display Line Number Margin checkbox to display the line number margin.
This option is deselected by default.

Figure 109. Line Number Margin
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

139
Type Info Tips

The Type Info Tips window is a hovering and short-lived small window that pops up to
display the type of an identifier in your code whenever you move the mouse pointer over
the identifier and let it remain there for more than a fraction of a second. The tips that dis-
play in these small windows can help you to read and write code faster as well as to locate
hard-to-find errors. See the example in Figure 111.

Type Info Tips becomes available for virtually all of the variables and functions declared
or defined in your project code and in all standard include files. You are not required to
build a project for Type Info Tips to become available.

Figure 110. Advance Editor Options—Display Line Number Margin
UM017105-0511 Using the Editor

140

Zilog Developer Studio II – ZNEO™
User Manual
Highlighting and Finding Matched Braces

Move your text caret just inside a pair of braces { } or parentheses () or square brackets [
] and observe the matching pair as it becomes highlighted. This highlighting feature helps
you to locate a block, function or expression scope easily. See the examples in Figures 112
and 113.

Figure 111. Type Info Tips

Figure 112. Highlighting Matching Braces
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

141
When braces or parentheses are nested, the innermost pair containing the text caret is
highlighted.

You can also locate the matching brace by pressing Ctrl+E; this keyboard shortcut is espe-
cially useful when the braces are extended over multiple pages. Place your text caret any-
where in between the braces or parentheses and then press Ctrl+E to move to the closing
or opening brace or parenthesis, respectively. Use this hotkey to quickly jump between
opening and closing braces or parentheses.

To select content within matching braces or parentheses, place the text caret anywhere in
between the braces or parentheses, respectively, then press Ctrl+Shift+E.

Matching Preprocessor Conditional Macros

Source code is often grouped between compiler preprocessor statements. The ZDS II edi-
tor will allow you to move from inside a conditional statement to the enclosing preproces-
sor statements.

Move the text cursor to the line of a preprocessor conditional statement or to a line that is
enclosed by preprocessor conditional statements, then perform either of the following
actions:

• Press Ctrl+K to find the matching preprocessor conditional statements that exist for-
ward or backward

Figure 113. Highlighting Matching Parentheses
UM017105-0511 Using the Editor

142

Zilog Developer Studio II – ZNEO™
User Manual
• Press Ctrl+Shift+K to select the entire text within the matching preprocessor condi-
tional statements and the conditional statements

Wrap Long Lines

When working on text strings that extend beyond 80 characters, the Wrap Long Lines
function can become extremely useful. With this feature turned on, it will not be necessary
to continually scroll horizontally, because all long lines will be wrapped to fit the size of
the editing area. The editor displays a wrapping symbol at the beginning of all wrapped
lines, as shown in Figure 114.

To enable or disable the Wrap Long Lines function, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed, as shown in Figure 115.

4. Select the Wrap Long Lines checkbox to wrap all long lines. This option is deselected
by default; see Figure 115.

Figure 114. Wrapping Long Lines
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

143
If you enable the Wrap Long Lines feature, the Code Folding Margin will be disabled
automatically, and vice versa.

Indentation Guides

Indentation guides are finely-dotted vertical lines that can assist in defining the indenta-
tions of code blocks. These indentation guides make it easy to see which constructs line
up, especially when they extend over multiple pages.

When you move the text caret in between a matching pair of braces { }, the indentation
guide will be highlighted, as shown in Figure 116.

Figure 115. Advance Editor Options—Wrap Long Lines

Note:
UM017105-0511 Using the Editor

144

Zilog Developer Studio II – ZNEO™
User Manual
To enable or disable indentation guides, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select the Display Indentation Guide checkbox to enable indentation guides. This
option is deselected by default. See Figure 117.

Figure 116. Indentation Guides
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

145
Zoom In/Out

The ZDS II Editor allows you to increase or decrease the magnification of all text without
changing font settings. This function can sometimes help to locate hard-to-find bugs in the
syntactical notations of your program.

• To magnify text, roll the mouse wheel up while pressing the Ctrl key, or press
Ctrl+Num Keyboard +.

• To shrink text, roll the mouse wheel down while pressing the Ctrl key, or press
Ctrl+Num Keyboard -.

• To reset the text to the original font size, double-click the left mouse button within the
editor area while pressing the Ctrl key, or press Ctrl+Num Keyboard /.

Bookmarks

You can set bookmarks to mark frequently accessed lines in your source file. After a book-
mark is set, you can use menus or keyboard commands to move to it. You can remove a
bookmark when you no longer need it.

Bookmarks are saved in the project workspace and therefore will be restored in between
instances of the IDE sessions.

Figure 117. Advance Editor Options—Display Indentation Guide
UM017105-0511 Using the Editor

146

Zilog Developer Studio II – ZNEO™
User Manual
To insert a bookmark, position the cursor on the appropriate line of the active file and per-
form either of the following actions:

• Right-click in the Edit window and select Insert Bookmark from the resulting context
menu.

• Select Toggle Bookmark from the Edit menu.

Next, press Ctrl+F2.

Figure 118. Bookmark Example
Using the Editor UM017105-0511

Using_the_Editor_-_Opening_included_file.htm#Using_the_Editor_7098_23651
Using_the_Editor_-_Zoom_In_Out.htm#Using_the_Editor_7098_63422
Using_the_Editor_-_Zoom_In_Out.htm#Using_the_Editor_7098_63422

Zilog Developer Studio II – ZNEO™
User Manual

147
To remove a bookmark, position the cursor on the line of the active file containing the
bookmark to be removed and perform either of the following actions:

• Right-click in the Edit window and select Remove Bookmark from the resulting con-
text menu.

• Select Toggle Bookmark from the Edit menu.

Next, press Ctrl+F2.

To remove all bookmarks in the active file, perform either of the following actions:

• Right-click in the Edit window and select Remove All Bookmarks from the resulting
context menu.

• Select Remove All Bookmarks from the Edit menu.

Figure 119. Inserting a Bookmark
UM017105-0511 Using the Editor

148

Zilog Developer Studio II – ZNEO™
User Manual
Next, press Ctrl+Shift+F2.

To jump to the next bookmark in the active file, perform either of the following actions:

• Right-click in the Edit window and select Next Bookmark from the resulting context
menu.

• Select Next Bookmark from the Edit menu.

Next, press F2.

The search for the bookmark is started from the current cursor position and when a book-
mark is not found forward until the end of the file, the search is started from the beginning
of the file and will go on until a bookmark is reached. If no bookmark is found, this com-
mand has no effect.

To jump to the previous bookmark in the active file, perform either of the following
actions:

• Right-click in the Edit window and select Previous Bookmark from the resulting
context menu.

• Select Previous Bookmark from the Edit menu.

Next, press Shift+F2.

The search for the bookmark is started from the current cursor position and when a book-
mark is not found backward until the beginning of the file, the search is started from the
end of the file and will go on until a bookmark is reached. If no bookmark is found, this
command has no effect.

To select the text up to the next bookmark in the active file, press Alt+F2.

To select the text up to the previous bookmark in the active file, press Alt+Shift+F2.

Opening an Include File

Source files more often include header files that contain a preprocessor include statement.
The ZDS II editor allows you to jump to the include file instantaneously.

To open the include file, right-click the preprocessor include statement and perform one of
the following actions:

• Click Open File ‘<file_name.h>’ from the resulting context menu.

• Move the text cursor to the line containing the preprocessor include statement, and
press Alt+G.

You can jump to any header file that is part of the standard include path and your project
directory path. See Figure 120.
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

149
The opening include file work well only with a project opened in the ZDS II. And with just
a file open in the ZDS II, the search is performed only within the file’s directory.

Highlighting a Program Counter Line

In debug mode, highlighting the Program Counter line helps you to locate the current PC
line easily. Figure 121 shows the PC line highlighted in yellow.

Figure 120. Opening an Include File

Note:
UM017105-0511 Using the Editor

150

Zilog Developer Studio II – ZNEO™
User Manual
To highlight the PC line, perform the following steps:

1. From the Tools menu, select Options. The Options dialog box is displayed.

2. Click the Editor tab.

3. Click the Advanced Editor Options button. The Advanced Editor Options dialog
box is displayed.

4. Select the Highlight PC line checkbox in Debug mode to highlight the current PC
line. This option is deselected by default. Click the PC line Background Color button
to change the color of the highlighting.

Figure 121. Highlighting PC Line in Debug mode
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

151
Mismatched Brace Highlighting

Move your text caret just behind the braces, parentheses or square brackets that are not
properly balanced and observe those that are mismatched become highlighted in red, as
shown in Figures 123 and 124.

Figure 122. Advance Editor Options—Highlight PC Line in Debug mode
UM017105-0511 Using the Editor

152

Zilog Developer Studio II – ZNEO™
User Manual
Figure 123. Mismatched Brace Highlighting

Figure 124. Mismatched Parenthesis Highlighting
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

153
Auto Conversion of “.” to “→”

The ZDS II editor, upon discovering that you typed a period (.) instead of an arrow (→)
after a pointer to a type of struct or union will automatically correct it and cause the
Member list box to pop up. Automatic conversion of a period (.) to an arrow (→) avoids
wasted builds and thereby allows you to be more productive with your code writing. See
Figure 125.

Figure 125. Convert . to → Automatically
UM017105-0511 Using the Editor

154

Zilog Developer Studio II – ZNEO™
User Manual
Using the Editor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

155
Chapter 4. Using the ANSI C-Compiler

The ZNEO C-Compiler is a conforming freestanding 1989 ANSI C implementation with
some exceptions. These exceptions are described in the ANSI Standard Compliance sec-
tion. In accordance with the definition of a freestanding implementation, the compiler
accepts programs that confine the use of the features of the ANSI standard library to the
contents of the standard headers <float.h>, <limits.h>, <stdarg.h> and <std-
def.h>. The ZNEO compiler release supports more of the standard library than is
required of a freestanding implementation as listed in the Run-Time Library section on
page 177.

The ZNEO C-Compiler supports language extensions for easy programming of the ZNEO
processor architecture, which include support for different address spaces and interrupt
function designation. The language extensions are described in the Language Extensions
section on page 156.

This chapter describes the various features of the ZNEO C-Compiler. It consists of the fol-
lowing sections:

• Language Extensions – see page 156

• Type Sizes – see page 169

• Predefined Macros – see page 170

• Calling Conventions – see page 172

• Calling Assembly Functions from C – see page 174

• Calling C Functions from Assembly – see page 176

• Command Line Options – see page 177

• Run-Time Library – see page 177

• Stack Pointer Overflow – see page 186

• Startup Files – see page 187

• Segment Naming – see page 188

• Linker Command Files for C Programs – see page 188

• ANSI Standard Compliance – see page 194

• Warning and Error Messages – see page 197

The ZNEO C-Compiler is optimized for embedded applications in which execution speed
and code size are crucial.
UM017105-0511 Using the ANSI C-Compiler

156

Zilog Developer Studio II – ZNEO™
User Manual
Language Extensions

To give you additional control over the way the ZNEO C-Compiler allocates storage and
to enhance its ability to handle common real-time constructs, the compiler implements the
following extensions to the ANSI C standard:

• Additional Keywords for Storage Specification

The compiler divides the ZNEO CPU memory into four memory spaces: Near ROM,
Extended ROM, Near RAM, and Extended (Far) RAM. It provides the following key-
words with which you can control the storage location of data in these memory
spaces:

– _Near (near)

– _Far (far)

– _Rom (rom)

– _Erom (erom)

These keywords can also be used to specify the memory space to which a pointer is
pointing to.

• Memory Models – see page 161

The compiler supports two memory models: small and large. These models allow you
to control where data are stored by default. Each application can only use one model.
The model can affect the efficiency of your application. Some of the memory alloca-
tion defaults associated with a memory model can be overridden using the keywords
for storage specification.

• Interrupt Support – see page 162

The ZNEO CPU supports various interrupts. The C-Compiler provides language
extensions to designate a function as interrupt service routine and provides features to
set each interrupt vector.

• Placement Directives – see page 164

The placement directives allow users to place objects at specific hardware addresses
and align objects at a given alignment.

• String Placement – see page 165

Because the ZNEO CPU has multiple address spaces, the C-Compiler provides lan-
guage extensions to specify the storage for string constants.

• Inline Assembly – see page 166

The C-Compiler provides directives for embedding assembly instructions and direc-
tives into the C program.

• Char and Short Enumerations – see page 167
Language Extensions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

157
The enumeration data type is defined as int as per ANSI C. The C-Compiler provides
language extension to specify the enumeration data type to be other than int.

• Setting Flash Option Bytes in C – see page 168

The ZNEO CPU has four Flash option bytes. The C-Compiler provides language
extension to define these Flash option bytes.

• Supported New Features from the 1999 Standard – see page 169

The ZNEO C-Compiler is based on the 1989 ANSI C standard. Some new features
from the 1999 standard are supported in this compiler for ease of use.

Additional Keywords for Storage Specification

The _Near, _Far, _Rom, and _Erom keywords are storage class specifiers and are used to
control the allocation of data objects by the compiler. They can be used on individual data
objects similar to const and volatile keywords in the ANSI C standard. The storage
specifiers can only be used to control the allocation of global and static data. The alloca-
tion of local data (nonstatic local) and function parameters is decided by the compiler and
is described in later sections. Any storage specifier used on local and parameter data is
ignored by the compiler.

The Zilog header file <zneo.h> defines macros to permit the use of the more familiar
keywords: near, far, rom, and erom. The reason for not using these keywords directly is
to avoid conflict with C identifiers in a preexisting C program. (To avoid conflicts, current
ANSI recommendations are that keywords for vendor extensions to the C language begin
with an underscore and capital letter.)

The data allocation for various storage class specifiers is shown in Figure 126 and
described in the following sections:

• _Near – see page 158

• _Rom – see page 158

• _Erom – see page 159

• _Far – see page 159
UM017105-0511 Language Extensions

158

Zilog Developer Studio II – ZNEO™
User Manual
_Near

The variable with the _Near storage specifier is allocated in the 16-bit addressable near
RAM address space. This space corresponds to the RAM assembler address space defined
in the linker address space project settings. These variables lie within the 16-bit address
range 8000-BFFF, which is the 32-bit range FF_8000-FF_BFFF.

For example:

_Near int ni; /* ni is placed in RAM address space */

In the ZNEO compiler, the peripheral registers (16-bit address: C000-FFFF and 32-bit
address: FF_C000-FF_FFFF) are also mapped to the _Near storage specifier, and no sep-
arate keyword is provided.

For example:

#define T0CTL0 (*(unsigned char volatile _Near*)0xE306)
T0CTL0 = 0x12;

_Rom

The variable with the _Rom storage specifier is allocated in the space corresponding to the
ROM assembler address space, which is defined in the linker address space project set-
tings. These variables lie within the 16- or 32-bit addressable range 0000-7FFF. The
lower portion of this address space is used for Flash option bytes and interrupt vector
table.

Figure 126. ZNEO C-Compiler Memory Layout

_Far

_Near

_Erom

_Rom
Language Extensions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

159
For example:

_Rom int ri; /* ri is placed in ROM address space */

_Erom

The variable with the _Erom storage specifier is allocated in 32-bit addressed internal or
external nonvolatile memory. This space corresponds to the EROM assembler address
space defined in the linker address space project settings. These variables lie within the
range extending from 00_8000 to the highest nonvolatile memory address.

For example:

_Erom int eri; /* eri is placed in EROM address space */

_Far

The variable with the _Far storage specifier is allocated in 32-bit addressed external vola-
tile (random access) memory. This space corresponds to the ERAM assembler address
space defined in the linker address space project settings. These variables lie within the
32-bit addressed range above the highest EROM address and below FF_8000.

For example:

_Far int fi; /* fi is placed in ERAM address space */

Storage Specification for Pointers

To properly access _Near, _Far, _Rom, and _Erom objects using a pointer, the compiler
provides the ability to associate the storage specifier with the pointer type.

• _Near pointer

The _Near pointer points to _Near data.

• _Far pointer

The _Far pointer points to _Far data.

• _Rom pointer

The _Rom pointer points to _Rom data.

• _Erom pointer

The _Erom pointer points to _Erom data.

For example:

char _Near * _Far npf;
// npf is a pointer to a _Near char, npf itself is stored in _Far
memory.
UM017105-0511 Language Extensions

160

Zilog Developer Studio II – ZNEO™
User Manual
Default Storage Specifiers

Default storage specifiers are applied if none is specified. The default storage specifiers
depend on the memory model chosen. Table 11 lists the default storage specifiers for each
model type.

Space Specifier on Structure and Union Members

The space specifier for a structure or union takes precedence over the space specifier of an
individual member. When the space specifier of a member does not match the space spec-
ifier of its structure or union, the space specifier of the member is ignored.

For example:

struct{
_Near char num; /* Warning: _Near space specifier is ignored.
*/
_Near char * ptr; /* Correct: ptr points to a char in _Near
memory. */
 /* ptr itself is stored in the memory space of
structure (_Far). */
} _Far mystruct; /* All of mystruct is allocated in _Far
memory.*/

Table 11. Default Storage Specifiers

Function Globals Locals String Const Parameters Pointer

Small (S) _Erom _Near _Near _Near _Near _Near _Near

Large (L) _Erom _Far _Far _Far _Far _Far _Far
Language Extensions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

161
Pointer Conversions

A pointer to a qualified space type can be converted to a different qualified space type as
shown in Table 12.

Memory Models

The ZNEO C-Compiler provides two memory models:

• Small memory model

• Large memory model

Each of these two models is described in this section.

Small Memory Model

In the small memory model, global variables are allocated in RAM address space. The
address of these variables is 16 bits. The locals and parameters are allocated on the
stack which is located in RAM address space. The address of a local or parameter is a
16-bit address. The global variables can be manually placed into the ERAM, ROM, or
EROM address space by using the _Far, _Rom, and _Erom address specifiers, respec-

Table 12. Pointer Conversion*

Destination

Source

unqualified const volatile _Near _Far _Rom _Erom

unqualified v W W v L v L

const v v W v L v L

volatile v W v v L v L

_Near S WS WS v X v X

_Far v W W v v v L

_Rom S WS WS v X v X

_Erom v W W v v v v

Notes:
1. v represents Valid.
2. W represents Warning.
3. S represents Valid in Small Model (Error in Large Model).
4. L represents Valid in Large Model (Error in Small Model).
5. WS represents Warning in Small Model (Error in Large Model).
6. WL represents Warning in Large Model (Error in Small Model).
7. X represents Error.
UM017105-0511 Language Extensions

162

Zilog Developer Studio II – ZNEO™
User Manual
tively. The local variables (nonstatic) and parameters are always allocated in RAM
address space, and any address specifiers, if used on them, are ignored.

Use of the small memory model does not impose any restriction on your code size.
The limitations of the small model are due to the somewhat limited amount of 16-bit
addressable RAM. Current ZNEO CPU parts offer up to 4KB of internal RAM, and
the ZDS II GUI restricts the total RAM linker address space (internal and external) to
16KB. If the local data and parameters exceed the available RAM size, then the small
memory model cannot be used. If the local data and parameters are within the RAM
size, but along with global data they exceed the RAM size, then the small model can
still be used but only by selectively placing the global data in the extended RAM
(ERAM) address space using the _Far keyword. Because ERAM is always located in
external memory, this solution requires adding external memory to your system.

Large Memory Model

In the large memory model, global variables are allocated in the ERAM address space.
The address of these variables is 32 bits. The locals and parameters are allocated on
stack, which is located in ERAM address space. The address of a local or parameter is
a 32-bit address. The global variables can be manually placed into the RAM, ROM, or
EROM address space by using the _Near, _Rom, and _Erom address specifiers,
respectively. The local variables (nonstatic) and parameters are always allocated in the
ERAM address space, and any address specifiers, if used on them, are ignored.

In the large memory model, the local and global data and parameters can span the
entire ERAM space, which can be configured at the user’s discretion to be much
larger than the space available in the RAM address space. Besides the requirement to
implement an external memory interface, the costs of using the large model are that
32-bit addressing is required to access the variables in ERAM, causing an increase in
code size. Also, pointers to these data are 32 bits, which might increase the data space
requirements if the application uses lots of pointers. It is possible that the application
might run more slowly if accesses to external memory require wait states. To reduce
the impact of some of these issues, you can selectively place your more frequently
accessed global and static data in RAM using the _Near keyword.

Interrupt Support

To support interrupts, the ZNEO C-Compiler provides the Interrupt Keyword and Inter-
rupt Vector Setup functions, as described below.

interrupt Keyword

Functions that are preceded by #pragma interrupt or are associated with the interrupt
storage class are designated as interrupt handlers. These functions should neither take
parameters nor return a value. The compiler stores the machine state at the beginning of
Language Extensions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

163
these functions and restores the machine state at the end of these functions. Also, the com-
piler uses the iret instruction to return from these functions.

For example:

void interrupt isr_timer0(void)
{
}

or

#pragma interrupt
void isr_timer0(void)
{
}

Interrupt Vector Setup

The compiler provides an intrinsic function SET_VECTOR for interrupt vector setup.
SET_VECTOR can be used to specify the address of an interrupt handler for an interrupt
vector. Because the interrupt vectors of the ZNEO microcontroller are usually in ROM,
they cannot be modified at run time. The SET_VECTOR function works by switching to a
special segment and placing the address of the interrupt handler in the vector table. No
executable code is generated for this statement.

The following example represents the SET_VECTOR intrinsic function prototype:

intrinsic void SET_VECTOR(int vectnum,void (*hndlr)(void));

An example of the use of SET_VECTOR is:

#include <zneo.h>
extern void interrupt isr_timer0(void);
void main(void)
{
 SET_VECTOR(TIMER0, isr_timer0);
}

UM017105-0511 Language Extensions

164

Zilog Developer Studio II – ZNEO™
User Manual
The following values for vectnum are supported:

Placement Directives

The ZNEO C-Compiler provides language extensions to declare a variable at an address
and to align a variable at a specified alignment.

Placement of a Variable

The following syntax can be used to declare a global or static variable at an address:

char placed_char _At 0xb9ff; // placed_char is assigned an address
0xb9ff.
far struct {
 char ch;
 int ii;
} ss _At 0x080eff; // ss is assigned an address
0x080eff

rom char init_char _At 0x2fff = 33;
// init_char is in rom and initialized to 33

Only placed variables with the rom or erom storage class specifiers can be initialized. The
placed variables with near and far storage class specifier cannot be initialized. The unini-
tialized placed variables are not initialized to zero by the compiler startup routine.

ADC
C0
C1
C2
C3
I2C
P0AD
P1AD
P2AD
P3AD
P4AD
P5AD
P6AD

P7AD
PWM_FAULT
PWM_TIMER
RESET
SPI
SYSEXC
TIMER0
TIMER1
TIMER2
UART0_RX
UART0_TX
UART1_RX
UART1_TX

Note:
Language Extensions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

165
Placement of Consecutive Variables

The compiler also provides syntax to place several variables at consecutive addresses.

For example:

char ch1 _At 0xbef0;
char ch2 _At …;
char ch3 _At …;

This example places ch1 at address 0xbef0, ch2 at the next address (0xbef1) after ch1,
and ch3 at the next address (0xbef2) after ch2. The _At … directive can only be used
after a previous _At or _Align directive.

Alignment of a Variable

The following syntax can be used to declare a global or static variable aligned at a speci-
fied alignment:

char ch2 _Align 2; // ch2 is aligned at even boundary
char ch4 _Align 4; // ch4 is aligned at a four byte boundary

Only aligned variables with the rom or erom storage class specifiers can be initialized. The
aligned variables with the near and far storage class specifiers cannot be initialized. The
uninitialized aligned variables are not initialized to zero by the compiler startup routine.

String Placement

When string constants (literals) such as "mystring" are used in a C program, they are
stored by the C-Compiler in RAM address space for the small memory model and in
ERAM address space for the large memory model. However, sometimes this default
placement of string constants does not allow you adequate control over your memory
usage. Therefore, language extensions are provided to give you more control over string
placement:

N"mystring". This constant defines a near string. The string is stored in RAM. The
address of the string is a _Near pointer.

F"mystring". This constant defines a far string. The string is stored in ERAM. The
address of the string is a _Far pointer.

R"mystring". This constant defines a ROM string. The string is stored in ROM. The
address of the string is a _Rom pointer.

Note:
UM017105-0511 Language Extensions

166

Zilog Developer Studio II – ZNEO™
User Manual
E"mystring". This constant defines an EROM string. The string is stored in EROM. The
address of the string is a _Erom pointer.

The following example presents string placement:

#include <sio.h>
void funcn (_Near char *str)
{
 while (*str)
 putch (*str++);
 putch ('\n');
}

void funcf (_Far char *str)
{
 while (*str)
 putch (*str++);
 putch ('\n');
}

void funcr (_Rom char *str)
{
 while (*str)
 putch (*str++);
 putch ('\n');
}

void funcer (_Erom char *str)
{
 while (*str)
 putch (*str++);
 putch ('\n');
}

void main (void)
{
 funcn (N"nstr");
 funcf (F"fstr");
 funcr (R"rstr");
 funcer (E"erstr");
}

Inline Assembly

There are two methods of inserting assembly language within C code, as described below.
Language Extensions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

167
Inline Assembly Using the Pragma Directive

The first method uses the #pragma feature of ANSI C with the following syntax:

#pragma asm “<assembly line>”

#pragma can be inserted anywhere within the C source file. The contents of
<assembly line> must be legal assembly language syntax. The usual C escape sequences
(such as \n, \t, and \r) are properly translated. Currently, the compiler does not process
the <assembly line>. Except for escape sequences, it is passed through the compiler verba-
tim.

Inline Assembly Using the asm Statement

The second method of inserting assembly language uses the asm statement:

asm(“<assembly line>”);

The asm statement cannot be within an expression and can be used only within the body of
a function.

The <assembly line> can be any string.The compiler does not check the legality of the
string.

As with the #pragma asm form, the compiler does not process the <assembly line>
except for translating the standard C escape sequences.

The compiler prefixes the name of every global variable name with "_". Global variables
can therefore be accessed in inline assembly by prefixing their name with "_ ". The local
variables and parameters cannot be accessed in inline assembly.

Char and Short Enumerations

The enumeration data type is defined as int as per ANSI C. The C-Compiler provides
language extensions to specify the enumeration data type to be other than int to save
space. The following syntax is provided by the C-Compiler to declare them as char or
short:

enum
{
 RED = 0,
 YELLOW,
 BLUE,
 INVALID
} char color;

enum
{
 NEW= 0,
 OPEN,
UM017105-0511 Language Extensions

168

Zilog Developer Studio II – ZNEO™
User Manual
 FIXED,
 VERIFIED,
 CLOSED
} short status;

void main(void)
{
 if (color == RED)
 status = FIXED;
 else
 status = OPEN;
}

Setting Flash Option Bytes in C

The ZNEO CPU provides up to four Flash option bytes to configure the device. These
Flash option bytes can be set in C, using the following syntax:

#include <zneo.h>
FLASH_OPTION0 = val;
FLASH_OPTION1 = val;
FLASH_OPTION2 = val;
FLASH_OPTION3 = val;

where:

• FLASH_OPTION0 is the Flash option byte at address 0

• FLASH_OPTION1 is the Flash option byte at address 1

• FLASH_OPTION2 is the Flash option byte at address 2

• FLASH_OPTION3 is the Flash option byte at address 3

For example:

#include <zneo.h>
FLASH_OPTION0 = 0xFF;
FLASH_OPTION1 = 0xFF;
FLASH_OPTION2 = 0xFF;
FLASH_OPTION3 = 0xFF;
void main (void)
{
}

This example sets the Flash option bytes at address 0, 1, 2, and 3 as 0xFF. The Flash
option bytes can be written only once in a program. They are set at load time. When you
set these bytes, you must make sure that the settings match the actual hardware. For more
information, see the product specification specific to your device.
Language Extensions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

169
Supported New Features from the 1999 Standard

The ZNEO compiler implements four new features introduced in the ANSI 1999 standard,
also known as ISO/IEC 9899:1999; each is described below.

C++ Style Comments

Comments preceded by // and terminated by the end of a line, as in C++, are supported.

Trailing Comma in Enum

A trailing comma in enum declarations is allowed. This essentially allows a common syn-
tactic error that does no harm. Thus, a declaration such as:

enum color {red, green, blue,} col;

is allowed (note the extra comma after blue).

Empty Macro Arguments

Preprocessor macros that take arguments are allowed to be invoked with one or more
arguments empty, as in this example:

#define cat3(a,b,c) a b c
printf("%s\n", cat3("Hello ", ,"World"));
 // ^ Empty arg

Long Long Int Type

The long long int type is allowed. (In the ZNEO C-Compiler, this type is treated as
the same as long, which is allowed by the standard.)

Type Sizes

The type sizes for basic data types on the ZNEO C-Compiler are:

The type sizes for the pointer data types on the ZNEO C-Compiler are:

int 32 bits

short int 16 bits

char 8 bits

long 32 bits

float 32 bits

double 32 bits
UM017105-0511 Type Sizes

170

Zilog Developer Studio II – ZNEO™
User Manual
All data are aligned on a byte boundary.

Alignment of 16- or 32-bit objects on even boundaries is a possible future en-
hancement. Avoid writing code that depends on how data are aligned.

Predefined Macros

The ZNEO C-Compiler comes with the following standard predefined macro names:

None of these macro names can be the subject of a #define or a #undef preprocessing
directive. The values of these predefined macros (except for __LINE__ and __FILE__)
remain constant throughout the translation unit.

The following additional macros are predefined by the ZNEO C-Compiler:

_Near pointer 16 bits

_Far pointer 32 bits

_Rom pointer 16 bits

_Erom pointer 32 bits

__DATE__ This macro expands to the current date in the format “Mmm dd yyyy” (a
character string literal), where the names of the months are the same
as those generated by the asctime function and the first character of
dd is a space character if the value is less than 10.

__FILE__ This macro expands to the current source file name (a string literal).

__LINE__ This macro expands to the current line number (a decimal constant).

__STDC__ This macro is defined as the decimal constant 1 and indicates confor-
mance with ANSI C.

__TIME__ This macro expands to the compilation time in the format “hh:mm:ss” (a
string literal).

Caution:
Predefined Macros UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

171
All predefined macro names begin with two underscores and end with two underscores.

Examples

The following program illustrates the use of some of these predefined macros:

#include <stdio.h>
void main()
{
#ifdef __ZILOG__
 printf("Zilog Compiler ");
#endif
#ifdef __ZNEO__
 printf("For ZNEO ");
#endif
#ifdef __ZDATE__
 printf("Built on %d.\n", __ZDATE__);
#endif
}

__CONST_IN_ROM__ This macro indicates that the const variables are placed in
ROM. This macro, which is optional in some other Zilog proces-
sor architectures, must always be defined for the ZNEO.

__MODEL__ This macro indicates the memory model used by the compiler
as follows:

0Small Model
3Large Model

__UNSIGNED_CHARS__ This macro is defined if the plain char type is implemented as
unsigned char.

__ZDATE__ This macro expands to the build date of the compiler in the for-
mat YYYYMMDD. For example, if the compiler were built on
May 31, 2006, then __ZDATE__ expands to 20060531. This
macro gives a means to test for a particular Zilog release or to
test that the compiler is released after a new feature has been
added.

__ZILOG__ This macro is defined and set to 1 on all Zilog compilers to indi-
cate that the compiler is provided by Zilog.

__ZNEO__ This macro is defined and set to 1 for the ZNEO compiler and is
otherwise undefined.
UM017105-0511 Predefined Macros

172

Zilog Developer Studio II – ZNEO™
User Manual
Calling Conventions

The C-Compiler imposes a strict set of rules regarding function calls. Except for special
run-time support functions, any function that calls or is called by a C function must follow
these rules. Failure to adhere to these rules can disrupt the C environment and cause a C
program to fail.

Function Call Mechanism

A function (caller function) performs the following sequence of tasks when it calls another
function (called function):

1. Save any of the registers R0–R7 that are in use and may be required after the call;
these registers may be overwritten in the called function.

2. Place the first seven scalar parameters (not structures or unions) of the called function
in registers R1–R7. Push parameters beyond the seventh parameter and nonscalar
parameters on the stack in reverse order (the rightmost declared argument is pushed
first, and the leftmost is pushed last). This places the leftmost argument on top of the
stack when the function is called. For a varargs function, all parameters are pushed
on the stack in reverse order.

3. Call the function. The call instruction pushes the return address on the top of the stack.

4. On return from the called function, caller pops the arguments off the stack or incre-
ment the stack pointer.

5. Restore any of the registers R0–R7 that were saved in step 1.

When a byte or structure of an odd size is pushed on the stack, only the byte or structure is
pushed. Future enhancements might introduce padding so that 16- or 32-bit objects are
located at an even offset from the frame pointer so avoid writing code that depends on the
alignment of data. If you are writing an assembly routine called out of C, it is recom-
mended that you declare parameters as short rather than char so that offsets to parame-
ters are not changed by such an enhancement.

The called function performs the following sequence of tasks:

1. Push the frame pointer onto the stack and allocate the local frame:

a. Set the frame pointer to the current value of the stack pointer.

b. Decrement the stack pointer by the size of locals and temporaries, if required.

2. Save the contents of any of the registers R8–R13 (and possibly R14; see comment
below) that are going to be used inside this function.

3. Execute the code for the function.
Calling Conventions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

173
4. Restore any of the registers R8–R14 that were saved in step 2.

5. If the function returns a scalar value, place it in the r0 register. For functions returning
an aggregate, see the Special Cases section, which follows.

6. Deallocate the local frame (set the stack pointer to the current value of frame pointer)
and restore the frame pointer from stack.

7. Return.

Registers R8–R13 are considered as callee saves; that is, they are saved and restored (if
necessary) by the called function. If the called function does not set up a frame pointer, it
can also use R14 as a general-purpose register but must still save it on entry and restore it
on exit. The flag register is not saved and restored by the called function.

The function call mechanism described in this section is a dynamic call mechanism. In a
dynamic call mechanism, each function allocates memory on stack for its locals and tem-
poraries during the run time of the program. When the function has returned, the memory
that it was using is freed from the stack. Figure 127 shows a diagram of the ZNEO C-
Compiler dynamic call frame layout.

Figure 127. Call Frame Layout

 Temporaries

Locals

Callers Frame Pointer 31:0

Return Address 31:0

Parameter 0

Parameter 1

…

Parameter N

FP

SP

Run Time Stack

High Address

Low Address
UM017105-0511 Calling Conventions

174

Zilog Developer Studio II – ZNEO™
User Manual
Special Cases

Some function calls do not follow the mechanism described in the Function Call Mecha-
nism section on page 172. Such cases are described in this section.

Returning Structure

If the function returns a structure, the caller allocates the space for the structure and then
passes the address of the return space to the called function as an additional and first argu-
ment. To return a structure, the called function then copies the structure to the memory
block pointed to by this argument.

Not Allocating a Local Frame

The compiler does not allocate a local stack frame for a function in the following case:

• The function does not have any local stack variables, stack arguments, or compiler-
generated temporaries on the stack

and:

• The function does not return a structure

and:

• The function is compiled without the debug option.

Calling Assembly Functions from C

The ZNEO C-Compiler allows mixed C and assembly programming. A function written in
assembly can be called from C if the assembly function follows the C calling conventions
as described in the Calling Conventions section on page 172.

This section covers the following topics:

• Function Naming Convention

• Argument Locations

• Return Values

• Preserving Registers

Function Naming Convention

Assembly function names must be preceded by an underscore (_). The compiler prefixes
the function names with an underscore in the generated assembly. For example, a call to
myfunc() in C is translated to a call to _myfunc in assembly generated by the compiler.
Calling Assembly Functions from C UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

175
Argument Locations

The assembly function assigns the location of the arguments following the C calling con-
ventions as described in the Calling Conventions section on page 172. For example, if you
are using the following C prototype:

void myfunc(short arga, long argb, short *argc, char argd, int
arge, int argf, char argg, long *argh, int argi)

then the location of the arguments are:

arga: R1

argb: R2

argc: R3

argd: R4

arge: R5

argf: R6

argg: R7

The remaining arguments are on stack, and their offsets from Stack Pointer (SP, R15) at
the entry point of assembly function are:

argh: -4(SP)

argi: -8(SP)

The corresponding offsets from Frame Pointer (FP, R14) after a Link #0 instruction are:

argh: -8(FP)

argi: -12(FP)

Return Values

The assembly function returns the value in the location as specified by the C calling con-
vention as described in Calling Conventions on page 172.

For example, if you are using the following C prototype:

long myfunc(short arga, long argb, short *argc)

then the assembly function returns the long value in register R0.
UM017105-0511 Calling Assembly Functions from C

176

Zilog Developer Studio II – ZNEO™
User Manual
Preserving Registers

The ZNEO C-Compiler implements a scheme in which the registers R8–R13 are treated as
callee save. The assembly function must preserve any of these registers that it uses. The
assembly function is not expected to save and restore the flag register.

Calling C Functions from Assembly

The C functions that are provided with the compiler library can also be used to add func-
tionality to an assembly program. You can also create your own C functions and call them
from an assembly program.

Because the compiler makes the caller function responsible for saving registers R0–R7
(see the Calling Conventions section on page 172), if the assembly code is using any of
these functions and needs their contents to be preserved across the C function call, it must
save them before the call and restore them afterwards.

The C-Compiler precedes the function names with an underscore in the generated assem-
bly. See the Function Naming Convention section on page 174.

The following example shows an assembly source file referencing the function sinf. The
sinf function is defined in the C library.

Assembly File

globals on

xref _sinf

segment near_data
val:dl %3F060A96; 0.523599
res:dl 0

segment code
_main:

pushm <R1>
; save the registers, other than return register, if any in

use

ld R1,val; load the argument
call _sinf; call the c functions
ld res,r0 ; the result is in r0

Note:
Calling C Functions from Assembly UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

177

popm <R1>; restore the registers, if any were saved

ret

Referenced C Function Prototype

float sinf(float arg);

Command Line Options

The compiler, like the other tools in ZDS II, can be run from the command line for pro-
cessing inside a script, and so on. Please see Compiler Command Line Options on
page 354 for the list of compiler commands that are available from the command line.

Run-Time Library

The C-Compiler provides a collection of run-time libraries. The largest section of these
libraries consists of an implementation of much of the C Standard Library. A small library
of functions specific to Zilog or to the ZNEO is also provided.

The ZNEO C-Compiler is a conforming freestanding 1989 ANSI C implementation with
some exceptions. In accordance with the definition of a freestanding implementation, the
compiler supports the required standard header files <float.h>, <limits.h>,
<stdarg.h>, and <stddef.h>. It also supports additional standard header files and
Zilog-specific nonstandard header files.

The standard header files and functions are, with minor exceptions, fully compliant with
the ANSI C Standard. They are described in detail in the appendix titled C Standard
Library, on page 391. The deviations from the ANSI Standard in these files are summa-
rized in the Library Files Not Required for Freestanding Implementation section on
page 196. The following sections describe the use and format of the nonstandard, Zilog-
specific run-time libraries:

• Zilog Header Files – see page 178

• Zilog Functions – see page 180

The Zilog-specific header files provided with the compiler are listed in Table 13 and
described in the Zilog Header Files section on page 178.
UM017105-0511 Command Line Options

178

Zilog Developer Studio II – ZNEO™
User Manual
The Zilog-specific header files are located in the following directory:

<ZDS Installation Directory>\include\zilog

where <ZDS Installation Directory> is the directory in which Zilog Developer Studio was
installed. By default, this would be C:\Program Files\Zilog\ZDSII_ZNEO_<ver-
sion>, where <version> might be 4.11.0 or 5.0.0.

All external identifiers declared in any of the headers are reserved, whether or not the asso-
ciated header is included. All external identifiers and macro names that begin with an
underscore are also reserved. If the program redefines a reserved external identifier, even
with a semantically equivalent form, the behavior is indeterminate.

Zilog Header Files

Architecture-Specific Functions <zneo.h>

A ZNEO-specific header file <zneo.h> is provided that has prototypes for Zilog-specific
C library functions and macro definitions.

Macros

<zneo.h> contains macro definitions giving the more conventional names for storage
specifiers:

Table 13. Nonstandard Headers

Header Description Page

<zneo.h> ZNEO defines and functions page 178

<sio.h> Serial input/output functions page 179

erom Expands to space specifier _Erom.

near Expands to space specifier _Near.

far Expands to space specifier _Far.

rom Expands to space specifier _Rom.

Note:

Note:
Run-Time Library UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

179
<zneo.h> has the macro definitions for all ZNEO microcontroller peripheral registers.
For example:

Refer to the ZNEO product specifications for the list of peripheral registers supported.

<zneo.h> also has the macro definition for the ZNEO Flash option bytes:

<zneo.h> also has the macro definition for interrupt vector addresses:

Refer to the ZNEO product specifications for the list of interrupt vectors supported.

Functions

Nonstandard I/O Functions <sio.h>

This header contains nonstandard ZNEO-specific input/output functions.

T0H Expands to (*(unsigned char volatile near*)0xE300)

FLASH_OPTION0 Expands to a _Rom char at address 0x0.

FLASH_OPTION1 Expands to a _Rom char at address 0x1.

FLASH_OPTION2 Expands to a _Rom char at address 0x2.

FLASH_OPTION3 Expands to a _Rom char at address 0x3.

RESET Expands to address of Reset vector.

intrinsic void EI(void); Enable interrupts.

intrinsic void DI(void); Disable interrupts.

intrinsic void RI(unsigned short istat); Restores interrupts.

intrinsic void SET_VECTOR(int vectnum,void
(*hndlr)(void));

Specifies the address of an
interrupt handler for an inter-
rupt vector.

intrinsic unsigned short TDI(void); Tests and disables interrupts.

_DEFFREQ Expands to unsigned long default frequency.

_DEFBAUD Expands to unsigned long default baud rate.

_UART0 Expands to an integer indicating UART0.

_UART1 Expands to an integer indicating UART1.
UM017105-0511 Run-Time Library

180

Zilog Developer Studio II – ZNEO™
User Manual
Functions

Zilog Functions

The following functions are Zilog-specific; each is described on their respective pages, as
referenced below.

• DI – see page 180

• EI – see page 181

• getch – see page 181

• init_uart – see page 182

• kbhit – see page 182

• putch – see page 183

• RI – see page 183

• select_port – see page 184

• SET_VECTOR – see page 184

• TDI – see page 185

DI

DI is an intrinsic function that disables all interrupts and is inline-expanded by default. If
the –reduceopt compiler option is selected, then this function is not inline-expanded and
is instead implemented as a regular function.

Synopsis
#include <zneo.h>
intrinsic void DI(void);

char getch(void) ; Returns the data byte available in the
selected
UART.

int init_uart(int port,unsigned long freq,
unsigned long baud);

Initializes the selected UART for specified
settings
and returns the error status.

int kbhit(void); Checks for receive data available on
selected UART.

int putch(char) ; Sends a character to the selected UART
and returns the error status.

int select_port(int port); Selects the UART. Default is _UART0.
Run-Time Library UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

181
Example
#include <zneo.h>

void main(void)
{

DI();/* Disable interrupts */
}

EI

EI is an intrinsic function that enables all interrupts and is inline-expanded by default. If
the –reduceopt compiler option is selected, then this function is not inline-expanded and
is instead implemented as a regular function.

Synopsis
#include <zneo.h>
intrinsic void EI(void);

Example
#include <zneo.h>

void main(void)
{

EI(); /* Enable interrupts */
}

getch

getch is a ZILOG function that waits for the next character to appear at the serial port and
returns its value. This function does not wait for end-of-line to return as getchar does.
getch does not echo the character received.

Synopsis

#include <sio.h>
char getch(void) ;

Returns

The next character that is received at the selected UART.

Example

char ch;
ch=getch();
UM017105-0511 Run-Time Library

182

Zilog Developer Studio II – ZNEO™
User Manual
Before using the getch function, the init_uart() function must be called to initialize
and select the UART. The default UART is _UART0.

init_uart

The init_uart function is a Zilog function that selects the specified UART and initial-
izes it for specified settings and returns the error status.

Synopsis

#include <sio.h>
int init_uart(int port, unsigned long freq, unsigned long

baud);

Returns

Returns 0 if initialization is successful and 1 otherwise.

Example

#include <stdio.h>
#include <sio.h>
void main()
{

init_uart(_UART0,_DEFFREQ,_DEFBAUD);
printf("Hello UART0\n"); // Write to _UART0

}

_DEFFREQ is automatically set from the IDE using the setting in the Configure Target
dialog box. See Setup on page 76.

kbhit

kbhit is a Zilog function that determines whether there is receive data available on the
selected UART.

Synopsis
#include <sio.h>
int kbhit(void);

Returns

Returns 1 if there is receive data available on the selected UART; otherwise, it returns 0.

Example
int i;
i=kbhit();

Note:
Run-Time Library UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

183
Before using the kbhit function, the init_uart() function must be called to initialize
and select the UART. The default UART is _UART0.

putch

putch is a Zilog function that sends a character to the selected UART and returns an error
status.

Synopsis

#include <sio.h>
int putch(char ch) ;

Returns

A zero is returned on success; a nonzero is returned on failure.

Example

char ch = 'c' ;
int err;
err = putch(ch) ;

Before using the putch function, the init_uart() function must be called to initialize
and select the UART. The default UART is _UART0.

RI

RI (restore interrupt) is an intrinsic function that restores interrupt status. It is intended to
be paired with an earlier call to TDI(), which has previously saved the existing interrupt
status. See the TDI section on page 185 for a discussion of that function. The interrupt sta-
tus, which is passed as a parameter to RI(), consists of the Flags register extended to
16 bits for efficient stack storage. This function inline-expanded by default. If the –redu-
ceopt compiler option is selected, then this function is not inline-expanded and is instead
implemented as a regular function.

Synopsis
#include <zneo.h>
intrinsic void RI(unsigned short istat);

Example
#include <zneo.h>

Note:

Note:
UM017105-0511 Run-Time Library

184

Zilog Developer Studio II – ZNEO™
User Manual
void main(void)
{
 unsigned short istat;
 istat = TDI(); /* Test and Disable Interrupts

*/
 /* Do Something */
 RI(istat); /* Restore Interrupts */
}

select_port

select_port is a Zilog function that selects the UART. The default is _UART0. The
init_uart function can be used to configure either _UART0 or _UART1 and select the
UART passed as the current one for use. All calls to putch, getch, and kbhit use the
selected UART. You can also change the selected UART using the select_port function
without having to reinitialize the UART.

Synopsis

#include <sio.h>
int select_port(int port) ;

Returns

A zero is returned on success; a nonzero is returned on failure.

Example

#include <stdio.h>
#include <sio.h>
void main(void)
{

init_uart(_UART0,_DEFFREQ,_DEFBAUD);
init_uart(_UART1,_DEFFREQ,_DEFBAUD);
select_port(_UART0);
printf("Hello UART0\n"); // Write to uart0
select_port(_UART1);
printf("Hello UART1\n"); // Write to uart1

}

SET_VECTOR

SET_VECTOR is an intrinsic function provided by the compiler to specify the address of an
interrupt handler for an interrupt vector. Because the interrupt vectors of the ZNEO micro-
controller are usually in ROM, they cannot be modified at run time. The SET_VECTOR
function works by switching to a special segment and placing the address of the interrupt
handler in the vector table. No executable code is generated for this statement. Calls to the
SET_VECTOR intrinsic function must be placed within a function body. The –reduceopt
compiler option does not affect the SET_VECTOR function handling.
Run-Time Library UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

185
Synopsis

#include <zneo.h>
intrinsic void SET_VECTOR(int vectnum,void (*hndlr)(void));

where:

• vectnum is the interrupt vector number for which the interrupt handler hndlr is to be
set

• hndlr is the interrupt handler function pointer. The hndlr function must be declared
to be of the interrupt type with parameters and return as void (no parameters and no
return)

The compiler supports the following values for vectnum for the ZNEO CPU:

Returns

None

Example

#include <zneo.h>
extern void interrupt isr_timer0(void);
void main(void)
{

SET_VECTOR(TIMER0, isr_timer0); /* setup TIMER0 vector */
}

TDI

TDI (test and disable interrupts) is an intrinsic function that supports users creating their
own critical sections of code. It returns the previous interrupt status and disables inter-
rupts. It is intended to be paired with a later call to RI(), which will restore the previously
existing interrupt status. See the RI section on page 183 for a discussion of that function.

ADC
C0
C1
C2
C3
I2C
P0AD
P1AD
P2AD
P3AD
P4AD
P5AD
P6AD

P7AD
PWM_FAULT
PWM_TIMER
RESET
SPI
SYSEXC
TIMER0
TIMER1
TIMER2
UART0_RX
UART0_TX
UART1_RX
UART1_TX
UM017105-0511 Run-Time Library

186

Zilog Developer Studio II – ZNEO™
User Manual
The interrupt status, which is returned from TDI(), consists of the flags register extended
to 16 bits for efficient stack storage.

This function is an intrinsic function and is inline-expanded by default. If the –redu-
ceopt compiler option is selected, then this function is not inline-expanded and is imple-
mented as a regular function instead.

Synopsis

#include <zneo.h>
intrinsic unsigned short TDI(void);

Example

#include <zneo.h>

void main(void)
{

unsigned short istat;
istat = TDI(); /* Test and Disable Interrupts */
/* Do Something */
RI(istat); /* Restore Interrupts */

}

Stack Pointer Overflow

The run-time library for the ZNEO C-Compiler manipulates the SPOV register to protect
program and allocated data. The default action is:

• The SPOV register is initialized to the end of the initialized data segment. Therefore,
if the Stack Pointer is decremented below SPOV, it results in the Stack overflow
exception.

• When malloc() is called, the SPOV register is increased to the highest address of
allocated data; malloc() returns NULL if changing the SPOV results in an immedi-
ate stack overflow.

• Calling free() returns memory for possible use by malloc() but does not return
memory for possible use as stack; that is, the SPOV register is not updated.

• However, if you modify the SPOV register directly, malloc() leaves SPOV where
you have put it and does not allocate data on the stack side of SPOV.

The run-time library does not supply a handler for the stack overflow exception (or any
other exception). If there is any possibility of your released application overflowing its
stack, you must decide how to recover from the situation and write your own handler.
Stack Pointer Overflow UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

187
Startup Files

The start-up or C run-time initialization file is an assembly program that performs required
start-up functions and then calls main, which is the C entry point. The start-up program
performs the following C run-time initializations:

1. Initializes the stack pointer and stack overflow register.

2. Initializes the external interface if enabled (see the description of the Configure Target
Dialog Box on page 76).

3. Clears the _Near and _Far uninitialized variables to zero.

4. Sets the initialized _Near and _Far variables to their initial value from _Erom.

5. Allocate space for interrupt vectors.

6. Allocate space for the errno variable used by the C run-time libraries.

Table 14 lists the start-up files provided with the ZNEO C-Compiler.

Table 14. ZNEO Startup Files

Name Description

lib\zilog\startups.obj C start-up object file for small model.

src\boot\common\startups.asm C start-up source file for small model.

lib\zilog\startupl.obj C start-up object file for large model.

src\boot\common\startupl.asm C start-up source file for large model.

lib\zilog\startupexkl.obj C start-up object file (large model) with external interface set up for
devices with Port K.

lib\zilog\startupexl.obj C start-up object file (large model) with external interface set up for
devices without Port K.

src\boot\common\startupexl.asm C start-up source file (large model) with external interface set up.

lib\zilog\startupexks.obj C start-up object file (small model) with external interface set up for
devices with Port K.

lib\zilog\startupexs.obj C start-up object file (small model) with external interface set up for
devices without Port K.

src\boot\common\startupexs.asm C start-up source file (small model) with external interface set up.
UM017105-0511 Startup Files

188

Zilog Developer Studio II – ZNEO™
User Manual
Segment Naming

The compiler places code and data into separate segments in the object file. The different
segments used by the compiler are listed in Table 15.

Linker Command Files for C Programs

This section describes how the ZNEO linker is used to link a C program. A C program
consists of compiled and assembled object module files, compiler libraries, user-created
libraries, and special object module files used for C run-time initializations. These files are
linked based on the commands given in the linker command file.

The default linker command file is automatically generated by the ZDS II IDE whenever a
build command is issued. It has information about the ranges of various address spaces
for the selected device, the assignment of segments to spaces, order of linking, and so on.
The default linker command file can be overridden by the user.

The linker processes the object modules (in the order in which they are specified in the
linker command file), resolves the external references between the modules, and then
locates the segments into the appropriate address spaces as per the linker command file.

Table 15. Segments

Segment Description

NEAR_DATA _Near initialized global and static data

NEAR_BSS _Near un-initialized global and static data

NEAR_TEXT _Near constant strings

FAR_DATA _Far initialized global and static data

FAR_BSS _Far un-initialized global and static data

FAR_TEXT _Far constant strings

ROM_DATA _Rom global and static data

ROM_TEXT _Rom constant strings

EROM_DATA _Erom global and static data

EROM_TEXT _Erom constant strings

CODE _Erom code

__VECTORS _Rom interrupt vectors

STARTUP _Rom C startup
Segment Naming UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

189
The linker depicts the memory of the ZNEO CPU using a hierarchical memory model con-
taining spaces and segments. Each memory region of the CPU is associated with a space.
Multiple segments can belong to a given space. Each space has a range associated with it
that identifies valid addresses for that space. The hierarchical memory model for the
ZNEO CPU is shown in Figure 128. Figure 129 depicts how the linker links and locates
segments in different object modules.

For a more detailed description of the linker and the various commands it supports, see the
Using the Linker/Locator chapter on page 259.

Figure 128. ZNEO Hierarchical Memory Model

ZNeo Memory
Spaces

RAM Space ERAM Space

NEAR_BSS
Segment

NEAR_DATA
Segment

FAR_BSS
Segment

FAR_DATA
Segment

ROM Space

ROM_DATA
Segment

ROM_TEXT
Segment

NEAR_TEXT
Segment

FAR_TEXT
Segment

EROM_DATA
Segment

CODE
Segment __VECTORS

Segment
STARTUP
Segment

EROM Space

EROM_TEXT
Segment
UM017105-0511 Linker Command Files for C Programs

190

Zilog Developer Studio II – ZNEO™
User Manual
Linker Referenced Files

The default linker command file generated by the ZDS II IDE references system object
files and libraries based on the compilation memory model selected by the user. A list of
the system object files and libraries is provided in Table 16. The linker command file auto-
matically selects and links to the appropriate version of the C run-time and floating-point
libraries (if necessary) from the list in Table 16, based on the your project settings.

Figure 129. Multiple File Linking

Table 16. Linker Referenced Files

File Description

Startups.obj C startup for small model

Startupl.obj C startup for large model

Startupexks.obj C startup (small model) with external interface setup for devices with Port K.

Startupexs.obj C startup (small model) with external interface setup for devices without Port K.

Startupexkl.obj C startup (large model) with external interface setup for devices with Port K.

Startupexl.obj C startup (large model) with external interface setup for devices without Port K.

Fpdumy.obj Floating-point do-nothing stubs

Crtl.lib C run-time library for large model, no debug information

U1 V1 X1 U2 X2 V2 U3 V3

Linker

U1 V1 U3 U2 V2 X2 X1 V3

Module one.obj Module two.obj Module three.obj

Space EROM Space ROM Space ERAM

Y1 Y2 Y3

X3 Y1 Y2

Space RAM
Linker Command Files for C Programs UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

191
Linker Symbols

The default linker command file defines some system symbols, which are used by the C
startup file to initialize the stack pointer, clear the uninitialized variables to zero, set the
initialized variables to their initial value, set the heap base, and so on. Table 17 shows the
list of symbols that might be defined in the linker command file, depending on the compi-
lation memory model selected by the user.

Crtld.lib C run-time library for large model, with debug information

Fpl.lib Floating-point library for large model, no debug information

Fpld.lib Floating-point library for large model, with debug information

Crts.lib C run-time library for small model, no debug information

Crtsd.lib C run-time library for small model, with debug information

Fps.lib Floating-point library for small model, no debug information

Fpsd.lib Floating -point library for small model, with debug information

Chelps.lib C helper routines for small model, no debug information

Chelpsd.lib C helper routines for small model, with debug information

Chelpl.lib C helper routines for large model, no debug information

Chelpld.lib C helper routines for large model, with debug information

Table 17. Linker Symbols

Symbol Description

_low_neardata Base of near_data segment after linking.

_len_neardata Length of near_data segment after linking.

_low_near_romdata Base of the rom copy of near_data segment after linking.

_low_fardata Base of far_data segment after linking.

_len_fardata Length of far_data segment after linking.

_low_far_romdata Base of the rom copy of far_data segment after linking.

_low_nearbss Base of near_bss segment after linking.

_len_nearbss Length of near_bss segment after linking.

_low_farbss Base of far_bss segment after linking.

_len_farbss Length of far_bss segment after linking.

Table 16. Linker Referenced Files (Continued)

File Description
UM017105-0511 Linker Command Files for C Programs

192

Zilog Developer Studio II – ZNEO™
User Manual
Sample Linker Command File

The sample default linker command file for large compilation model is discussed here as a
good example of the contents of a linker command file in practice and how the linker com-
mands it contains work to configure your load file. The default linker command file is
automatically generated by the ZDS II IDE. If the project name is test.zdspro, for
example, the default linker command file name is test_debug.linkcmd. You can add
additional directives to the linking process by specifying them in the Additional Linker
Directives dialog box (see Additional Directives on page 62). Alternatively, you can
define your own linker command file by selecting the Use Existing button (see Use Exist-
ing on page 63).

The most important of the linker commands and options in the default linker command file
are hereby described individually, in the order in which they are typically found in the
linker command file:

-FORMAT=OMF695, INTEL32
-map -maxhexlen=64 -quiet -warnoverlap -NOxref -

unresolved=fatal
-sort NAME=ascending -warn –debug -NOigcase

In this command, the linker output file format is selected to be OMF695, which is based
on the IEEE 695 object file format, and INTEL32, which is the Intel Hex 32 format. This
setting is generated from options selected in the Output page (see page 72). The –quiet,
-debug, and –noigcase options are generated from the settings on the General page
(see page 47). The other options shown here are all generated from the settings selected in
the Warnings and Output pages (see pages 70– 72).

RANGE ROM $0 : $7fff
RANGE RAM $ffb000 : $ffbfff
RANGE EROM $8000 : $1ffff

_far_stack Top of stack for large model is set as highest address of ERAM.

_near_stack Top of stack for small model is set as highest address of RAM.

_far_heapbot Base of heap for large model is set as highest allocated ERAM address.

_near_heapbot Base of heap for small model is set as highest allocated RAM address.

_far_heaptop Top of heap for large model is set as highest address of ERAM.

_near_heaptop Top of heap for small model is set as highest address of RAM.

_SYS_CLK_FREQ System clock frequency as selected in the Configure Target dialog box.

_SYS_CLK_SRC System clock source as selected in the Configure Target dialog box.

Table 17. Linker Symbols

Symbol Description
Linker Command Files for C Programs UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

193
RANGE ERAM $800000 : $81ffff

The ranges for the four address spaces are defined here. These ranges are taken from the
settings in Address Spaces page (see page 68).

CHANGE NEAR_TEXT=NEAR_DATA
CHANGE FAR_TEXT=FAR_DATA

The NEAR_TEXT and FAR_TEXT segments are renamed to NEAR_DATA and
FAR_DATA segments, respectively, by the above command. This allows the linker to
merge them with the material that has already been placed into the NEAR_DATA and
FAR_DATA segments. The NEAR_TEXT and FAR_TEXT segments contain constant
strings in RAM and ERAM, respectively. This reduces the number of initialized segments
from four to two, and the C startup then only must initialize two segments.

ORDER FAR_BSS, FAR_DATA
ORDER NEAR_BSS,NEAR_DATA

These ORDER commands specify the link order of these segments. The FAR_BSS seg-
ment is placed at lower addresses with the FAR_DATA segment immediately following it
in the ERAM space. Similarly, NEAR_DATA follows after NEAR_BSS in RAM space.

COPY NEAR_DATA EROM
COPY FAR_DATA EROM

This COPY command is a linker directive to make the linker place a copy of the initialized
data segments NEAR_DATA and FAR_DATA into the EROM address space. At run time,
the C start-up module then copies the initialized data back from the EROM address space
to the RAM (NEAR_DATA segment) and ERAM (FAR_DATA segment) address spaces.
This is the standard method to ensure that variables get their required initialization from a
nonvolatile stored copy in a typical embedded application where there is no offline mem-
ory such as disk storage from which initialized variables can be loaded.

define _low_near_romdata = copy base of NEAR_DATA
define _low_neardata = base of NEAR_DATA
define _len_neardata = length of NEAR_DATA
define _low_far_romdata = copy base of FAR_DATA
define _low_fardata = base of FAR_DATA
define _len_fardata = length of FAR_DATA
define _low_nearbss = base of NEAR_BSS
define _len_nearbss = length of NEAR_BSS
define _low_farbss = base of FAR_BSS
define _len_farbss = length of FAR_BSS
define _far_heapbot = top of ERAM
define _far_heaptop = highaddr of ERAM
define _far_stack = highaddr of ERAM
define _near_heapbot = top of RAM
define _near_heaptop = highaddr of RAM
define _near_stack = highaddr of RAM
UM017105-0511 Linker Command Files for C Programs

194

Zilog Developer Studio II – ZNEO™
User Manual
The list above comprises the linker symbol definitions described in Table 17. They allow
the compiler to know the bounds of the different memory areas that must be initialized in
different ways by the C start-up module.

"c:\sample\test"= \
C:\PROGRA~1\Zilog\ZD3E4C~1.0\lib\startupL.obj, \
.\foo.obj, \
C:\PROGRA~1\Zilog\ZD3E4C~1.0\lib\chelpLD.lib, \
C:\PROGRA~1\Zilog\ZD3E4C~1.0\lib\crtLD.lib, \
C:\PROGRA~1\Zilog\ZD3E4C~1.0\lib\fpLD.lib

This final command shows that, in this example, the linker output file is named
test.lod. The source object file (foo.obj) is to be linked with the other modules that
are required to make a complete executable load file. In this case, those other modules are
the C start-up modules for the large model (startupl.obj), the C helper library for the
large model with debug (chelpld.lib), the C run-time library for the large model with
debug (crtld.lib), and the floating-point library for that same configuration
(fpld.lib).

An important point to understand in using the linker is that if you use the Zilog default
version of the C run-time library, the linker will link in only those functions that are actu-
ally called in your program. This is because the Zilog default library is organized with
only one function (or in a few cases, a few closely related functions) in each module.
Although the C run-time library contains a very large number of functions from the C
standard library, if your application only calls two of those functions, then only those two
are linked into your application (plus any functions that are called by those two functions
in turn). This means it is safe for you to simply link in a large library such as chel-
pLD.lib, crtLD.lib, and fpLD.lib as in this example. You do not have to worry
about any unnecessary code being linked in and do not have to do the extra work of pains-
takingly finding the unresolved symbols for yourself and linking only to those specific
functions. See Use Default Libraries on page 67 for a further discussion of this area.

ANSI Standard Compliance

The Zilog ZNEO C-Compiler is a freestanding ANSI C compiler, complying with the
1989 ISO standard, which is also known as ANSI Standard X3.159-1989 with some devi-
ations, which are described in the Deviations from ANSI C section on page 195.

Freestanding Implementation

A freestanding implementation of the C language is a concept defined in the ANSI stan-
dard itself, to accommodate the needs of embedded applications that cannot be expected to
provide all of the services of the typical desktop execution environment (which is called a
hosted environment in the terms of the standard). In particular, it is presumed that there are
no file system and no operating system. The use of the standard term freestanding imple-
ANSI Standard Compliance UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

195
mentation means that the compiler must contain, at least, a specific subset of the full ANSI
C features. This subset consists of those basic language features appropriate to embedded
applications. Specifically the list of required header files and associated library functions
is minimal, namely <float.h>, <limits.h>, <stdarg.h>, and <stddef.h>. A free-
standing implementation is allowed to additionally support all or parts of other standard
header files but is not required to. The ZNEO C-Compiler, for example, supports a number
of additional headers from the standard library, as specified in the Library Files Not
Required for Freestanding Implementation section on page 196.

A conforming implementation (that is, compiler) is allowed to provide extensions, as long
as they do not alter the behavior of any program that uses only the standard features of the
language. The Zilog ZNEO C-Compiler uses this concept to provide language extensions
that are useful for developing embedded applications and for making efficient use of the
resources of the ZNEO CPU. These extensions are described in the Language Extensions
section on page 156.

Deviations from ANSI C

The differences between the Zilog ZNEO C-Compiler and the freestanding implementa-
tion of the ANSI C Standard consist of both extensions to the ANSI standard and devia-
tions from the behavior described by the standard. The extensions to the ANSI standard
are explained in Language Extensions on page 156.

There are a small number of areas in which the ZNEO C-Compiler does not behave as
specified by the Standard. These areas are described in the following sections.

Prototype of Main

As per ANSI C, in a freestanding environment, the name and type of the function called at
program startup are implementation defined. Also, the effect of program termination is
implementation defined.

For compatibility with hosted applications, the ZNEO C-Compiler uses main() as the
function called at program startup. Because the ZNEO compiler provides a freestanding
execution environment, there are a few differences in the syntax for main(). The most
important of these is that, in a typical small embedded application, main() never executes
a return as there is no operating system for a value to be returned to and is also not
intended to terminate. If main() does terminate, and the standard Zilog ZNEO C start-up
module is in use, control simply goes to the statement:

_exit:
JP _exit

For this reason, in the ZNEO C-Compiler, main() must be of type void; any returned
value is ignored. Also, main() is not passed any arguments. The following example pres-
ents the prototype for main():

void main (void);
UM017105-0511 ANSI Standard Compliance

196

Zilog Developer Studio II – ZNEO™
User Manual
By contrast, in the hosted environment, the closest allowed form for main is:

int main (void);

Double Treated as Float

The ZNEO C-Compiler does not support a double-precision floating-point type. The type
double is accepted, but is treated as if it were float.

Library Files Not Required for Freestanding Implementation

As noted in Freestanding Implementation on page 194, only four of the standard library
header files are required by the standard to be supported in a freestanding compiler such as
the ZNEO C-Compiler. However, the compiler does support many of the other standard
library headers as well. The supported headers are listed here. The support offered in the
Zilog libraries is fully compliant with the Standard except as noted here:

• <assert.h>

• <ctype.h>

• <errno.h>

• <math.h>

The Zilog implementation of the math.h library is not fully ANSI-compliant in the
general limitations of the handling of floating-point numbers: namely, Zilog does not
fully support floating-point NANs, INFINITYs, and related special values. These spe-
cial values are part of the full ANSI/IEEE 754-1985 floating-point standard that is ref-
erenced in the ANSI C Standard.

• <stddef.h>

• <stdio.h>

Zilog supports only the portions of stdio.h that make sense in the embedded envi-
ronment. Specifically, Zilog defines the ANSI required functions that do not depend
on a file system. For example, printf and sprintf are supplied but not fprintf.

• <stdlib.h>

The stdlib.h header is ANSI-compliant in the Zilog library except that the follow-
ing functions – which are of limited or no use in an embedded environment – are not
supplied:

strtoul()
_Exit()
atexit()
ANSI Standard Compliance UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

197
Warning and Error Messages

This section covers the following topics:

• Preprocessor Warning and Error Messages – see page 197

• Front-End Warning and Error Messages – see page 199

• Optimizer Warning and Error Messages – see page 207

• Code Generator Warning and Error Messages – see page 208

If you see an internal error message, please report it to Technical Support at http://sup-
port.zilog.com. Zilog staff will use the information to diagnose or log the problem.

Preprocessor Warning and Error Messages

000 Illegal constant expression in directive. A constant expression made up of con-
stants and macros that evaluate to constants can be the only operands of an expression
used in a preprocessor directive.

001 Concatenation at end-of-file. Ignored. An attempt was made to concatenate lines
with a backslash when the line is the last line of the file.

002 Illegal token. An unrecognizable token or non-ASCII character was encountered.

003 Illegal redefinition of macro <name>. An attempt was made to redefine a macro,
and the tokens in the macro definition do not match those of the previous definition.

004 Incorrect number of arguments for macro <name>. An attempt was made to call a
macro, but too few or too many arguments were given.

005 Unbalanced parentheses in macro call. An attempt was made to call a macro with
a parenthesis embedded in the argument list that did not match up.

006 Cannot redefine <name> keyword. An attempt was made to redefine a keyword as
a macro.

007 Illegal directive. The syntax of a preprocessor directive is incorrect.

008 Illegal "#if" directive syntax. The syntax of a #if preprocessor directive is incor-
rect.

Note:
UM017105-0511 Warning and Error Messages

http://support.zilog.com
http://support.zilog.com

198

Zilog Developer Studio II – ZNEO™
User Manual
009 Bad preprocessor file. Aborted. An unrecognizable source file was given to the
compiler.

010 Illegal macro call syntax. An attempt was made to call a macro that does not con-
form to the syntax rules of the language.

011 Integer constant too large. An integer constant that has a binary value too large to
be stored in 32 bits was encountered.

012 Identifier <name> is undefined. The syntax of the identifier is incorrect.

013 Illegal #include argument. The argument to a #include directive must be of the form
“pathname” or <filename>.

014 Macro "<name>" requires arguments. An attempt was made to call a macro
defined to have arguments and was given none.

015 Illegal "#define" directive syntax. The syntax of the #define directive is incorrect.

016 Unterminated comment in preprocessor directive. Within a comment, an end of
line was encountered.

017 Unterminated quoted string. Within a quoted string, an end of line was encoun-
tered.

018 Escape sequence ASCII code too large to fit in char. The binary value of an
escape sequence requires more than 8 bits of storage.

019 Character not within radix. An integer constant was encountered with a character
greater than the radix of the constant.

020 More than four characters in string constant. A string constant was encountered
having more than four ASCII characters.

021 End of file encountered before end of macro call. The end of file is reached before
right parenthesis of macro call.

022 Macro expansion caused line to be too long. The line must be shortened.

023 “##” cannot be the first or last token in a replacement string. The macro defini-
tion cannot have the “##” operator in the beginning or end.

024 "#" must be followed by an argument name. In a macro definition, “#” operator
must be followed by an argument.
Warning and Error Messages UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

199
025 Illegal "#line" directive syntax. In #line <linenum> directive, <linenum> must be
an integer after macro expansion.

026 Cannot undefine macro "name". The syntax of the macro is incorrect.

027 End-of-file found before "#endif" directive. #if directive was not terminated with
a corresponding #endif directive.

028 "#else" not within #if and #endif directives. #else directive was encountered
before a corresponding #if directive.

029 Illegal constant expression. The constant expression in preprocessing directive has
invalid type or syntax.

030 Illegal macro name <name>. The macro name does not have a valid identifier syn-
tax.

031 Extra "#endif" found. #endif directive without a corresponding #if directive was
found.

032 Division by zero encountered. Divide by zero in constant expression found.

033 Floating point constant over/underflow. In the process of evaluating a floating-
point expression, the value became too large to be stored.

034 Concatenated string too long. Shorten the concatenated string.

035 Identifier longer than 32 characters. Identifiers must be 32 characters or shorter.

036 Unsupported CPU "name" in pragma. An unknown CPU encountered.

037 Unsupported or poorly formed pragma. An unknown #pragma directive encoun-
tered.

038 (User-supplied text). A user-created #error directive has been encountered. The
user-supplied text from the directive is printed with the error message.

Front-End Warning and Error Messages

100 Syntax error. A syntactically incorrect statement, declaration, or expression was
encountered.

101 Function "<name>" already declared. An attempt was made to define two func-
tions with the same name.
UM017105-0511 Warning and Error Messages

200

Zilog Developer Studio II – ZNEO™
User Manual
102 Constant integer expression expected. A non-integral expression was encountered
where only an integral expression can be.

103 Constant expression overflow. In the process of evaluating a constant expression,
value became too large to be stored in 32 bits.

104 Function return type mismatch for "<name>". A function prototype or function
declaration was encountered that has a different result from a previous declaration.

105 Argument type mismatch for argument <name>. The type of an actual parameter
does not match the type of the formal parameter of the function called.

106 Cannot take address of unsubscripted array. An attempt was made to take the
address of an array with no index. The address of the array is already implicitly calculated.

107 Function call argument cannot be void type. An attempt was made to pass an
argument to a function that has type void.

108 Identifier "<name>" is not a variable or enumeration constant name. In a decla-
ration, a reference to an identifier was made that was not a variable name or an enumera-
tion constant name.

109 Cannot return a value from a function returning "void". An attempt was made to
use a function defined as returning void in an expression.

110 Expression must be arithmetic, structure, union or pointer type. The type of an
operand to a conditional expression was not arithmetic, structure, union or pointer type.

111 Integer constant too large. Reduce the size of the integer constant.

112 Expression not compatible with function return type. An attempt was made to
return a value from function that cannot be promoted to the type defined by the function
declaration.

113 Function cannot return value of type array or function. An attempt was made to
return a value of type array or function.

114 Structure or union member may not be of function type. An attempt was made to
define a member of structure or union that has type function.

115 Cannot declare a typedef within a structure or union. An attempt was made to
declare a typedef within a structure or union.

116 Illegal bit field declaration. An attempt was made to declare a structure or union
member that is a bit field and is syntactically incorrect.
Warning and Error Messages UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

201
117 Unterminated quoted string. Within a quoted string, an end of line was encountered.

118 Escape sequence ASCII code too large to fit in char. The binary value of an
escape sequence requires more than 8 bits of storage.

119 Character not within radix. An integer constant was encountered with a character
greater than the radix of the constant.

120 More than one character in string constant. A string constant was encountered
having more than one ASCII character.

121 Illegal declaration specifier. An attempt was made to declare an object with an ille-
gal declaration specifier.

122 Only "const" and "volatile" may be specified with a struct, union, enum, or
typedef. An attempt was made to declare a struct, union, enum, or typedef with a declara-
tion specifier other than const and volatile.

123 Cannot specify both long and short in declaration specifier. An attempt was
made to specify both long and short in the declaration of an object.

124 Only type qualifiers may be specified within pointer declarations. An attempt
was made to declare a pointer with a declaration specifier other than const and volatile.

125 Identifier "<name>" already declared within current scope. An attempt was made
to declare two objects of the same name in the same scope.

126 Identifier "<name>" not in function argument list, ignored. An attempt was made
to declare an argument that is not in the list of arguments when using the old style argu-
ment declaration syntax.

127 Name of formal parameter not given. The type of a formal parameter was given in
the new style of argument declarations without giving an identifier name.

128 Identifier "<name>" not defined within current scope. An identifier was encoun-
tered that is not defined within the current scope.

129 Cannot have more than one default per switch statement. More than one default
statements were found in a single switch statement.

130 Label "<name>" is already declared. An attempt was made to define two labels of
the same name in the same scope.

131 Label "<name> not declared. A goto statement was encountered with an undefined
label.
UM017105-0511 Warning and Error Messages

202

Zilog Developer Studio II – ZNEO™
User Manual
132 "continue" statement not within loop body. A continue statement was found
outside a body of any loop.

133 "break" statement not within switch body or loop body. A break statement was
found outside the body of any loop.

134 "case" statement must be within switch body. A case statement was found out-
side the body of any switch statement.

135 "default" statement must be within switch body. A default statement was found
outside the body of any switch statement.

136 Case value <name> already declared. An attempt was made to declare two cases
with the same value.

137 Expression is not a pointer. An attempt was made to dereference a value of an
expression whose type is not a pointer.

138 Expression is not a function locator. An attempt was made to use an expression as
the address of a function call that does not have a type pointer to function.

139 Expression to left of "." or "->" is not a structure or union. An attempt was made
to use an expression as a structure or union, or a pointer to a structure or union, whose type
was neither a structure or union, or a pointer to a structure or union.

140 Identifier "<name>" is not a member of <name> structure. An attempt was made
to reference a member of a structure that does not belong to the structure.

141 Object cannot be subscripted. An attempt was made to use an expression as the
address of an array or a pointer that was not an array or pointer.

142 Array subscript must be of integral type. An attempt was made to subscript an
array with a non integral expression.

143 Cannot dereference a pointer to "void". An attempt was made to dereference a
pointer to void.

144 Cannot compare a pointer to a non-pointer. An attempt was made to compare a
pointer to a non-pointer.

145 Pointers to different types may not be compared. An attempt was made to com-
pare pointers to different types.

146 Pointers may not be added. It is not legal to add two pointers.
Warning and Error Messages UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

203
147 A pointer and a non-integral may not be subtracted. It is not legal to subtract a
non-integral expression from a pointer.

148 Pointers to different types may not be subtracted. It is not legal to subtract two
pointers of different types.

149 Unexpected end of file encountered. In the process of parsing the input file, end of
file was reached during the evaluation of an expression, statement, or declaration.

150 Unrecoverable parse error detected. The compiler became confused beyond the
point of recovery.

151 Operand must be a modifiable lvalue. An attempt was made to assign a value to an
expression that was not modifiable.

152 Operands are not assignment compatible. An attempt was made to assign a value
whose type cannot be promoted to the type of the destination.

153 "<name>" must be arithmetic type. An expression was encountered whose type
was not arithmetic where only arithmetic types are allowed.

154 "<name>" must be integral type. An expression was encountered whose type was
not integral where only integral types are allowed.

155 "<name>" must be arithmetic or pointer type. An expression was encountered
whose type was not pointer or arithmetic where only pointer and arithmetic types are
allowed.

156 Expression must be an lvalue. An expression was encountered that is not an lvalue
where only an lvalue is allowed.

157 Cannot assign to an object of constant type. An attempt was made to assign a
value to an object defined as having constant type.

158 Cannot subtract a pointer from an arithmetic expression. An attempt was made
to subtract a pointer from an arithmetic expression.

159 An array is not a legal lvalue. Cannot assign an array to an array.

160 Cannot take address of a bit field. An attempt was made to take the address of a bit
field.

161 Cannot take address of variable with "register" class. An attempt was made to
take the address of a variable with "register" class.
UM017105-0511 Warning and Error Messages

204

Zilog Developer Studio II – ZNEO™
User Manual
162 Conditional expression operands are not compatible. One operand of a condi-
tional expression cannot be promoted to the type of the other operand.

163 Casting a non-pointer to a pointer. An attempt was made to promote a non-pointer
to a pointer.

164 Type name of cast must be scalar type. An attempt was made to cast an expression
to a non-scalar type.

165 Operand to cast must be scalar type. An attempt was made to cast an expression
whose type was not scalar.

166 Expression is not a structure or union. An expression was encountered whose
type was not structure or union where only a structure or union is allowed.

167 Expression is not a pointer to a structure or union. An attempt was made to
dereference a pointer with the arrow operator, and the expression’s type was not pointer to
a structure or union.

168 Cannot take size of void, function, or bit field types. An attempt was made to take
the size of an expression whose type is void, function, or bit field.

169 Actual parameter has no corresponding formal parameter. An attempt was made
to call a function whose formal parameter list has fewer elements than the number of argu-
ments in the call.

170 Formal parameter has no corresponding actual parameter. An attempt was made
to call a function whose formal parameter list has more elements than the number of argu-
ments in the call.

171 Argument type is not compatible with formal parameter. An attempt was made to
call a function with an argument whose type is not compatible with the type of the corre-
sponding formal parameter.

172 Identifier "<name>" is not a structure or union tag. An attempt was made to use
the dot operator on an expression whose type was not structure or union.

173 Identifier "<name>" is not a structure tag. The tag of a declaration of a structure
object does not have type structure.

174 Identifier "<name>" is not a union tag. The tag of a declaration of a union object
does not have type union.

175 Structure or union tag "<name>" is not defined. The tag of a declaration of a
structure or union object is not defined.
Warning and Error Messages UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

205
176 Only one storage class may be given in a declaration. An attempt was made to
give more than one storage class in a declaration.

177 Type specifier cannot have both "unsigned" and "signed". An attempt was made
to give both unsigned and signed type specifiers in a declaration.

178 "unsigned" and "signed" may be used in conjunction only with "int", "long" or
"char". An attempt was made to use signed or unsigned in conjunction with a type speci-
fier other than int, long, or char.

179 "long" may be used in conjunction only with "int" or "double". An attempt was
made to use long in conjunction with a type specifier other than int or double.

180 Illegal bit field length. The length of a bit field was outside of the range 0-32.

181 Too many initializers for object. An attempt was made to initialize an object with
more elements than the object contains.

182 Static objects can be initialized with constant expressions only. An attempt was
made to initialize a static object with a non-constant expression.

183 Array "<name>" has too many initializers. An attempt was made to initialize an
array with more elements than the array contains.

184 Structure "<name>" has too many initializers. An attempt was made to initialize a
structure with more elements than the structure has members.

185 Dimension size may not be omitted. An attempt was made to omit the dimension
of an array which is not the rightmost dimension.

186 First dimension of "<name>" may not be omitted. An attempt was made to omit
the first dimension of an array which is not external and is not initialized.

187 Dimension size must be greater than zero. An attempt was made to declare an
array with a dimension size of zero.

188 Only "register" storage class is allowed for formal parameter. An attempt was
made to declare a formal parameter with storage class other than register.

189 Cannot take size of array with missing dimension size. An attempt was made to
take the size of an array with an omitted dimension.

190 Identifier "<name>" already declared with different type or linkage. An attempt
was made to declare a tentative declaration with a different type than a declaration of the
same name; or, an attempt was made to declare an object with a different type from a pre-
vious tentative declaration.
UM017105-0511 Warning and Error Messages

206

Zilog Developer Studio II – ZNEO™
User Manual
191 Cannot perform pointer arithmetic on pointer to void. An attempt was made to
perform pointer arithmetic on pointer to void.

192 Cannot initialize object with "extern" storage class. An attempt was made to ini-
tialize variable with extern storage class.

193 Missing "<name>" detected. An attempt was made to use a variable without any
previous definition or declaration.

194 Recursive structure declaration. A structure member can not be of same type as the
structure itself.

195 Initializer is not assignment compatible. The initializer type does not match with
the variable being initialized.

196 Empty parameter list is an obsolescent feature. Empty parameter lists are not
allowed.

197 No function prototype "<name>" in scope. The function <name> is called without
any previous definition or declaration.

198 "old style" formal parameter declarations are obsolescent. Change the parameter
declarations.

201 Only one memory space can be specified. An attempt was made to declare a vari-
able with multiple memory space specifier.

202 Unrecognized/invalid type specifier. An attempt was made to declare a variable
with unknown type specifier.

204 Ignoring space specifiers (e.g. near, far, rom) on local, parameter or struct
member. An attempt was made to declare a local, parameter, or struct member with a
memory space specifier. The space specifier for a local or parameter is decided based on
the memory model chosen. The space specifier for a struct member is decided based on
the space specifier of the entire struct. Any space specifier on local, parameter, or struct
member is ignored.

 205 Ignoring const or volatile qualifier. An attempt was made to assign a pointer to a
type with const qualifier to a pointer to a type with no const qualifier, or an attempt was
made to assign a pointer to a type with volatile qualifier to a pointer to a type with no vol-
atile qualifier.

206 Cannot initialize typedef. An attempt was made to initialize a typedef.

207 Aggregate or union objects may be initialized with constant expressions only.

An attempt was made to initialize an array or struct with non constant expression.
Warning and Error Messages UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

207
208 Operands are not cast compatible. An attempt was made to cast a variable to an
incompatible type, for example, casting a _Far pointer to a _Near pointer.

209 Ignoring space specifier (e.g. near, far) on function. An attempt was made to des-
ignate a function as a _Near or a _Far function.

210 Invalid use of placement or alignment option. An attempt was made to use a
placement or alignment option on a local or parameter.

212 No previous use of placement or alignment options. An attempt was made to use
the _At … directive without any previous use of the _At address directive.

213 Function "<name>" must return a value. An attempt was made to return from a
non void function without providing a return value.

214 Function return type defaults to int. The return type of the function was not speci-
fied so the default return type was assumed. A function that does not return anything
should be declared as void.

215 Signed/unsigned mismatch. An attempt was made to assign a pointer to a signed
type with a pointer to an unsigned type and vice versa.

Optimizer Warning and Error Messages

250 Missing format parameter to (s)printf. This message is generated when a call to
printf or sprintf is missing the format parameter and the inline generation of printf calls is
requested. For example, a call of the form

printf();

251 Cannot preprocess format to (s)printf. This message is generated when the format
parameter to printf or sprintf is not a string literal and the inline generation of printf calls is
requested. For example, the following code causes this warning:

static char msg1 = "x = %4d";
char buff[sizeof(msg1)+4];
sprintf(buff,msg1,x); // WARNING HERE

This warning is generated because the line of code is processed by the real printf or sprintf
function, so that the primary goal of the inline processing, reducing the code size by
removing these functions, is not met.

When this message is displayed, you have three options:

• Deselect the Generate Printfs Inline checkbox (see Generate Printfs Inline on
page 58) so that all calls to printf and sprintf are handled by the real printf or
sprintf functions.
UM017105-0511 Warning and Error Messages

208

Zilog Developer Studio II – ZNEO™
User Manual
• Recode to pass a string literal. For example, the code in the example can be revised as
follows:

define MSG1 "x = %4d"
char buff[sizeof(MSG1)+4];
sprintf(buff,MSG1,x); // OK

• Keep the Generate Printfs Inline checkbox selected and ignore the warning. This
loses the primary goal of the option but results in the faster execution of the calls to
printf or sprintf that can be processed at compile time, a secondary goal of the option.

252 Bad format string passed to (s)printf. This warning occurs when the compiler is
unable to parse the string literal format and the inline generation of printf calls is
requested. A normal call to printf or sprintf is generated (which might also be unable to
parse the format).

253 Too few parameters for (s)printf format. This error is generated when there are
fewer parameters to a call to printf or sprintf than the format string calls for and the inline
generation of printf calls is requested. For example:

printf("x = %4d\n");

254 Too many parameters for (s)printf format. This warning is generated when there
are more parameters to a call to printf or sprintf than the format string calls for and the
inline generation of printf calls is requested. For example:

printf("x = %4d\n", x, y);

The format string is parsed, and the extra arguments are ignored.

255 Missing declaration of (s)printf helper function, variable, or field. This warning is
generated when the compiler has not seen the prototypes for the printf or sprintf helper
functions it generates calls to. This occurs if the standard include file stdio.h has not been
included or if stdio.h from a different release of ZDS II has been included.

256 Cannot preprocess calls to vprintf or vsprintf. This message is generated when the
code contains calls to vprintf or vsprintf and the inline generation of printf calls is
requested. The reason for this warning and the solutions are similar to the ones for mes-
sage 201: Can’t preprocess format to (s)printf.

257 Not all paths through “<name>” return a value. The function declared with a
return type is not returning any value at least on one path in the function.

Code Generator Warning and Error Messages

303 Case value <number> already defined. If a case value consists of an expression
containing a sizeof, its value is not known until code generation time. Thus, it is possi-
Warning and Error Messages UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

209
ble to have two cases with the same value not caught by the front end. Review the switch
statement closely.

309 Interrupt function <name> cannot have arguments. A function declared as an
interrupt function cannot have function arguments.

313 Bitfield Length exceeds x bits. The compiler only accepts bit-field lengths of 8 bits
or less for char bit-fields, 16 bit or less for short bit-fields and 32 bit or less for int and long
bit-fields.
UM017105-0511 Warning and Error Messages

210

Zilog Developer Studio II – ZNEO™
User Manual
Warning and Error Messages UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

211
Chapter 5. Using the Macro Assembler

You use the Macro Assembler to translate ZNEO assembly language files with the .asm
extension into relocatable object modules with the .obj extension. After your relocatable
object modules are complete, you convert them into an executable program using the
linker/locator. The Macro Assembler can be configured using the Assembler page of the
Project Settings dialog box (see page 49).

The Command Processor allows you to use commands or script files to automate the exe-
cution of a significant portion of the IDE’s functionality. For more information about the
Command Processor, see Using the Command Processor – see page 359.

The following topics are covered in this section:

• Address Spaces and Segments – see page 212

• Output Files – see page 214

• Source Language Structure – see page 216

• Expressions – see page 220

• Directives – see page 226

• Conditional Assembly – see page 244

• Macros – see page 247

• Labels – see page 250

• Source Language Syntax – see page 252

• Warning and Error Messages – see page 255

For more information about ZNEO CPU instructions, see the Instruction Set Description
section in the ZNEO CPU User Manual (UM0188).

Note:

Note:
UM017105-0511 Using the Macro Assembler

http://www.zilog.com/docs/zneo/UM0188.pdf

212

Zilog Developer Studio II – ZNEO™
User Manual
Address Spaces and Segments

The ZNEO architecture divides all memory into multiple memory regions which are
depicted by address spaces in the assembler. Each address space can have various seg-
ments associated with it. A segment is a contiguous set of memory locations within an
address space. The segments can be predefined by the assembler or user-defined.

Allocating Processor Memory

All memory locations, whether data or code, must be defined within a segment. There are
two types of segments:

Absolute segments. An absolute segment is any segment with a fixed origin. The origin
of a segment can be defined with the ORG directive. All data and code in an absolute seg-
ment is located at the specified physical memory address.

Relocatable segments. A relocatable segment is a segment without a specified origin. At
link time, linker commands are used to specify where relocatable segments are to be
located within their space. Relocatable segments can be assigned to different physical
memory locations without re-assembling.

Address Spaces

The assembler provides the address spaces listed in Table 18, which represent the memory
regions of the ZNEO microcontroller.

Code and data are allocated to these spaces by using segments attached to the space.

Table 18. ZNEO Address Spaces

Space ID Description

ROM 16-bit addressable read-only memory.

RAM 16-bit addressable read/write memory.

EROM 32-bit addressable code memory.

ERAM 32-bit addressable extended memory.

IODATA 16-bit addressable IO data memory.
Address Spaces and Segments UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

213
Segments

Segments are used to represent regions of memory. Only one segment is considered active
at any time during the assembly process. A segment must be defined before setting it as
the current segment. Every segment is associated with one and only one address space.

Predefined Segments

For convenience, the segments listed in Table 19 are predefined by the assembler.

User-Defined Segments

You can define a new segment using the following directives:

DEFINE MYSEG,SPACE=ROM
SEGMENT MYSEG

MYSEG becomes the current segment when the assembler processes the SEGMENT direc-
tive, and MYSEG remains the current segment until a new SEGMENT directive appears.
MYSEG can be used as a segment name in the linker command file.

You can define a new segment in ERAM space using the following directives:

DEFINE MYDATA,SPACE=ERAM
SEGMENT MYDATA

The DEFINE directive creates a new segment and attaches it to a space. For more informa-
tion about using the DEFINE directive, see the DEFINE section on page 231. The SEG-

Table 19. Predefined Segments

Segment ID Space Alignment Type Contents

CODE EROM 2 bytes Relocatable Code

EROM_DATA EROM 1 byte Relocatable Constant data, tables, and strings

EROM_TEXT EROM 1 byte Relocatable Constant strings

ROM_DATA ROM 1 byte Relocatable Constant data, tables, and strings

ROM_TEXT ROM 1 byte Relocatable Constant strings

__VECTORS ROM 1 byte Absolute Interrupt vector table

NEAR_DATA RAM 1 byte Relocatable Initialized near data

NEAR_BSS RAM 1 byte Relocatable Uninitialized near data

NEAR_TEXT RAM 1 byte Relocatable Near strings

FAR_DATA RAM 1 byte Relocatable Initialized far data

FAR_BSS RAM 1 byte Relocatable Uninitialized far data

FAR_TEXT RAM 1 byte Relocatable Far strings

IOSEG IODATA 1 byte Relocatable I/O data
UM017105-0511 Address Spaces and Segments

214

Zilog Developer Studio II – ZNEO™
User Manual
MENT directive attaches code and data to a segment. The SEGMENT directive makes that
segment the current segment. Any code or data following the directive resides in the seg-
ment until another SEGMENT directive is encountered. For more information about the
SEGMENT directive, see the SEGMENT section on page 235.

A segment can also be defined with a boundary alignment and/or origin.

Alignment. Aligning a segment tells the linker to place all instances of the segment in
your program on the specified boundary.

Although a module can enter and leave a segment many times, each module still has only
one instance of a segment.

Origin. When a segment is defined with an origin, the segment becomes an absolute seg-
ment, and the linker places it at the specified physical address in memory.

Assigning Memory at Link Time

At link time, the linker groups those segments of code and data that have the same name
and places the resulting segment in the address space to which it is attached. However, the
linker handles relocatable segments and absolute segments differently:

Relocatable segments. If a segment is relocatable, the linker decides where in the
address space to place the segment.

Absolute segments. If a segment is absolute, the linker places the segment at the abso-
lute address specified as its origin.

At link time, you can redefine segments with the appropriate linker commands.

Output Files

The assembler creates the following files and names them the name of the source file but
with a different extension:

• <source>.lst contains a readable version of the source and object code generated by
the assembler. The assembler creates <source>.lst unless you deselect the Generate
Listing File (.lst) checkbox in the Assembler page of the Project Settings dialog
box. See Generate Assembly Listing Files (.lst) – see page 51.

Note:

Note:
Output Files UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

215
• <source>.obj is an object file in relocatable OMF695 format. The assembler creates
<source>.obj.

Do not use source input files with .lst or .obj extensions. The assembler does
not assemble files with these extensions, and therefore the data contained in the
files is lost.

Source Listing (.lst) Format

The listing file name is the same as the source file name with a .lst file extension.
Assembly directives allow you to tailor the content and amount of output from the assem-
bler.

Each page of the listing file (.lst) contains the following elements:

• Heading with the assembler version number

• Source input file name

• Date and time of assembly

Source lines in the listing file are preceded by the following elements:

• Include level

• Plus sign (+) if the source line contains a macro

• Line number

• Location of the object code created

• Object code

The include level starts at level A and works its way down the alphabet to indicate nested
includes. The format and content of the listing file can be controlled with directives
included in the source file:

• TITLE

• NOLIST

• LIST

• MACLIST ON/OFF

• CONDLIST ON/OFF

Caution:
UM017105-0511 Output Files

216

Zilog Developer Studio II – ZNEO™
User Manual
Error and warning messages follow the source line containing the error(s). A count of the
errors and warnings detected is included at the end of the listing output file.

The addresses in the assembly listing are relative. To convert the relative addresses into
absolute addresses, select the Show Absolute Addresses in Assembly Listings check-
box on the Output page of the Project Settings dialog box. This option uses the informa-
tion in the .src file (generated by the compiler when the Generate Assembly Source
Code checkbox is selected [see Project Settings—Listing Files Page – see page 53]) and
the .map file to change all of the relative addresses in the assembly listing into absolute
addresses.

Object Code (.obj) File

The object code output file name is the same as the source file name with an .obj exten-
sion. This file contains the relocatable object code in OMF695 format and is ready to be
processed by the linker and librarian.

Source Language Structure

This section describes the form of an assembly source file.

General Structure

A line in an assembly source file is either a source line or a comment line. The assembler
ignores blank lines. Each line of input consists of ASCII characters terminated by a car-
riage return. An input line cannot exceed 512 characters.

A backslash (\) at the end of a line is a line continuation. The following line is concate-
nated onto the end of the line with the backslash, as exemplified in the C programming
language. If you place a space or any other character after the backslash, the following line
is not treated as a continuation.

Source Line

A source line is composed of an optional label followed by an instruction or a directive. It
is possible for a source line to contain only a label field.

Note:
Source Language Structure UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

217
Comment Line

A semicolon (;) terminates the scanning action of the assembler. Any text following the
semicolon is treated as a comment. A semicolon that appears as the first character causes
the entire line to be treated as comment.

Label Field

A label must meet at least one of the following conditions:

• It must be followed by a colon.

• It must start at the beginning of the line, with no preceding white space (start in col-
umn 1). When an instruction is in the first column, it is treated as an instruction and
not a label.

The first character of a label can be a letter, an underscore (_) , a dollar sign ($), a question
mark (?), a period (.) or a pound sign (#). Following characters can include letters, digits,
underscores, dollar signs ($), question marks (?), periods (.), or pound signs (#). The label
can be followed by a colon (:) that completes the label definition. A label can only be
defined once. The maximum label length is 129 characters. See the Labels section on
page 250 for more information.

Labels that can be interpreted as hexadecimal numbers are not allowed. For example,

ADH:
ABEFH:

cannot be used as labels.

For more information, see the Labels section on page 250 and the Hexadecimal Numbers
section on page 222.

Instruction

An instruction contains one valid assembler instruction that consists of a mnemonic and its
arguments. When an instruction is in the first column, it is treated as an instruction and not
a label. Use commas to separate the operands. Use a semicolon or carriage return to termi-
nate the instruction. For more information about ZNEO CPU instructions, see the Instruc-
tion Set Description section of the ZNEO CPU User Manual (UM0188).

Directive

A directive tells the assembler to perform a specified task. Use a semicolon or carriage
return to terminate the directive. Use spaces or tabs to separate the directive from its oper-
ands. See the Directives section on page 226 for more information.
UM017105-0511 Source Language Structure

http://www.zilog.com/docs/zneo/UM0188.pdf

218

Zilog Developer Studio II – ZNEO™
User Manual
Case Sensitivity

In the default mode, the assembler treats all symbols as case-sensitive. Select the Ignore
Case of Symbols checkbox of the General page in the Project Settings dialog box to
have the assembler ignore the case of user-defined identifiers (see Ignore Case of Symbols
– see page 49). Assembler reserved words are not case-sensitive.

Assembler Rules

Reserved Words

The following list contains reserved words that the assembler uses. You cannot use these
words as symbol names or variable names. Also, reserved words are not case-sensitive.

.ALIGN .ASCII .ASCIZ .ASECT

.ASG .BES .BLOCK .BSS

.BYTE .chip .COPY .cpu

.DATA .DEF .define .double

.DW24 .ELIF .ELSE .ELSEIF

.EMSG .ENDIF .ENDM .ENDMAC

.ENDMACRO .ENDSTRUCT .EQU .EVAL

.EVEN .EXTERN .FCALL .file

.float .FRAME .GLOBAL .IF

.IFNTRUE .INCLUDE .INT .LIST

.LONG .MACEND .MACRO .MAXBRANCH

.MLIST .MMSG .MNOLIST .NEWBLOCK

.NOLIST .ORG .PAGE .PUBLIC

.REF .SBLOCK .SECT .SET

.SHORT_STACK_FRAME .SPACE .STRING .STRUCT

.TAG .TEXT .trio .USECT

.VAR .VECTOR .wmsg .WORD

.word24 ALIGN ASCII ASCIZ

ASECT B BFRACT BLKB

BLKL BLKP BLKW BYTE

C CHIP COMMENT COND

CONDLIST CPU DB DBYTE

DD DEFB DEFINE DF

DL DS DW DW24
Source Language Structure UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

219
ELIF ELSE ELSEIF END

ENDC ENDIF ENDM ENDMAC

ENDMODULE ENDS EQ EQU

EQUAL ERROR EXIT EXTERN

EXTERNAL FCB FILE FP

FRACT GE GLOBAL GLOBALS

GREGISTER GT IF IFDEF

IFDIFF IFE IFEQ IFFALSE

IFMA IFN IFNDEF IFNDIFF

IFNFALSE IFNMA IFNSAME IFNTRUE

IFNZ IFSAME IFTRUE IFZ

INCLUDE LE LEADZERO LFRACT

LIST LONG LOW LOW16

LT MACCNTR MACDELIM MACEND

MACEXIT MACFIRST MACLIST MACNOTE

MAXBRANCH MESSAGE MI NB

NC NE NEWPAGE NOCONDLIST

NOLIST NOMACLIST NOSPAN NOV

NZ OFF ON ORG

ORIGIN OV PAGE PL

POPSEG PRINT PT public

PUSHSEG PW R0 R10

R11 R12 R13 R14

R15 R2 R3 R4

R5 R6 R7 R8

R9 RR0 RR1 RR10

RR11 RR12 RR13 RR14

RR15 RR2 RR3 RR4

RR5 RR6 RR7 RR8

RR9 SCOPE SECTION SEGMENT

SET SP STRING SUBTITLE

TITLE UBFRACT UFRACT UGE

UGT ULE ULFRACT ULT

VAR VECTOR WARNING word

XDEF XREF Z
UM017105-0511 Source Language Structure

220

Zilog Developer Studio II – ZNEO™
User Manual
Do not use the instruction mnemonics or assembler directives as symbol or variable names.

Assembler Numeric Representation

Numbers are represented internally as signed 32-bit integers. The assembler detects an
expression operand that is out of range for the intended field and generates appropriate
error messages.

Character Strings

Character strings consist of printable ASCII characters enclosed by double (") or single
(') quotes. A double quote used within a string delimited by double quotes and a single
quote used within a string delimited by single quotes must be preceded by a back slash (\).
A single quoted string consisting of a single character is treated as a character constant.
The assembler does not insert null character (0's) at the end of a text string automatically
unless a 0 is inserted, and a character string cannot be used as an operand. For example:

DB "STRING" ; a string
DB 'STRING',0 ; C printable string
DB "STRING\"S" ; embedded quote
DB 'a','b','c' ; character constants

Expressions

In most cases, where a single integer value can be used as an operand, an expression can
also be used. The assembler evaluates expressions in 32-bit signed arithmetic. Logical
expressions are bit-wise operators.

The assembler detects division-by-zero errors and reports an error message. The following
sections describe the syntax of writing an expression.

Arithmetic Operators

<< Left Shift

>> Arithmetic Right Shift

** Exponentiation

* Multiplication

/ Division

% Modulus

Note:
Expressions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

221
You must put spaces before and after the modulus operator to separate it from the rest of
the expression.

Relational Operators

For use only in conditional assembly expressions.

Boolean Operators

LOW and LOW16 Operators

The LOW and LOW16 operators can be used to extract the least significant byte or 16-bit
word from an integer expression. The LOW operator extracts the byte starting at bit 0 of
the expression; the LOW16 operator extracts the 16-bit word starting at bit 0 of the expres-
sion.

For example:

x equ %123456

+ Addition

- Subtraction

== Equal Synonyms: .eq., .EQ.

!= Not Equal Synonyms: .ne., .NE.

> Greater Than Synonyms: .gt., .GT.

< Less Than Synonyms: .lt., .LT.

>= Greater Than or Equal Synonyms: .ge., .GE.

<= Less Than or Equal Synonyms: .le., .LE.

& Bit-wise AND Synonyms: .and., .AND.

| Bit-wise inclusive OR Synonyms: .or., .OR.

^ Bit-wise exclusive XOR Synonyms: .xor., .XOR.

~ Complement

! Boolean NOT Synonyms: .not., .NOT.

Note:
UM017105-0511 Expressions

222

Zilog Developer Studio II – ZNEO™
User Manual
LOW (X) ; 8 bits of X starting at bit 0 = 56H
LOW16 (X) ; 16 bits of X starting at bit 0 = 3456H

Decimal Numbers

Decimal numbers are signed 32-bit integers consisting of the characters 0–9 inclusive
between -2147483648 and 2147483647. Positive numbers are indicated by the absence
of a sign. Negative numbers are indicated by a minus sign (-) preceding the number.
Underscores (_) can be inserted between digits to improve readability. For example:

1234 ; decimal
-1234 ; negative decimal
1_000_000; decimal number with underscores
123; NOT an integer but a name. Underscore can be neither
first nor last character.

Hexadecimal Numbers

Hexadecimal numbers are signed 32-bit integers ending with the h or H suffix or starting
with a % character and consisting of the characters 0–9 and A–F. A hexadecimal number
can have 1 to 8 characters. Positive numbers are indicated by the absence of a sign. Nega-
tive numbers are indicated by a minus sign (-) preceding the number. Underscores (_) can
be inserted between hexadecimal digits to improve readability. For example:

ABCDEFFFH ; hexadecimal
%ABCDEFFF ; hexadecimal
-0FFFFh ; negative hexadecimal
ABCD_EFFFH; hexadecimal number with underscore
ADC0D_H; NOT a hexadecimal number but a name; hexadecimal digit
must follow underscore

Binary Numbers

Binary numbers are signed 32-bit integers ending with the character b or B and consisting
of the characters 0 and 1. A binary number can have 32 characters. Positive numbers are
indicated by the absence of a sign. Negative numbers are indicated by a minus sign (-)
preceding the number. Underscores (_) can be inserted between binary digits to improve
readability. For example:

-0101b ; negative binary number
0010_1100_1010_1111B; binary number with underscores

Octal Numbers

Octal numbers are signed 32-bit integers ending with the character o or O, and consisting
of the characters 0–7. An octal number can have 1 to 11 characters. Positive numbers are
Expressions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

223
indicated by the absence of a sign. Negative numbers are indicated by a minus sign (-)
preceding the number. Underscores (_) can be inserted between octal digits to improve
readability. For example:

1234o ; octal number
-1234o ; negative octal number
1_234o; octal number with underscore

Character Constants

A single printable ASCII character enclosed by single quotes (') can be used to represent
an ASCII value. This value can be used as an operand value. For example:

'A' ; ASCII code for "A"
'3' ; ASCII code for "3"

Operator Precedence

Table 20 shows the operator precedence in descending order, with operators of equal pre-
cedence on the same line. Operators of equal precedence are evaluated left to right. Paren-
theses can be used to alter the order of evaluation.

Shift Left (<<) and OR (|) have the same operator precedence and are evaluated from left
to right. If you must alter the order of evaluation, add parentheses to ensure the appropriate
operator precedence. For example:

ld r0, # 1<<2 | 1<<2 | 1<<1

The constant expression in the preceding instruction evaluates to 2A H.

If you want to perform the Shift Left operations before the OR operation, use parentheses
as follows:

ld r0, #(1<<2)|(1<<2)|(1<<1)

The modified constant expression evaluates to 6 H.

Table 20. Operator Precedence

Level 1 ()

Level 2 ~ unary- ! low

Level 3 ** * / %

Level 4 + - & | ^ >> <<

Level 5 < > <= >= == !=
UM017105-0511 Expressions

224

Zilog Developer Studio II – ZNEO™
User Manual
Address Spaces and Instruction Encoding

The ZNEO instruction set provides different encodings for many instructions depending
on whether an address or immediate data can be represented as an 8-, 16-, or 32-bit value.
In most cases, the ZNEO assembler selects the encoding that results in the smallest repre-
sentation of the instruction.

In doing so, the assembler makes use of the address space information for labels occurring
in instructions. Labels in a 32-bit address space (EROM or ERAM) are encoded as 32-bit
values, while labels in 16-bit address spaces (ROM, RAM, or IODATA) are encoded as
16-bit values. An otherwise undeclared label is assumed to be in a 16-bit address space.

If you want to override the assembler’s encoding, you can indicate the address space for a
label or for an absolute address with a colon (:) followed by the name of an address space.
For example:

LD R0,#myLabel ; if myLabel undeclared, gets 16-bit encoding
LD R0,#myLabel:EROM ; forces 32-bit encoding

In particular, absolute addresses in the range 8000H-FFFFH are considered as 32-bit
unsigned values. If an address in internal RAM or the IO space is intended, you can obtain
the desired result in either of the following ways:

OR C001H:IODATA, R0 ; Specify the required space
OR FFFF_C0001,R0 ; or sign extend the address

The following example illustrates these features:

SEGMENT NEAR_DATA
nw1: DL %1 ; An address in near data, space is RAM

SEGMENT FAR_DATA
fw1: DL %2 ; An address in far data, space is ERAM

SEGMENT CODE
ADD nw1,R0 ; nw1 is in RAM, uses 16-bit encoding
ADD fw1,R1 ; fw1 is in ERAM, uses 32-bit encoding
LD R0,nw2 ; nw2 will be in RAM, uses 16-bit encoding
LD R1,fw2 ; fw2 will be in ERAM, uses 32-bit encoding
SUB R0,rw1 ; rw1 declared to be in ROM, uses 16-bit encoding
SUB R1,erw1 ; erw1 declared to be in EROM, uses 32-bit

encoding
LD xxx,R0 ; xxx undeclared, 16-bit encoding assumed
LD yyy:EROM,R1 ; yyy undeclared, 32-bit encoding forced.

SEGMENT NEAR_BSS
nw2: DS 4 ; nw2 is in near bss, space is RAM

SEGMENT FAR_BSS
fw2: DS 4 ; fw2 is far bss, space is ERAM

XREF rw1:ROM ; rw1 declared to be in ROM
Expressions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

225
XREF erw1:EROM ; erw1 declared to be in EROM

Register Lists for PUSHM and POPM Instructions

The ZNEO processor provides the PUSHM and POPM instructions to push or pop multiple
registers. (Actually, the ZNEO processor provides the PUSHMHI, PUSHMLO, POPMHI, and
POPMLO instructions, which each push or pop half the register set.The ZNEO assembler
accepts PUSHM and POPM and generates the lower level instructions.) The list of registers
to be pushed or popped can be expressed either as a register list or as an immediate value.
If an immediate value is used, the least significant bit represents R0, and the most signifi-
cant bit represents R15. The following examples illustrate the syntax for register lists:

myFunction:
PUSHM <R0-R2,R8,R12> ; Save registers R0,R1,R2,R8, and R12
 ; Code for myFunction
POPM <R0-R2,R8,R12> ; Restore Registers
RET ; and return

; The same example, using immediate values:
hisFunction:

PUSHM #1107H ; Save registers R0,R1,R2,R8, and R12
 ; Code for hisFunction
POPM #1107H ; Restore Registers
RET ; and return

; The same example, using equates:
RegList EQU "<R0-R2,R8,R12>"
herFunction:

PUSHM RegList ; Save registers
 ; Code for herFunction
POPM RegList ; Restore Registers
RET ; and return

Instruction Alignment

Because all ZNEO instructions must be aligned to an even address, the ZNEO assembler
implicitly inserts an ALIGN directive in front of each instruction. Thus, the following
example assembles correctly:

; Some code
RET

_L1: DW %1234 ; Some data, perhaps used by previous routine
DB %3 ; Warning, next address is odd

myFunction: ; OK, implicitly aligned to next even address
LINK #%20

Of course, it does no harm to insert an ALIGN 2 or a .EVEN directive ahead of a function,
just to be safe.
UM017105-0511 Expressions

226

Zilog Developer Studio II – ZNEO™
User Manual
Directives

Directives control the assembly process by providing the assembler with commands and
information. These directives are instructions to the assembler itself and are not part of the
microprocessor instruction set. Each of the supported assembler directives is described on
the following pages:

• ALIGN – see page 227

• .COMMENT – see page 227

• CPU – see page 227

• Data Directives – see page 228

• DEFINE – see page 231

• DS – see page 232

• END – see page 232

• EQU – see page 233

• INCLUDE – see page 233

• LIST – see page 234

• NOLIST – see page 234

• ORG – see page 235

• SEGMENT – see page 235

• .SHORT_STACK_FRAME – see page 236

• TITLE – see page 236

• VAR – see page 237

• VECTOR – see page 237

• XDEF – see page 238

• XREF – see page 238

• Structures and Unions in Assembly Code – see page 239
Directives UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

227
ALIGN

Forces the object following to be aligned on a byte boundary that is a multiple of <value>.

Synonym
.align

Syntax

<align_directive> = > ALIGN <value>

Example
ALIGN 2
DW EVEN_LABEL

.COMMENT

The .COMMENT assembler directive classifies a stream of characters as a comment.

The .COMMENT assembler directive causes the assembler to treat an arbitrary stream of
characters as a comment. The delimiter can be any printable ASCII character. The assem-
bler treats as comments all text between the initial and final delimiter, as well as all text on
the same line as the final delimiter.

You must not use a label on this directive.

Synonym
COMMENT

Syntax

.COMMENT delimiter [text] delimiter

Example
.COMMENT $ An insightful comment of great import $

This text is a comment, delimited by a dollar sign, and spanning multiple source lines. The
dollar sign ($) is a delimiter that marks the line as the end of the comment block.

CPU

Defines to the assembler which member of the ZNEO family is targeted. From this direc-
tive, the assembler can determine which instructions are legal as well as the locations of
the interrupt vectors within the ROM space, __VECTOR segment.
UM017105-0511 Directives

228

Zilog Developer Studio II – ZNEO™
User Manual
The CPU directive is used to determine the physical location of the interrupt vectors.

Syntax

<cpu_definition> = > CPU = <cpu_name>

Example

CPU = Z16F2811

Data Directives

Data directives allow you to reserve space for specified types of data.

Syntax

<data directive> = > <type> <value_list>
<type> → DB
 => DL
 => DW
 => DW24
 => BLKB
 => BLKL
 => BLKW
<value_list> => <value>
 => <value_list>,<value>
<value> => <expression>|<string_const>

BLKB Declaration Type

Syntax

BLKBcount [, <init_value>]

Examples
BLKB 16 ; Allocate 16 uninitialized bytes.
BLKB 16, -1 ; Allocate 16 bytes and initialize them to -1.

BLKL Declaration Type

Syntax

BLKLcount [, <init_value>]

Note:
Directives UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

229
Examples

BLKL 16 ; Allocate 16 uninitialized longs.
BLKL 16, -1 ; Allocate 16 longs and initialize them to -1.

BLKW Declaration Type

Syntax

BLKWcount [, <init_value>]

Examples
BLKW 16 ; Allocate 16 uninitialized words.
BLKW 16, -1 ; Allocate 16 words and initialize them to -1.

DB Declaration Type

Synonyms

.byte, .ascii, DEFB, FCB, STRING, .STRING, byte, .asciz

Syntax

DB byte data (8 bits)

Examples
DB "Hello World" ; Reserve and initialize 11 bytes.
DB 1,2 ; Reserve 2 bytes. Initialize the
 ; first word with a 1 and the second with a 2.
DB %12 ; Reserve 1 byte. Initialize it with %12.

There is no trailing null for the DB declaration type. A trailing null is added for .asciz
declaration types.

DL Declaration Type

Synonyms

.long, long

Syntax
DL long (32 bits)

Note:
UM017105-0511 Directives

230

Zilog Developer Studio II – ZNEO™
User Manual
Examples

DL 1,2 ; Reserve 2 long words. Initialize the
 ; first with a 1 and last with a 2.
DL %12345678 ; Reserve space for 1 long word and
 ; initialize it to %12345678.

DW Declaration Type

Synonyms

.word, word, .int

Syntax

DWword data (16 bits)

Examples

DW "Hello World" ; Reserve and initialize 11 words.
DW "Hello" ; Reserve and initialize 5 words.
DW 1,2 ; Reserve 2 words. Initialize the
 ; first word with a 1 and the second with a 2.
DW %1234 ; Reserve 1 word and initialize it with %1234.

There is no trailing null for the DW declaration type. Each letter gets 16 bits with the upper
8 bits zero.

DW24 Declaration Type

Synonyms

.word24, .trio, .DW24

Syntax

DW24word data (24 bits)

Examples
dw24 %123456 ; Reserve one 24-bit entity and initialize it with
%123456
.trio %789abc ; Reserve one 24-bit entity and initialize it
with %798abc

Note:
Directives UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

231
DEFINE

Defines a segment with its associated address space, alignment, and origin. You must
define a segment before you can use it, unless it is a predefined segment. If a clause is not
given, use the default for that definition. For more information about the SEGMENT direc-
tive, see SEGMENT – see page 235. For a list of predefined segments, see Predefined
Segments – see page 213.

Synonym

.define

Syntax

<segment_definition> =>
DEFINE<ident>[<space_clause>][align_clause>][<org_clause>]

Examples

DEFINE near_code ; Uses the defaults of the current
 ; space, byte alignment and relocatable.
DEFINE irq_table,ORG=%FFF8 ; Uses current space, byte alignment,
 ; and absolute starting address at
 ; memory location %FFF8.

ALIGN Clause

Allows you to select the alignment boundary for a segment. The linker places modules in
this segment on the defined boundary. The multiple, given in bytes, must be a power of
two (1, 2, 4, 8, and so on).

Syntax

<align_clause> => ,ALIGN = <int_const>

Example

DEFINE fdata,SPACE = ERAM,ALIGN = 2
; Aligns on 2-byte boundary, relocatable.

ORG Clause

Allows you to specify where the segment is to be located, making the segment an absolute
segment. The linker places the segment at the memory location specified by the ORG. The
default is no ORG, and thus the segment is relocatable.

Syntax

<org_clause> => ,ORG = <int_const>
UM017105-0511 Directives

232

Zilog Developer Studio II – ZNEO™
User Manual
Synonym

ORIGIN

Example

DEFINE near_code,ORG = %FFF8
; Uses current space, byte alignment, and absolute starting
; address at memory location %FFF8.

SPACE Clause

A SPACE clause defines the address space in which the segment resides. The linker groups
together segments with the same space identification. See Table 18, “ZNEO Address
Spaces,” on page 212 for available spaces.

Syntax

<space_clause> => ,SPACE = <indent>

Example
DEFINE fdata,SPACE = ERAM,ALIGN = 2
; Aligns on a 2-byte boundary, relocatable.

DS

Defines storage locations that do not need to be initialized.

Synonym

.block

Syntax

<define_storage> => DS <value>

Example

NAME DS 10 ; Reserve 10 bytes of storage.

END

Informs the assembler of the end of the source input file. If the operand field is present, it
defines the start address of the program. During the linking process, only one module can
define the start address; otherwise, an error results. The END directive is optional for
those modules that do not define the start address.
Directives UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

233
Synonym

.end

Syntax

<end_directive> => END[<expression>]

Example

END _start ; Use the value of _start as the program start
address.

EQU

Assigns symbolic names to numeric or string values. Any name used to define an equate
must not have been previously defined. Other equates and label symbols are allowed in
the expression, provided they are previously defined.

Synonyms

.equ, .EQU, EQUAL, .equal

Syntax

 <label> EQU <expression>

Examples
length EQU 6 ; 1st dimension of rectangle
width EQU 11 ; 2nd dimension of rectangle
area EQU length * width ; area of the rectangle

reg EQU r7 ; symbolic name of a register

INCLUDE

Allows the insertion of source code from another file into the current source file during
assembly. The included file is assembled into the current source file immediately after the
directive. When the EOF (End of File) of the included file is reached, the assembly
resumes on the line after the INCLUDE directive.

The file to include is named in the string constant after the INCLUDE directive. The file
name can contain a path. If the file does not exist, an error results, and the assembly is
aborted. A recursive INCLUDE also results in an error.

INCLUDE files are contained in the listing (.lst) file unless a NOLIST directive is active.
UM017105-0511 Directives

234

Zilog Developer Studio II – ZNEO™
User Manual
Synonyms

.include, .copy, COPY

Syntax

<include_directive> => INCLUDE[<string_const>]

Examples
INCLUDE "calc.h" ; include calc header file
INCLUDE "\test\calc.h" ; contains a path name
INCLUDE calc.h ; ERROR, use string constant

LIST

Instructs the assembler to send output to the listing file. This mode stays in effect until a
NOLIST directive is encountered. No operand field is allowed. This mode is the default
mode.

Synonyms

.list, .LIST

Syntax

<list_directive> => LIST

Example

LIST
NOLIST

NOLIST

Turns off the generation of the listing file. This mode remains in effect until a LIST
directive is encountered. No operand is allowed.

Synonym

.NOLIST

Syntax

<nolist_directive> => NOLIST

Example
LIST
NOLIST
Directives UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

235
ORG

The ORG assembler directive sets the assembler location counter to a specified value in the
address space of the current segment.

The ORG directive must be followed by an integer constant, which is the value of the new
origin.

Synonyms

ORIGIN, .ORG

Syntax

<org_directive> => ORG <int_const>

Examples
ORG %1000 ; Sets the location counter at %1000 in the address space
of current segment
ORG LOOP ; ERROR, use an absolute constant

On encountering the ORG assembler directive, the assembler creates a new absolute seg-
ment with a name starting with $$$org. This new segment is placed in the address space
of the current segment, with origin at the specified value and alignment as 1.

Zilog recommends that segments requiring the use of ORG be declared as absolute segments
from the outset by including an ORG clause in the DEFINE directive for the segment.

SEGMENT

Specifies entry into a previously defined segment.

The SEGMENT directive must be followed by the segment identifier. The default segment is
used until the assembler encounters a SEGMENT directive. The internal assembler program
counter is reset to the previous program counter of the segment when a SEGMENT directive
is encountered. See Table 19, “Predefined Segments,” on page 213 for the names of pre-
defined segments.

Synonyms

SECTION

Syntax

<segment_directive> => SEGMENT <ident>

Note:
UM017105-0511 Directives

236

Zilog Developer Studio II – ZNEO™
User Manual
Example

SEGMENT code ; predefined segment
DEFINE data ; user-defined

.SHORT_STACK_FRAME

The ZNEO LD and LEA instructions permit a special encoding when an argument is an
offset from the frame pointer and the offset can be expressed as a signed 6-bit value (-32 to
+31). Normally, the ZNEO assembler chooses the smaller encoding whenever possible;
otherwise, the assembler chooses the more general 14-bit encoding.

Also, when the ZNEO assembler encounters a LINK instruction allocating more than 256
bytes of stack frame, it silently substitutes a sequence of LINK and LEA or SUB instruc-
tions to obtain the desired result.

For especially tight code, you might prefer to be alerted with an error message when an
offset from the frame pointer on an LD or LEA instruction cannot be encoded in a 6-bit
field or when the stack size requested in a LINK instruction cannot be encoded in the 8-bit
field allowed for a LINK instruction. The .SHORT_STACK_FRAME directive supports
such a preference.

Syntax

<shortfp_directive> => .SHORT_STACK_FRAME ON|OFF

Example

.SHORT_STACK_FRAME ON ; Turn short stack frames on
; Section of code that needs to be very tight
.SHORT_STACK_FRAME OFF ; Turn short stack frames off

TITLE

Causes a user-defined TITLE to be displayed in the listing file. The new title remains in
effect until the next TITLE directive. The operand must be a string constant.

Synonym

.title

Syntax

<title_directive> => TITLE <string_const>

Example
TITLE "My Title"
Directives UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

237
VAR

The VAR directive works similarly to an EQU directive except you are allowed to change
the value of the label. In the following example, STRVAR is assigned three different values.
This would cause an error if EQU was used instead of VAR.

Synonym

.VAR, SET, .SET

Syntax

 <label> VAR <expression>

Example

 A 6 SEGMENT NEAR_DATA
 A 7 ALIGN 2
 000000FF A 8 STRVARVAR FFH
000000 FF A 9 DBSTRVAR
 A 10 SEGMENT ROM_TEXT
000000 A 11 L__0:
000000 4641494C 4544 A 12 DB"FAILED"
000006 00 A 13 DB0
 A 14 SEGMENT NEAR_DATA
 A 15 ALIGN 2
 00000000 A 16 STRVAR VAR L__0
 A 17
000002 A 18 _fail_str:
000002 00 A 19 DBSTRVAR
 A 20 SEGMENT ROM_TEXT
000007 A 21 L__1:
000007 50415353 4544 A 22 DB"PASSED"
00000D 00 A 23 DB0
 00000007 A 24 STRVAR VAR L__1
 A 25 SEGMENT NEAR_DATA
 A 26 ALIGN 2
000004 A 27 _pass_str:
000004 07 A 28 DBSTRVAR

VECTOR

Initializes an interrupt or reset vector to a program address.

The CPU directive is used to determine the physical location of the interrupt vectors.

Syntax

<vector_directive> => VECTOR <vector name> = <expression>
UM017105-0511 Directives

238

Zilog Developer Studio II – ZNEO™
User Manual
<vector name> specifies which vector is being selected. For ZNEO, <vector name> must
be one of the following elements:

Examples
VECTOR SPI = spi_handler
VECTOR P2AD = p2ad_handler

XDEF

Defines a list of labels in the current module as an external symbol that are to be made
publicly visible to other modules at link time. The operands must be labels that are defined
somewhere in the assembly file.

Synonyms

.global, GLOBAL, .GLOBAL, .public, .def, public

Syntax

<xdef_directive> => XDEF <ident list>

Examples

XDEF label
XDEF label1,label2,label3

XREF

Specifies that a list of labels in the operand field are defined in another module. The
reference is resolved by the linker. The labels must not be defined in the current module.
This directive optionally specifies the address space in which the label resides.

ADC
C0
C1
C2
C3
I2C
P0AD
P1AD
P2AD
P3AD
P4AD
P5AD
P6AD

P7AD
PWM_FAULT
PWM_TIMER
RESET
SPI
SYSEXC
TIMER0
TIMER1
TIMER2
UART0_RX
UART0_TX
UART1_RX
UART1_TX
Directives UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

239
Synonyms

.extern, EXTERN, EXTERNAL, .ref

Syntax

<xref_directive> => XREF <ident_space_list>
<ident_space_list> => <ident_space>
 => <ident_space_list>, <ident_space>
<ident_space> => <ident> [:<space>]

Examples
XREF label
XREF label1,label2,label3
XREF label:ROM

Structures and Unions in Assembly Code

The assembler provides a set of directives to group data elements together, similar to high-
level programming language constructs like a C structure or a Pascal record. These direc-
tives allow you to declare a structure or union type consisting of various elements, assign
labels to be of previously declared structure or union type, and provide multiple ways to
access elements at an offset from such labels.

The assembler directives associated with structure and union support are listed in
Table 21:

These structure and union directives are described in the following sections:

• .STRUCT and .ENDSTRUCT Directives – see page 240

• .TAG Directive – see page 241

• .UNION Directive – see page 242

• .WITH and .ENDWITH Directives – see page 243

Table 21. Structure and Union Assembler Directives

Assembler Directive Description

.STRUCT Group data elements in a structure type.

.ENDSTRUCT Denotes end of structure or union type.

.UNION Group data elements in a union type.

.TAG Associate label with a structure or union type.

.WITH A section in which the specified label or structure tag is implicit.

.ENDWITH Denotes end of with section.
UM017105-0511 Directives

240

Zilog Developer Studio II – ZNEO™
User Manual
.STRUCT and .ENDSTRUCT Directives

A structure is a collection of various elements grouped together under a single name for
convenient handling. The .STRUCT and .ENDSTRUCT directives can be used to define the
layout for a structure in assembly by identifying the various elements and their sizes. The
.STRUCT directive assigns symbolic offsets to the elements of a structure. It does not allo-
cate memory. It merely creates a symbolic template that can be used repeatedly.

The .STRUCT and .ENDSTRUCT directives have the following form:

[stag] .STRUCT [offset | : parent]

[name_1] DS count1

[name_2] DS count2

[tname] .TAG stagx [count]

...

[name_n] DS count3

[ssize] .ENDSTRUCT [stag]

The label stag defines a symbol to use to reference the structure; the expression offset, if
used, indicates a starting offset value to use for the first element encountered; otherwise,
the starting offset defaults to zero.

If parent is specified rather than offset, the parent must be the name of a previously
defined structure, and the offset is the size of the parent structure. In addition, each name
in the parent structure is inserted in the new structure.

Each element can have an optional label, such as name_1, which is assigned the value of
the element’s offset into the structure and which can be used as the symbolic offset. If stag
is missing, these element names become global symbols; otherwise, they are referenced
using the syntax stag.name. The directives following the optional label can be any space
reserving directive such as DS, or the .TAG directive (defined below), and the structure
offset is adjusted accordingly.

The label ssize, if provided, is a label in the global name space and is assigned the size of
the structure.

If a label stag is specified with the .ENDSTRUCT directive, it must match the label that is
used for the .STRUCT directive. The intent is to allow for code readability with some
checking by the assembler.

An example structure definition is:

DATE .STRUCT

MONTH DS 1

DAY DS 1
Directives UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

241
YEAR DS 2

DSIZE .ENDSTRUCT DATE

Directives allowed between .STRUCT and .ENDSTRUCT are directives that specify size,
principally DS, ALIGN, ORG, and .TAG and their aliases. Also, BLKB, BLKW, and BLKL direc-
tives with one parameter are allowed because they indicate only size.

The following directives are not allowed within .STRUCT and .ENDSTRUCT:

• Initialization directives (DB, DW, DL, DF, and DD) and their aliases

• BLKB, BLKW, and BLKL with two parameters because they perform initialization

• Equates (EQU and SET)

• Macro definitions (MACRO)

• Segment directives (SEGMENT and FRAME)

• Nested .STRUCT and .UNION directives

• CPU instructions (for example, LD and NOP)

.TAG Directive

The .TAG directive declares or assigns a label to have a structure type. This directive can
also be used to define a structure/union element within a structure. The .TAG directive
does not allocate memory; however, the .TAG directive inside a structure reserves space in
the structure.

The .TAG directive to define a structure/union element has the following form:

[stag] .STRUCT [offset | : parent]

[name_1] DS count1

[name_2] DS count2

...

 [tname] .TAG stagx [count]

...

[ssize] .ENDSTRUCT [stag]

The .TAG directive to assign a label to have a structure type has the following form:

[tname] .TAG stag ; Apply stag to tname

[tname] DS ssize ; Allocate space for tname

Note:
UM017105-0511 Directives

242

Zilog Developer Studio II – ZNEO™
User Manual
Once applied to label tname, the individual structure elements are applied to tname to pro-
duce the desired offsets using tname as the structure base. For example, the label
tname.name_2 is created and assigned the value tname + stag.name_2. If there are
any alignment requirements with the structure, the .TAG directive attaches the required
alignment to the label. The optional count on the .TAG directive is meaningful only inside
a structure definition and implies an array of the .TAG structure.

Keeping the space allocation separate allows you to place the .TAG declarations that assign
structure to a label in the header file in a similar fashion to the .STRUCT and XREF direc-
tives. You can then include the header file in multiple source files wherever the label is
used. Make sure to perform the space allocation for the label in only one source file.

Examples of the .TAG directive are as follows:

DATE .STRUCT
MONTH DS 1
DAY DS 1
YEAR DS 2
DSIZE .ENDSTRUCT DATE

NAMELEN EQU 30

EMPLOYEE .STRUCT
NAME DS NAMELEN
SOCIAL DS 10
START .TAG DATE
SALARY DS 1
ESIZE .ENDSTRUCT EMPLOYEE

NEWYEARS .TAG DATE
NEWYEARS DS DSIZE

The .TAG directive in the last example above creates the symbols NEWYEARS.MONTH,
NEWYEARS.DAY, and NEWYEARS.YEAR. The space for NEWYEARS is allocated by the DS
directive.

.UNION Directive

The .UNION directive is similar to the .STRUCT directive, except that the offset is reset to
zero on each label. A .UNION directive cannot have an offset or parent union. The key-
word to terminate a .UNION definition is .ENDSTRUCT.

Note:
Directives UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

243
The .UNION directive has the following form:

[stag] .UNION

[name_1] DS count1

[name_2] DS count2

[tname] .TAG stagx [count]

...

[name_n] DS count3

[ssize] .ENDSTRUCT [stag]

An example of the .UNION directive usage is:

BYTES .STRUCT
B0 DS 1
B1 DS 1
B2 DS 1
B3 DS 1
BSIZE .ENDSTRUCT BYTES

LONGBYTES .UNION
LDATA BLKL 1
BDATA .TAG BYTES
LSIZE .ENDSTRUCT LONGBYTES

.WITH and .ENDWITH Directives

Using the fully qualified names for fields within a structure can result in very long names.
The .WITH directive allows the initial part of the name to be dropped.

The .WITH and .ENDWITH directives have the following form:

 .WITH name

; directives

 .ENDWITH [name]

The identifier name may be the name of a previously defined .STRUCT or .UNION, or an
ordinary label to which a structure has been attached using a .TAG directive. It can also be
the name of an equate or label with no structure attached. Within the .WITH section, the
assembler attempts to prepend “name.” to each identifier encountered, and selects the
modified name if the result matches a name created by the .STRUCT, .UNION, or .TAG
directives.

The .WITH directives can be nested, in which case the search is from the deepest level of
nesting outward. In the event that multiple names are found, a warning is generated and
the first such name is used.
UM017105-0511 Directives

244

Zilog Developer Studio II – ZNEO™
User Manual
If name is specified with the .ENDWITH directive, the name must match that used for the
.WITH directive. The intent is to allow for code readability with some checking by the
assembler.

Examine the following COMPUTE_PAY routine.

COMPUTE_PAY:
; Enter with pointer to an EMPLOYEE in R2, days in R1
; Return with pay in R0
LD.SB R0,EMPLOYEE.SALARY(R2)
MUL R0,R1
RET

The preceding routine could be written using the .WITH directive as follows:

COMPUTE_PAY:
; Enter with pointer to an EMPLOYEE in R2, days in R1
; Return with pay in R0
.WITH EMPLOYEE
LD.SB R0, SALARY(R2)
 MUL R0,R1
 RET
.ENDWITH EMPLOYEE

Conditional Assembly

Conditional assembly is used to control the assembly of blocks of code. Entire blocks of
code can be enabled or disabled using conditional assembly directives.

Conditional Assembly Directives

The following conditional assembly directives are allowed:

• IF

• IFDEF

• IFSAME

• IFMA

Any symbol used in a conditional directive must be previously defined by an EQU or VAR
directive. Relational operators can be used in the expression. Relational expressions eval-
uate to 1 if true, and 0 if false.
Conditional Assembly UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

245
If a condition is true, the code body is processed. Otherwise, the code body after an ELSE
is processed, if included.

The ELIF directive allows a case-like structure to be implemented.

Conditional assembly can be nested.

IF

Evaluates a Boolean expression. If the expression evaluates to 0, the result is false; other-
wise, the result is true.

Synonyms

.if, .IF, IFN, IFNZ, COND, IFTRUE, IFNFALSE, .IFTRUE

Syntax

IF [<cond_expression> <code_body>]
[ELIF <cond_expression> <code_body>]
[ELSE <code_body>]
ENDIF

Example
IF XYZ ; process code body if XYZ is not 0
 .
 .
 .
<Code Body>
 .
 .
ENDIF
IF XYZ !=3 ; code body 1 if XYZ is not 3
 .
 .
 .
<Code Body 1>
 .
 .
 .
ELIF ABC ; XYZ=3 and ABC is not 0,
 .
 .
 .
<Code Body 2>
 .

Note:
UM017105-0511 Conditional Assembly

246

Zilog Developer Studio II – ZNEO™
User Manual
 .
 .
ELSE ; otherwise code body 3
 .
 .
 .
<Code Body 3>
 .
 .
 .
ENDIF

IFDEF

Checks for label definition. Only a single label can be used with this conditional. If the
label is defined, the result is true; otherwise, the result if false.

Syntax

IFDEF <label>
 <code_body>
[ELSE
 <code_body>]
ENDIF

Example

IFDEF XYZ ; process code body if XYZ is defined
 .
 .
 .
<Code Body>
 .
 .
 .
ENDIF

IFSAME

Checks to see if two string constants are the same. If the strings are the same, the result is
true; otherwise, the result is false. If the strings are not enclosed by quotes, the comma is
used as the separator.

Syntax

IFSAME <string_const> , <string_const>
 <code_body>
[ELSE
Conditional Assembly UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

247
 <code_body>]
ENDIF

IFMA

Used only within a macro, this directive checks to determine if a macro argument has been
defined. If the argument is defined, the result is true. Otherwise, the result is false. If
<arg_number> is 0, the result is TRUE if no arguments were provided; otherwise, the
result is FALSE.

IFMA refers to argument numbers that are one based (that is, the first argument is numbered
one).

Syntax

IFMA <arg_number>
 <code_body>
[ELSE
 <code_body>]
ENDIF

Macros

Macros allow a sequence of one or more assembly source lines to be represented by a sin-
gle assembler symbol. In addition, arguments can be supplied to the macro to specify or
alter the assembler source lines generated once the macro is expanded. The following sec-
tions describe how to define and invoke macros.

Macro Definition

A macro definition must precede the use of the macro. The macro name must be the same
for both the definition and the ENDMACRO line. The argument list contains the formal argu-
ments that are substituted with actual arguments when the macro is expanded. The argu-
ments can be optionally prefixed with the substitution character (\) in the macro body.

During the invocation of the macro, a token substitution is performed, replacing the formal
arguments (including the substitution character, if present) with the actual arguments.

Note:
UM017105-0511 Macros

248

Zilog Developer Studio II – ZNEO™
User Manual
Syntax

<macroname>[:]MACRO[<arg>(,<arg>)...]
 <macro_body>
ENDMAC[RO]<macroname>

Example
store: MACRO reg1,reg2,reg3
 ADD reg1,reg2
 LD reg3,reg1
 ENDMAC store

The following example contains a subtle error:

BadMac MACRO a,b,c
DL a,b,c
MACEND BadMac

Recall that b and c are reserved words on ZNEO, used for condition codes on the JP
instruction. Thus, they cannot be used as macro arguments. To avoid this and similar
errors, it is recommended that you avoid single character names.

Concatenation

To facilitate unambiguous symbol substitution during macro expansion, the concatenation
character (&) can be suffixed to symbol names. The concatenation character is a syntactic
device for delimiting symbol names that are points of substitution and is devoid of seman-
tic content. The concatenation character, therefore, is discarded by the assembler, when
the character has delimited a symbol name. For example:

val_part1 equ 55h
val_part2 equ 33h

The assembly is:
value macro par1, par2

DB par1&_&par2
macend

value val,part1
value val,part2

The generated list file is:
 A 9 value val,part1
000000 55 A+ 9 DB val_part1
 A+ 9 macend
 A 10 value val,part2
000001 33 A+ 10 DB val_part2

Note:
Macros UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

249
 A+ 10 macend

Macro Invocation

A macro is invoked by specifying the macro name and following the name with the
desired arguments. Use commas to separate the arguments.

Syntax

<macroname>[<arg>[(,<arg>)]...]

Example
store R1,R2,R3

This macro invocation causes registers R1 and R2 to be added and the result stored in reg-
ister R3.

Local Macro Labels

Local macro labels allow labels to be used within multiple macro expansions without
duplication. When used within the body of a macro, symbols preceded by two dollar signs
($$) are considered local to the scope of the macro and therefore are guaranteed to be
unique. The two dollars signs are replaced by an underscore followed by a macro invoca-
tion number.

Syntax

$$ <label>

Example
LJMP: MACRO cc,label
 JP cc,$$lab
 JP label
$$lab:
 ENDMAC

Optional Macro Arguments

A macro can be defined to handle omitted arguments using the IFMA (if macro argument)
conditional directive within the macro. The conditional directive can be used to detect if
an argument was supplied with the invocation.

Example

MISSING_ARG: MACRO ARG0,ARG1,ARG2
 IFMA 2
UM017105-0511 Macros

250

Zilog Developer Studio II – ZNEO™
User Manual
 LD ARG0,ARG1
 ELSE
 LD ARG0,ARG2
 ENDIF
 ENDMACRO MISSING_ARG

Invocation

MISSING_ARG R1, ,R2 ; missing second arg

Result
LD R1,R2

IFMA refers to argument numbers that are one based (that is, the first argument is numbered
one).

Exiting a Macro

The MACEXIT directive is used to immediately exit a macro. No further processing is per-
formed. However, the assembler checks for proper if-then conditional directives. A
MACEXIT directive is normally used to terminate a recursive macro.

The following example is a recursive macro that demonstrates using MACEXIT to termi-
nate the macro.

Example

RECURS_MAC: MACRO ARG1,ARG2
 IF ARG1==0
 MACEXIT
 ELSE
 RECURS_MAC ARG1-1, ARG2
 DB ARG2
 ENDIF
 ENDMACRO RECURS_MAC
RECURS_MAC 1, ’a’

Labels

Labels are considered symbolic representations of memory locations and can be used to
reference such memory locations within an expression. Labels can be anonymous, local,
imported or exported by directive, and be contained within a defined space, as described
below.

Note:
Labels UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

251
Anonymous Labels

The ZDS II assembler supports anonymous labels. Table 22 lists the reserved symbols pro-
vided for this purpose.

Local Labels

Any label beginning with a dollar sign ($) or ending with a question mark (?) is consid-
ered to be a local label. The scope of a local label ends when a SCOPE directive is encoun-
tered, thus allowing the label name to be reused. A local label cannot be imported or
exported.

Example
$LOOP: JP $LOOP ; Infinite branch to $LOOP
LAB?: JP LAB? ; Infinite branch to LAB?

SCOPE ; New local label scope
$LOOP: JP $LOOP ; Reuse $LOOP
LAB?: JP LAB? ; Reuse LAB?

Importing and Exporting Labels

Labels can be imported from other modules using the EXTERN or XREF directive. A space
can be provided in the directive to indicate the label’s location. Otherwise, the space of the
current segment is used as the location of the label.

Labels can be exported to other modules by use of the PUBLIC or XDEF directive.

Label Spaces

The assembler makes use of a label’s space when checking the validity of instruction oper-
ands. Certain instruction operands require that a label be located in a specific space
because that instruction can only operate on data located in that space. A label is assigned
to a space by one of the following methods:

Table 22. Anonymous Labels

Symbol Description

$$ Anonymous label. This symbol can be used as a label an arbitrary number of times.

$B Anonymous label backward reference. This symbol references the most recent anonymous
label defined before the reference.

$F Anonymous label forward reference. This symbol references the most recent anonymous
label defined after the reference.
UM017105-0511 Labels

252

Zilog Developer Studio II – ZNEO™
User Manual
• The space of the segment in which the label is defined.

• The space provided in the EXTERN or XREF directive.

• If no space is provided with the EXTERN or XREF directive, the space check is not per-
formed on the label.

Source Language Syntax

The syntax description that follows is offered here to outline the general assembler syntax.
It does not define assembly language instructions.

<source_line> →
→
→
→
→

<if_statement>
[<Label_field>]<instruction_field><EOL>
[<Label_field>]<directive_field><EOL>
<Label_field><EOL>
<EOL>

<if_statement> →
→
→

<if_section>
[<else_statement>]
ENDIF

<if_section> → <if_conditional>
<code-body>

<if_conditional> → IF<cond_expression>|
IFDEF<ident>|
IFSAME<string_const>,<string_const>|
IFMA<int_const>

<else_statement> → ELSE <code_body>|
ELIF<cond_expression>
<code_body>
[<else_statement>]

<cond_expression> → <expression>|
<expression><relop><expression>

<relop> → == | < | > | <= | => | !=

<code_body> → <source_line>@

<label_field> → <ident>:

<instruction_field> → <mnemonic>[<operand>]@

<directive_field> → <directive>

<mnemonic> → valid instruction mnemonic

<operand> →
→

<addressing_mode>
<expression>

<addressing_mode> → valid instruction addressing mode
Source Language Syntax UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

253
<directive> →
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→
→

ALIGN<int_const>
<array_definition>
CONDLIST(ON|OFF)
END[<expression>]
<ident>EQU<expression>
ERROR<string_const>
EXIT<string_const>
.FCALL<ident>
FILE<string_const>
.FRAME<ident>,<ident>,<space>
GLOBALS (ON|OFF)
INCLUDE<string_const>
LIST (ON|OFF)
<macro_def>
<macro_invoc>
MACDELIM<char_const>
MACLIST (ON|OFF)
NOLIST
ORG<int_const>
<public_definition>
<scalar_definition>
SCOPE
<segment_definition>
SEGMENT<ident>
SUBTITLE<string_const>
SYNTAX=<target_microprocessor>
TITLE<string_const>
<ident>VAR<expression>
WARNING<string_const>

<array_definition> →
→

<type>'['<elements>']'
[<initvalue>(,<initvalue>)@]

<type> →
→
→
→

DB
DL
DW
DW24

<elements> → [<int_const>]

<initvalue> → ['['<instances>']']<value>

<instances> → <int_const>

<value> → <expression>|<string_const>
UM017105-0511 Source Language Syntax

254

Zilog Developer Studio II – ZNEO™
User Manual
<expression> →
→
→
→
→
→
→
→

'('<expression>')'
<expression><binary_op><expression>
<unary_op><expression>
<int_const>
<label>
HIGH<expression>
LOW<expression>
OFFSET<expression>

<binary_op> →
→
→
→
→
→
→
→
→

+
-
*
/
>>
<<
&
|
^

<i> →
→
→

-
~
!

<int_const> →
→
→
→

digit(digit|'_')@
hexdigit(hexdigit|'_')@H
bindigit(bindigit|'_')@B
<char_const>

<char_const> → 'any'

<label> → <ident>

<string_const> → "('\"'|any)@"

<ident> → (letter|'_')(letter|'_'|digit|'.')@

<ident_list> → <ident>(,<ident>)@

<macro_def> → <ident>MACRO[<arg>(<arg>)]
<code_body>
ENDMAC[RO]<macname>

<macro_invoc> → <macname>[<arg>](,<arg>)]

<arg> → macro argument

<public_definition> → PUBLIC<ident list>
EXTERN<ident list>

<scalar_definition> → <type>[<value>]

<segment_definition
>

→ DEFINE<ident>[<space_clause>]
[<align_clause>][<org_clause>]

<space_clause> → ,SPACE=<space>

<align_clause> → ,ALIGN=<int_const>
Source Language Syntax UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

255
Warning and Error Messages

This section covers warning and error messages for the assembler.

400 Symbol already defined. The symbol has been previously defined.

401 Syntax error. General-purpose error when the assembler recognizes only part of a
source line. The assembler might generate multiple syntax errors per source line.

402 Symbol XREF’d and XDEF’d. Label previously marked as externally defined or ref-
erenced. This error occurs when an attempt is made to both XREF and XDEF a label.

403 Symbol not a segment. The segment has not been previously defined or is defined
as some other symbol type.

404 Illegal EQU. The name used to define an equate has been previously defined or
equates and label symbols in an equate expression have not been previously defined.

405 Label not defined. The label has not been defined, either by an XREF or a label def-
inition.

406 Illegal use of XREF's symbol. XDEF defines a list of labels in the current module as
an external symbol that are to be made publicly visible to other modules at link time;
XREF specifies that a list of labels in the operand field are defined in another module.

407 Illegal constant expression. The constant expression is not valid in this particular
context. This error normally occurs when an expression requires a constant value that does
not contain labels.

408 Memory allocation error. Not enough memory is available in the specified memory
range.

409 Illegal .elif directive. There is no matching .if for the .elif directive.

410 Illegal .else directive. There is no matching .if for the .else directive.

411 Illegal .endif directive. There is no matching .if for the .endif directive.

412 EOF encountered within an .if. End-of-file encountered within a conditional
directive.

<org_clause> → ,ORG=<int_const>

<space> → (RAM|ROM|ERAM|EROM|IODATA)
UM017105-0511 Warning and Error Messages

256

Zilog Developer Studio II – ZNEO™
User Manual
416 Unsupported/illegal directives. General-purpose error when the assembler recog-
nizes only part of a source line. The assembler might generate multiple errors for the
directive.

417 Unterminated quoted string. You must terminate a string with a double quote.

418 Illegal symbol name. There are illegal characters in a symbol name.

419 Unrecognized token. The assembler has encountered illegal/unknown character(s).

420 Constant expression overflow. A constant expression exceeded the range of –
2147483648 to 2147483648.

421 Division by zero. The divisor equals zero in an expression.

422 Address space not defined. The address space is not one of the defined spaces.

423 File not found. The file cannot be found in the specified path, or, if no path is speci-
fied, the file cannot be located in the current directory.

424 XREF or XDEF label in const exp. You cannot use an XREF or XDEF label in an
EQU directive.

425 EOF found in macro definition. End of file encountered before ENDMAC(RO)
reached.

426 MACRO/ENDMACRO name mismatch. The declared MACRO name does not
match the ENDMAC(RO) name.

427 Invalid MACRO arguments. The argument is not valid in this particular instance.

428 Nesting same segment. You cannot nest a segment within a segment of the same
name.

429 Macro call depth too deep. You cannot exceed a macro call depth of 25.

430 Illegal ENDMACRO found. No macro definition for the ENDMAC(RO) encoun-
tered.

431 Recursive macro call. Macro calls cannot be recursive.

432 Recursive include file. Include directives cannot be recursive.

433 ORG to bad address. The ORG clause specifies an invalid address for the segment.
Warning and Error Messages UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

257
434 Symbol name too long. The maximum symbol length (33 characters) has been
exceeded.

435 Operand out-of-range error. The assembler detects an expression operand that is out
of range for the intended field and generates appropriate error messages.

436 Relative branch to XREF label. Do not use the JP instruction with XREF.

437 Invalid array index. A negative number or zero has been used for an array instance
index. You must use positive numbers.

438 Label in improper space. Instruction requires label argument to be located in certain
address space. The most common error is to have a code label when a data label is
required or vice versa.

439 Vector not recognized. The vector name is illegal.

444 Too many initializers. Initializers for array data allocation exceeds array element
size.

445 Missing .$endif at EOF. There is no matching .$endif for the .$if directive.

448 Segment stack overflow. Do not allocate returned structures on the stack.

456 Unsupported initialization of RAM. A data directive has been used to try to initialize
data in a segment which is located in the RAM, ERAM or IODATA address spaces.
Because data in these spaces is volatile (not preserved through system reset or power
cycles), the data initialization will not occur unless a copy of the segment is made in the
nonvolatile ROM or EROM space then copied into the RAM, ERAM or IODATA space
by your system start-up code.

461 Unexpected end-of-file in comment. End-of-file encountered in a multi-line com-
ment

462 Macro redefinition. The macro has been redefined.

464 Obsolete feature encountered. An obsolete feature was encountered.

470 Missing token error. A token must be added.

475 User error. General-purpose error.

476 User warning. General-purpose warning.

480 Relist map file error. A map file will not be generated.
UM017105-0511 Warning and Error Messages

258

Zilog Developer Studio II – ZNEO™
User Manual
481 Relist file not found error. The map file cannot be found in the specified path, or, if
no path is specified, the map file cannot be located in the current directory.

482 Relist symbol not found. Any symbol used in a conditional directive must be previ-
ously defined by an EQU or VAR directive.

483 Relist aborted. A map file will not be generated.

490 Stall or hazard conflict found. A stall or hazard conflict was encountered.

499 General purpose switch error. There was an illegal or improperly formed command
line option.
Warning and Error Messages UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

259
Chapter 6. Using the Linker/Locator

The ZNEO developer’s environment linker/locator creates a single executable file from a
set of object modules and object libraries. It acts as a linker by linking together object
modules and resolving external references to public symbols. It also acts as a locator
because it allows you to specify where code and data is stored in the target processor at run
time. The executable file generated by the linker can be loaded onto the target system and
debugged using the Zilog Developer Studio II.

This section describes the following topics:

• Linker Functions – see page 259

• Invoking the Linker – see page 260

• Linker Commands – see page 260

• Linker Expressions – see page 273

• Sample Linker Map File – see page 280

• Troubleshooting the Linker – see page 295

• Warning and Error Messages – see page 297

Linker Functions

The following five major types of objects are manipulated during the linking process.

Libraries. Object libraries are collections of object modules created by the Librarian.

Modules. Modules are created by assembling a file with the assembler or compiling a file
with the compiler and then assembling it.

Address spaces. Each module consists of various address spaces. Address spaces corre-
spond to either a physical or logical block of memory on the target processor. For exam-
ple, a Harvard architecture that physically divides memory into program and data stores
has two physical blocks—each with its own set of addresses. Logical address spaces are
often used to divide a large contiguous block of memory to separate data and code. In this
case, the address spaces partition the physical memory into two logical address spaces.
The memory range for each address space depends on the particular ZNEO family mem-
ber. For more information about address spaces on ZNEO, see Address Spaces – see
page 212.

Groups. A group is a collection of logical address spaces. They are typically used for con-
venience in locating a set of address spaces together.
UM017105-0511 Using the Linker/Locator

260

Zilog Developer Studio II – ZNEO™
User Manual
Segments. Each address space consists of various segments. Segments are named logical
partitions of data or code that form a continuous block of memory. Segments with the
same name residing in different modules are concatenated together at link time. Segments
are assigned to an address space and can be relocatable or absolute. Relocatable segments
can be randomly allocated by the linker; absolute segments are assigned a physical address
within its address space. See Segments – see page 213 for more information about using
predefined segments, defining new segments, and attaching code and data to segments.

The linker performs the following functions:

• Reads in relocatable object modules and library files and linker commands.

• Resolves external references.

• Assigns absolute addresses to relocatable segments of each address space and group.

• Generates a single executable module to download into the target system.

• Generates a map file.

Invoking the Linker

The linker is automatically invoked when your project is open and you click the Build but-
ton or Rebuild All button on the Build toolbar (see the Build Toolbar section on page 18).
The linker then links the corresponding object modules of the various source files in your
project and any additional object/library modules specified in the Objects and Libraries
page in the Project Settings dialog box (discussed on page 64).The linker uses the linker
command file to control how these object modules and libraries are linked. The linker
command file is automatically generated by ZDS II if the Always Generate from Settings
button is selected (see the Always Generate from Settings section on page 61). You can
add additional linker commands with the Additional Linker Directives dialog box (dis-
cussed on page 62). If you want to override the automatically generated linker command
file, select the Use Existing button (see the Use Existing section on page 63).

The linker can also be invoked from the DOS command line or through the ZDS II Com-
mand Processor. For more information about invoking the linker from the DOS command
line, see Running ZDS II from the Command Line – see page 349. To invoke the linker
through the ZDS II Command Processor, see Using the Command Processor – see
page 359.

Linker Commands

This section describes the commands of a linker command file:

• <outputfile>=<module list> – see page 262
Invoking the Linker UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

261
• CHANGE – see page 262

• COPY – see page 263

• DEBUG – see page 265

• DEFINE – see page 265

• FORMAT – see page 265

• GROUP – see page 266

• HEADING – see page 266

• LOCATE – see page 266

• MAP – see page 267

• MAXHEXLEN – see page 267

• MAXLENGTH – see page 268

• NODEBUG – see page 268

• NOMAP – see page 268

• NOWARN – see page 268

• ORDER – see page 269

• RANGE – see page 269

• SEARCHPATH – see page 270

• SEQUENCE – see page 270

• SORT – see page 271

• SPLITTABLE – see page 271

• UNRESOLVED IS FATAL – see page 272

• WARN – see page 272

• WARNING IS FATAL – see page 272

• WARNOVERLAP – see page 273

Only the <outputfile>=<module list> and the FORMAT commands are required. All com-
mands and operators are not case-sensitive.

Note:
UM017105-0511 Linker Commands

262

Zilog Developer Studio II – ZNEO™
User Manual
<outputfile>=<module list>

This command defines the executable file, object modules, and libraries involved in the
linking process. <module list> is a list of object module or library path names to be linked
together to create the output file. <output file> is the base name of the output file gener-
ated. The extension of the output file name is determined by the FORMAT command.

Example

sample=c:\ZDSII_ZNEO_4.11.0\lib\zilog\startups.obj, \
test.obj, \
c:\ZDSII_ZNEO_4.11.0\lib\standard\chelpsd.lib, \
c:\ZDSII_ZNEO_4.11.0\lib\standard\crtsd.lib, \
c:\ZDSII_ZNEO_4.11.0\lib\standard\fpsd.lib

This command links the two object modules and three library modules to generate the
linked output file sample.lod in IEEE 695 format when the format=OMF695 command
is present.

In the preceding example, the \ (backslash) at the end of the first line allows the <module
list> to extend over several lines in a linker command file.

The backslash to continue the <module list> over multiple lines is not supported when this
command is entered on the DOS command line.

CHANGE

The CHANGE command is used to rename a group, address space, or segment. The CHANGE
command can also be used to move an address space to another group or to move a seg-
ment to another address space.

Syntax

CHANGE <name> = <newname>

<name> can be a group, address space, or segment.

<newname> is the new name to be used in renaming a group, address space, or segment;
the name of the group where an address space is to be moved; or the name of the address
space where a segment is to be moved.

The linker recognizes the special space NULL. NULL is not one of the spaces that an object
file or library contains in it. If a segment name is changed to NULL using the CHANGE

Notes:

Note:
Linker Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

263
command to the linker, the segment is deleted from the linking process. This can be useful
if you must link only part of an executable or not write out a particular part of the execut-
able. The predefined space NULL can also be used to prevent initialization of data while
reserving the segment in the original space using the COPY command. See also the exam-
ples for the COPY command.

Examples

To change the name of a segment (for example, strseg) to another segment name (for
example, codeseg), use the following command:

CHANGE strseg=codeseg

To move a segment (for example, codeseg) to a different address space (for example,
RAM), use the following command:

CHANGE codeseg=RAM

To not allocate a segment (for example, dataseg), use the following command:

CHANGE dataseg=NULL

COPY

The COPY command is used to make a copy of a segment into a specified address space.
This is most often used to make a copy of initialized RAM in ROM so that it can be initial-
ized at run time.

Syntax

COPY <segment> <name>[at<expression>]

<segment> can only be a segment.
<name> can only be an address space.

Examples

To make a copy of a code segment in ROM, observe the following procedure:

1. In the assembly code, define a code segment (for example, codeseg) to be a segment
located in RAM. This is the run-time location of codeseg.

2. Use the following linker command:

COPY codeseg ROM

The linker places the actual contents associated with codeseg in ROM (the load time
location) and associates RAM (the run-time location) addresses with labels in code-
seg.
UM017105-0511 Linker Commands

264

Zilog Developer Studio II – ZNEO™
User Manual
You must copy the codeseg contents from ROM to RAM at run time as part of the start-up
routine. You can use the COPY BASE OF and COPY TOP OF linker expressions to get the
base address and top address of the contents in ROM. You can use the BASE OF and TOP
OF linker expressions to get the base address and top address of codeseg.

To copy multiple segments to ROM, observe the following procedure:

1. In the assembly code, define the segments (for example, strseg, text, and code-
seg) to be segments located in RAM. This is the run-time location of the segments.

2. Use the following linker commands:

CHANGE strseg=codeseg
CHANGE text=codeseg
COPY codeseg ROM

The linker renames strseg and text as codeseg and performs linking as described
in the previous example. You must write only one loop to perform the copy from
ROM to RAM at run time, instead of three (one loop each for strseg, text, and
codeseg).

To allocate a string segment in ROM but not generate the initialization:

1. In the assembly code, define the string segment (for example, strsect) to be a seg-
ment located in ROM.

2. Use the following linker command:

COPY strsect NULL

The linker associates all of the labels in strsect with an address in ROM and does
not generate any loadable data for strsect. This is useful when ROM is already pro-
grammed separately, and the address information is required for linking and debug-
ging.

The linker recognizes the special space NULL. NULL is not one of the spaces that an object
file or library contains in it. If a segment name is changed to NULL using the CHANGE
command to the linker, the segment is deleted from the linking process. This can be useful
if you must link only part of an executable or not write out a particular part of the execut-
able. The predefined space NULL can also be used to prevent initialization of data while
reserving the segment in the original space using the COPY command.

Refer to the Linker Expressions section on page 273 for the format to write an expression.

Note:

Notes:
Linker Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

265
DEBUG

The DEBUG command causes the linker to generate debug information for the debugger.
This option is applicable only if the executable file is IEEE 695.

Syntax
[-]DEBUG

DEFINE

The DEFINE command creates a user-defined public symbol at link time. This command is
used to resolve external references (XREF) used in assemble time.

Syntax

DEFINE <symbol name> = <expression>

<symbol name> is the name assigned to the public symbol.

<expression> is the value assigned to the public symbol.

Example
DEFINE copy_size = copy top of data_seg - copy base of data_seg

Refer to the Linker Expressions section on page 273 for the format to write an expression.

FORMAT

The FORMAT command sets the executable file of the linker according to the following
table.

The default setting is IEEE 695.

Syntax

[-]FORMAT=<type>

File Type Option File Extension

IEEE 695 format OMF695 .lod

Intel 32-bit INTEL32 .hex

Note:
UM017105-0511 Linker Commands

266

Zilog Developer Studio II – ZNEO™
User Manual
Example
FORMAT = OMF695, INTEL32

GROUP

The GROUP command provides a method of collecting multiple address spaces into a
single manageable entity.

Syntax

GROUP <groupname> = <name>[,<name>]

<groupname> can only be a group.

<name> can only be an address space.

HEADING

The HEADING command enables or disables the form feed (\f) characters in the map file
output.

Syntax
-[NO]heading

LOCATE

The LOCATE command specifies the address where a group, address space, or segment is
to be located. If multiple locates are specified for the same space, the last specification
takes precedence. A warning is flagged on a LOCATE of an absolute segment.

The LOCATE of a segment overrides the LOCATE of an address space. A LOCATE does not
override an absolute segment.

Syntax

LOCATE <name> AT <expression>

<name> can be a group, address space, or segment.

<expression> is the address to begin loading.

Note:
Linker Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

267
Example
LOCATE ROM AT $1000

Refer to the Linker Expressions section on page 273 for the format to write an expression.

MAP

The MAP command causes the linker to create a link map file. The link map file contains
the location of address spaces, segments, and symbols. The default is to create a link map
file. NOMAP suppresses the generation of a link map file.

For the ZNEO link map file, the C prefix indicates EROM, the T prefix indicates ROM,
the E prefix indicates ERAM, and the R prefix indicates RAM.

Syntax

-MAP = [<mapfile>]

mapfile has the same name as the executable file with the .map extension unless an
optional <mapfile> is specified.

Example
MAP = myfile.map

Link Map File

A sample map file is shown in the Sample Linker Map File – see page 280.

MAXHEXLEN

The MAXHEXLEN command causes the linker to fix the maximum data record size for the
Intel hex output. The default is 64 bytes.

Syntax
[-]MAXHEXLEN < IS | = > < 16 | 32 | 64 | 128 | 255 >

Examples
-maxhexlen=16

or

MAXHEXLEN IS 16

Note:
UM017105-0511 Linker Commands

268

Zilog Developer Studio II – ZNEO™
User Manual
MAXLENGTH

The MAXLENGTH command causes a warning message to be issued if a group, address
space, or segment is longer than the specified size. The RANGE command sets address
boundaries. The MAXLENGTH command allows further control of these boundaries.

Syntax

MAXLENGTH <name> <expression>

<name> can be a group, address space, or segment.

<expression> is the maximum size.

Example
MAXLENGTH CODE $FF

Refer to the Linker Expressions section on page 273 for the format to write an expression.

NODEBUG

The NODEBUG command suppresses the linker from generating debug information. This
option is applicable only if the executable file is IEEE 695.

Syntax

[-]NODEBUG

NOMAP

The NOMAP command suppresses generation of a link map file. The default is to generate a
link map file.

Syntax

[-]NOMAP

NOWARN

The NOWARN command suppresses warning messages. The default is to generate warning
messages.

Note:
Linker Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

269
Syntax

[-]NOWARN

ORDER

The ORDER command establishes a linking sequence and sets up a dynamic RANGE for
contiguously mapped address spaces. The base of the RANGE of each consecutive address
space is set to the top of its predecessor.

Syntax

ORDER <name>[,<name-list>]

<name> can be a group, address space, or segment. <name-list> is a comma-separated list
of other groups, address spaces, or segments. However, a RANGE is established only for an
address space.

Example
ORDER GDATA,GTEXT

where GDATA and GTEXT are groups.

In this example, all address spaces associated with GDATA are located before (that is, at
lower addresses than) address spaces associated with GTEXT.

RANGE

The RANGE command sets the lower and upper bounds of a group, address space, or seg-
ment. If an address falls outside of the specified RANGE, the system displays a message.

You must use white space to separate the colon from the RANGE command operands.

Syntax

RANGE <name><expression> : <expression>[,<expression> : <expression>...]

<name> can be a group, address space, or segment. The first <expression> marks the
lower boundary for a specified address RANGE. The second <expression> marks the upper
boundary for a specified address RANGE.

Example
RANGE EROM $008000 : $01FFFF,$040000 : $04FFFF

Note:
UM017105-0511 Linker Commands

270

Zilog Developer Studio II – ZNEO™
User Manual
If a RANGE is specified for a segment, this range must be within any RANGE specified by
that segment’s address space.

Refer to the Linker Expressions section on page 273 for the format to write an expression.

SEARCHPATH

The SEARCHPATH command establishes an additional search path to be specified in locat-
ing files. The search order is.

1. Current directory

2. Environment path

3. Search path

Syntax

SEARCHPATH ="<path>"

Example
SEARCHPATH="C:\ZDSII_ZNEO_4.11.0\lib\standard"

SEQUENCE

The SEQUENCE command forces the linker to allocate a group, address space, or segment
in the order specified.

Syntax

SEQUENCE <name>[,<name_list>]

<name> is either a group, address space, or segment.

<name_list> is a comma-separated list of group, address space, or segment names.

Example
SEQUENCE NEAR_DATA,NEAR_TEXT,NEAR_BSS

If the sequenced segments do not all receive space allocation in the first pass through the
available address ranges, then the sequence of segments is not maintained.

Note:

Note:
Linker Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

271
SORT

The SORT command sorts the external symbol listing in the map file by name or address
order. The default is to sort in ascending order by name.

Syntax
[-]SORT <ADDRESS | NAME> [IS | =] <ASCENDING | UP | DESCENDING |
DOWN>

NAME indicates sorting by symbol name.

ADDRESS indicates sorting by symbol address.

Examples

The following examples show how to sort the symbol listing by the address in ascending
order:

SORT ADDRESS ASCENDING

or

-SORT ADDRESS = UP

SPLITTABLE

The SPLITTABLE command allows (but does not force) the linker to split a segment into
noncontiguous pieces to fit into available memory slots. Splitting segments can be helpful
in reducing the overall memory requirements of the project. However, problems can arise
if a noncontiguous segment is copied from one space to another using the COPY command.
The linker issues a warning if it is asked to COPY any noncontiguous segment.

If SPLITTABLE is not specified for a given segment, the linker allocates the entire seg-
ment contiguously.

The SPLITTABLE command takes precedence over the ORDER and SEQUENCE com-
mands.

By default, ZDS II segments are nonsplittable. When multiple segments are made splitta-
ble, the linker might re-order segments regardless of what is specified in the ORDER (or
SEQUENCE) command. In this case, you must perform one of following actions:

• Modify the memory map of the system so there is only one discontinuity and only one
splittable segment in which case the ORDER command is followed

• Modify the project so a specific ordering of segments is not required, in which case
multiple segments can be marked splittable
UM017105-0511 Linker Commands

272

Zilog Developer Studio II – ZNEO™
User Manual
Syntax

SPLITTABLE segment_list

Example
SPLITTABLE CODE, ROM_TEXT

UNRESOLVED IS FATAL

The UNRESOLVED IS FATAL command causes the linker to treat undefined external sym-
bol warnings as fatal errors. The linker quits generating output files immediately if the
linker cannot resolve any undefined symbol. By default, the linker proceeds with generat-
ing output files if there are any undefined symbols.

Syntax
[-] < UNRESOLVED > < IS | = > <FATAL>

Examples
-unresolved=fatal

or

UNRESOLVED IS FATAL

WARN

The WARN command specifies that warning messages are to be generated. An optional
warning file can be specified to redirect messages. The default setting is to generate warn-
ing messages on the screen and in the map file.

Syntax

[-]WARN = [<warn filename>]

Example
-WARN=warnfile.txt

WARNING IS FATAL

The WARNING IS FATAL command causes the linker to treat all warning messages as
fatal errors. The linker does not generate output file(s) if there are any warnings while
linking. By default, the linker proceeds with generating output files even if there are warn-
ings.
Linker Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

273
Syntax

[-]< WARNING | WARN> < IS | = > <FATAL>

Examples
-warn=fatal

or

WARNING IS FATAL

WARNOVERLAP

The WARNOVERLAP command enables or disables the warnings when overlap occurs while
binding segments. The default is to display the warnings whenever a segment gets over-
lapped.

Syntax
-[NO]warnoverlap

Linker Expressions

This section describes the operators and their operands that form legal linker expressions:

• + (Add) – see page 274

• & (And) – see page 274

• BASE OF – see page 275

• COPY BASE – see page 276

• COPY TOP – see page 276

• / (Divide) – see page 276

• FREEMEM – see page 276

• HIGHADDR – see page 277

• LENGTH – see page 277

• LOWADDR – see page 277

• * (Multiply) – see page 278

• Decimal Numeric Values – see page 278

• Hexadecimal Numeric Values – see page 278
UM017105-0511 Linker Expressions

274

Zilog Developer Studio II – ZNEO™
User Manual
• | (Or) – see page 279

• << (Shift Left) – see page 279

• >> (Shift Right) – see page 279

• - (Subtract) – see page 279

• TOP OF – see page 280

• ^ (Bitwise Exclusive Or) – see page 280

• ~ (Not) – see page 280

The following note applies to many of the <expression> commands discussed in this sec-
tion.

To use BASE, TOP, COPY BASE, COPY TOP, LOWADDR, HIGHADDR, LENGTH, and
FREEMEM <expression> commands, you must have completed the calculations on the
expression. This is done using the SEQUENCE and ORDER commands. Do not use an
expression of the segment or space itself to locate the object in question.

Examples

/* Correct example using segments */
SEQUENCE seg2, seg1 /* Calculate seg2 before seg1 */
LOCATE seg1 AT TOP OF seg2 + 1

/* Do not do this: cannot use expression of seg1 to locate seg1
*/

LOCATE seg1 AT (TOP OF seg2 - LENGTH OF seg1)

+ (Add)

The + (Add) operator is used to perform the addition of two expressions.

Syntax

<expression> + <expression>

& (And)

The & (And) operator is used to perform a bitwise & of two expressions.

Note:
Linker Expressions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

275
Syntax

<expression> & <expression>

BASE OF

The BASE OF operator provides the lowest used address of a group, address space, or seg-
ment, excluding any segment copies when <name> is a segment. The value of BASE OF
is treated as an expression value.

Syntax

BASE OF <name>

<name> can be a group, address space, or segment.

BASE OF Versus LOWADDR OF

By default, allocation for a given memory group, address space, or segment starts at the
lowest defined address for that memory group, address space, or segment. If you explicitly
define an assignment within that memory space, allocation for that space begins at that
defined point and then occupies subsequent memory locations; the explicit allocation
becomes the default BASE OF value. BASE OF <name> gives the lowest allocated
address in the space; LOWADDR OF <name> gives the lowest physical address in the
space.

For example:

RANGE ROM $0 : $7FFF
RANGE RAM $8000 : $BFFF

/* RAM allocation */
LOCATE s_uninit_data at $8000
LOCATE s_nvrblock at $9000
DEFINE __low_data = BASE OF s_uninit_data

Using

LOCATE s_uninit_data at $8000

or

LOCATE s_uninit_data at LOWADDR OF RAM

gives the same address (the lowest possible address) when RANGE RAM $8000:$BFFF.

If

LOCATE s_uninit_data at $8000

is changed to
UM017105-0511 Linker Expressions

276

Zilog Developer Studio II – ZNEO™
User Manual
LOCATE s_uninit_data at BASE OF RAM

the lowest used address is $9000 (because LOCATE s_nvrblock at $9000 and
s_nvrblock is in RAM).

COPY BASE

The COPY BASE operator provides the lowest used address of a copy segment, group, or
address space. The value of COPY BASE is treated as an expression value.

Syntax

COPY BASE OF <name>

<name> can be either a group, address space, or segment.

COPY TOP

The COPY TOP operator provides the highest used address of a copy segment, group, or
address space. The value of COPY TOP is treated as an expression value.

Syntax

COPY TOP OF <name>

<name> can be a group, address space, or segment.

/ (Divide)

The / (Divide) operator is used to perform division.

Syntax

<expression> / <expression>

FREEMEM

The FREEMEM operator provides the lowest address of unallocated memory of a group,
address space, or segment. The value of FREEMEM is treated as an expression value.

Syntax

FREEMEM OF <name>

<name> can be a group, address space, or segment.
Linker Expressions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

277
HIGHADDR

The HIGHADDR operator provides the highest possible address of a group, address
space, or segment. The value of HIGHADDR is treated as an expression value.

Syntax

HIGHADDR OF <name>

<name> can be a group, address space, or segment.

LENGTH

The LENGTH operator provides the length of a group, address space, or segment. The
value of LENGTH is treated as an expression value.

Syntax

LENGTH OF <name>

<name> can be a group, address space, or segment.

LOWADDR

The LOWADDR operator provides the lowest possible address of a group, address space,
or segment. The value of LOWADDR is treated as an expression value.

Syntax

LOWADDR OF <name>

<name> can be a group, address space, or segment.

BASE OF Versus LOWADDR OF

By default, allocation for a given memory group, address space, or segment starts at the
lowest defined address for that memory group, address space, or segment. If you explicitly
define an assignment within that memory space, allocation for that space begins at that
defined point and then occupies subsequent memory locations; the explicit allocation
becomes the default BASE OF value. BASE OF <name> gives the lowest allocated
address in the space; LOWADDR OF <name> gives the lowest physical address in the
space.

For example:

RANGE ROM $0 : $7FFF
RANGE RAM $8000 : $BFFF

UM017105-0511 Linker Expressions

278

Zilog Developer Studio II – ZNEO™
User Manual
/* RAM allocation */
LOCATE s_uninit_data at $8000
LOCATE s_nvrblock at $9000
DEFINE __low_data = BASE OF s_uninit_data

Using

LOCATE s_uninit_data at $8000

or

LOCATE s_uninit_data at LOWADDR OF RAM

gives the same address (the lowest possible address) when RANGE RAM $8000:$BFFF.

If

LOCATE s_uninit_data at $8000

is changed to

LOCATE s_uninit_data at BASE OF RAM

the lowest used address is $9000 (because LOCATE s_nvrblock at $9000 and
s_nvrblock is in RAM).

* (Multiply)

The * (Multiply) operator is used to multiply two expressions.

Syntax

<expression> * <expression>

Decimal Numeric Values

Decimal numeric constant values can be used as an expression or part of an expression.
Digits are collections of numeric digits from 0 to 9.

Syntax

<digits>

Hexadecimal Numeric Values

Hexadecimal numeric constant values can be used as an expression or part of an expres-
sion. Hex digits are collections of numeric digits from 0 to 9 or A to F.
Linker Expressions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

279
Syntax

$<hexdigits>

| (Or)

The | (Or) operator is used to perform a bitwise inclusive | (Or) of two expressions.

Syntax

<expression> | <expression>

<< (Shift Left)

The << (Shift Left) operator is used to perform a left shift. The first expression to the left
of << is the value to be shifted. The second expression is the number of bits to the left the
value is to be shifted.

Syntax

<expression> << <expression>

>> (Shift Right)

The >> (Shift Right) operator is used to perform a right shift. The first expression to the
left of >> is the value to be shifted. The second expression is the number of bits to the right
the value is to be shifted.

Syntax

<expression> >> <expression>

- (Subtract)

The - (Subtract) operator is used to subtract one expression from another.

Syntax

<expression> - <expression>
UM017105-0511 Linker Expressions

280

Zilog Developer Studio II – ZNEO™
User Manual
TOP OF

The TOP OF operator provides the highest allocated address of a group, address space, or
segment, excluding any segment copies when <name> is a segment. The value of TOP OF
is treated as an expression value.

Syntax

TOP OF <name>

<name> can be a group, address space, or segment.

If you declare a segment to begin at TOP OF another segment, the two segments share one
memory location. TOP OF give the address of the last used memory location in a segment,
not the address of the next available memory location. For example,

LOCATE segment2 at TOP OF segment1

starts segment2 at the address of the last used location of segment1. To avoid both seg-
ments sharing one memory location, use the following syntax:

LOCATE segment2 at (TOP OF segment1) + 1

^ (Bitwise Exclusive Or)

The ^ operator is used to perform a bitwise exclusive OR on two expressions.

Syntax

<expression> ^ <expression>

~ (Not)

The ~ (Not) operator is used to perform a one’s complement of an expression.

Syntax

~ <expression>

Sample Linker Map File

IEEE 695 OMF Linker Version 6.20 (05120604)
Copyright (C) 1999-2004 Zilog, Inc. All Rights Reserved

LINK MAP:

DATE: Wed Dec 07 13:51:43 2005
Sample Linker Map File UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

281
PROCESSOR: assembler
FILES: C:\PROGRA~1\Zilog\ZDSII_~1.0\lib\zilog\startupexkS.obj
 .\main.obj
 .\Z16F2800100ZCOG.obj
 C:\PROGRA~1\Zilog\ZDSII_~1.0\lib\std\chelpSD.lib
 C:\PROGRA~1\Zilog\ZDSII_~1.0\lib\std\crtSD.lib
 C:\PROGRA~1\Zilog\ZDSII_~1.0\lib\std\fpSD.lib

COMMAND LIST:
=============
/* Linker Command File - Z16F2800100ZCOG Debug */

/* Generated by: */
/* ZDS II - ZNEO 4.11.0 (Build 05120701) */
/* IDE component: b:4.10:05120701 */

/* compiler options */
/* -chartype:U -define:_Z16F2811AL -define:_Z16K_SERIES */
/* -define:_Z16F_SERIES -genprintf -keepasm -NOkeeplst -NOlist */
/* -NOlistinc -model:S */
/* -
stdinc:"C:\PROGRA~1\Zilog\ZDSII_~1.0\include\std;C:\PROGRA~1\Zilog\ZDSII_~1.0\
include\zilog" */
/* -NOregvar -reduceopt -debug -cpu:Z16F2811AL */
/* -asmsw:" -cpu:Z16F2811AL -define:_Z16F2811AL=1 -define:_Z16K_SERIES=1 -
define:_Z16F_SERIES=1 -
include:C:\PROGRA~1\Zilog\ZDSII_~1.0\include\std;C:\PROGRA~1\Zilog\ZDSII_~1.0\
include\zilog" */

/* assembler options */
/* -define:_Z16F2811AL=1 -define:_Z16K_SERIES=1 */
/* -define:_Z16F_SERIES=1 */
/* -
include:"C:\PROGRA~1\Zilog\ZDSII_~1.0\include\std;C:\PROGRA~1\Zilog\ZDSII_~1.0
\include\zilog" */
/* -list -NOlistmac -name -pagelen:56 -pagewidth:80 -quiet -warn */
/* -debug -NOigcase -cpu:Z16F2811AL */

-FORMAT=OMF695,INTEL32
-map -maxhexlen=64 -quiet -warnoverlap -NOxref -unresolved=fatal
-sort NAME=ascending -warn -debug -NOigcase

RANGE ROM $000000 : $007FFF
RANGE RAM $FFB000 : $FFBFFF
RANGE IODATA $FFC000 : $FFFFFF
RANGE EROM $008000 : $01FFFF
UM017105-0511 Sample Linker Map File

282

Zilog Developer Studio II – ZNEO™
User Manual
RANGE ERAM $800000 : $81FFFF

CHANGE NEAR_TEXT=NEAR_DATA
CHANGE FAR_TEXT=FAR_DATA

ORDER FAR_BSS, FAR_DATA
ORDER NEAR_BSS,NEAR_DATA
COPY NEAR_DATA EROM
COPY FAR_DATA EROM

define _0_exit = 0
define _low_near_romdata = copy base of NEAR_DATA
define _low_neardata = base of NEAR_DATA
define _len_neardata = length of NEAR_DATA
define _low_far_romdata = copy base of FAR_DATA
define _low_fardata = base of FAR_DATA
define _len_fardata = length of FAR_DATA
define _low_nearbss = base of NEAR_BSS
define _len_nearbss = length of NEAR_BSS
define _low_farbss = base of FAR_BSS
define _len_farbss = length of FAR_BSS
define _near_heaptop = highaddr of RAM
define _far_heaptop = highaddr of ERAM
define _far_stack = highaddr of ERAM
define _near_stack = highaddr of RAM
define _near_heapbot = top of RAM
define _far_heapbot = top of ERAM
DEFINE _SYS_CLK_SRC = 2
DEFINE _SYS_CLK_FREQ = 20000000

DEFINE __EXTCT_INIT_PARAM = $c0

DEFINE __EXTCS0_INIT_PARAM = $8012
DEFINE __EXTCS1_INIT_PARAM = $8001
DEFINE __EXTCS2_INIT_PARAM = $0000
DEFINE __EXTCS3_INIT_PARAM = $0000
DEFINE __EXTCS4_INIT_PARAM = $0000
DEFINE __EXTCS5_INIT_PARAM = $0000
DEFINE __PFAF_INIT_PARAM = $ff
DEFINE __PGAF_INIT_PARAM = $ff
DEFINE __PDAF_INIT_PARAM = $ff00
DEFINE __PAAF_INIT_PARAM = $0000
DEFINE __PCAF_INIT_PARAM = $0000
DEFINE __PHAF_INIT_PARAM = $0300
DEFINE __PKAF_INIT_PARAM = $0f

"C:\PROGRA~1\Zilog\ZDSII_~1.0\samples\QUICKS~1\Debug\Z16F2800100ZCOG"=
C:\PROGRA~1\Zilog\ZDSII_~1.0\lib\zilog\startupexkS.obj, .\main.obj,
Sample Linker Map File UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

283
.\Z16F2800100ZCOG.obj, C:\PROGRA~1\Zilog\ZDSII_~1.0\lib\std\chelpSD.lib,
C:\PROGRA~1\Zilog\ZDSII_~1.0\lib\std\crtSD.lib,
C:\PROGRA~1\Zilog\ZDSII_~1.0\lib\std\fpSD.lib

SPACE ALLOCATION:
=================

Space Base Top Size
------------------ ----------- ----------- ---------
EROM C:008000 C:008502 503h
RAM R:FFB000 R:FFB042 43h
ROM T:0000 T:013F 140h

SEGMENTS WITHIN SPACE:
======================

EROM Type Base Top Size
------------------ ------------------- ----------- ----------- ---------
_100zcog_TEXT normal data C:008062 C:0082F9 298h
_sputch_TEXT normal data C:008494 C:0084AB 18h
_uputch_TEXT normal data C:008474 C:008493 20h
CODE normal data C:008000 C:008019 1ah
ei_TEXT normal data C:008460 C:008467 8h
getchar_TEXT normal data C:008468 C:008473 ch
main_TEXT normal data C:00801A C:008061 48h
mstring_TEXT normal data C:0084AC C:0084D9 2eh
NEAR_DATA * segment copy * C:0084F6 C:008502 dh
putchar_TEXT normal data C:00843E C:00845F 22h
sio_TEXT normal data C:0082FA C:00843D 144h
t_putch_TEXT normal data C:0084DA C:0084F5 1ch

RAM Type Base Top Size
------------------ ------------------- ----------- ----------- ---------
NEAR_BSS normal data R:FFB000 R:FFB035 36h
NEAR_DATA normal data R:FFB036 R:FFB042 dh

ROM Type Base Top Size
------------------ ------------------- ----------- ----------- ---------
____flash_option0_ absolute data T:0000 T:0000 1h
____flash_option1_ absolute data T:0001 T:0001 1h
____flash_option2_ absolute data T:0002 T:0002 1h
____flash_option3_ absolute data T:0003 T:0003 1h
__VECTORS_04 absolute data T:0004 T:0007 4h
UM017105-0511 Sample Linker Map File

284

Zilog Developer Studio II – ZNEO™
User Manual
__VECTORS_08 absolute data T:0008 T:000B 4h
__VECTORS_0C absolute data T:000C T:000F 4h
__VECTORS_10 absolute data T:0010 T:0013 4h
__VECTORS_14 absolute data T:0014 T:0017 4h
__VECTORS_18 absolute data T:0018 T:001B 4h
__VECTORS_1C absolute data T:001C T:001F 4h
__VECTORS_20 absolute data T:0020 T:0023 4h
__VECTORS_24 absolute data T:0024 T:0027 4h
__VECTORS_28 absolute data T:0028 T:002B 4h
__VECTORS_2C absolute data T:002C T:002F 4h
__VECTORS_30 absolute data T:0030 T:0033 4h
__VECTORS_34 absolute data T:0034 T:0037 4h
__VECTORS_38 absolute data T:0038 T:003B 4h
__VECTORS_3C absolute data T:003C T:003F 4h
__VECTORS_40 absolute data T:0040 T:0043 4h
__VECTORS_44 absolute data T:0044 T:0047 4h
__VECTORS_48 absolute data T:0048 T:004B 4h
__VECTORS_4C absolute data T:004C T:004F 4h
__VECTORS_50 absolute data T:0050 T:0053 4h
__VECTORS_54 absolute data T:0054 T:0057 4h
__VECTORS_58 absolute data T:0058 T:005B 4h
__VECTORS_5C absolute data T:005C T:005F 4h
__VECTORS_60 absolute data T:0060 T:0063 4h
__VECTORS_64 absolute data T:0064 T:0067 4h
__VECTORS_68 absolute data T:0068 T:006B 4h
__VECTORS_6C absolute data T:006C T:006F 4h
ROM_TEXT normal data T:0070 T:007B ch
startup normal data T:007C T:013F c4h

SEGMENTS WITHIN MODULES:
========================

Module: ..\..\src\boot\common\startupexs.asm (File: startupexkS.obj) Version:
1:0 12/06/2005 16:57:27

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_04 T:0004 T:0007 4h
 Segment: NEAR_BSS R:FFB000 R:FFB003 4h
 Segment: startup T:007C T:013F c4h

Module: ..\SOURCE\MAIN.C (File: main.obj) Version: 1:0 12/07/2005 13:51:42

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: main_TEXT C:00801A C:008061 48h
Sample Linker Map File UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

285
 Segment: NEAR_BSS R:FFB004 R:FFB007 4h
 Segment: ROM_TEXT T:0070 T:007B ch

Module: ..\SOURCE\Z16F2800100ZCOG.C (File: Z16F2800100ZCOG.obj) Version: 1:0
12/07/2005 13:51:43

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: _100zcog_TEXT C:008062 C:0082F9 298h
 Segment: __VECTORS_18 T:0018 T:001B 4h
 Segment: NEAR_BSS R:FFB008 R:FFB014 dh
 Segment: NEAR_DATA R:FFB036 R:FFB03D 8h

Module: COMMON\EI.C (Library: crtSD.lib) Version: 1:0 12/06/2005 16:58:06

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: ei_TEXT C:008460 C:008467 8h

Module: COMMON\FLASH0.C (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: ____flash_option0_segment T:0000 T:0000 1h

Module: COMMON\FLASH1.C (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: ____flash_option1_segment T:0001 T:0001 1h

Module: COMMON\FLASH2.C (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: ____flash_option2_segment T:0002 T:0002 1h

Module: COMMON\FLASH3.C (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45
UM017105-0511 Sample Linker Map File

286

Zilog Developer Studio II – ZNEO™
User Manual
 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: ____flash_option3_segment T:0003 T:0003 1h

Module: COMMON\GETCHAR.C (Library: crtSD.lib) Version: 1:0 12/06/2005 16:57:59

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: getchar_TEXT C:008468 C:008473 ch

Module: COMMON\PRINT_GLOBALS.C (Library: crtSD.lib) Version: 1:0 12/06/2005
16:58:01

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: NEAR_BSS R:FFB015 R:FFB035 21h
 Segment: NEAR_DATA R:FFB03F R:FFB042 4h

Module: COMMON\PRINT_PUTCH.C (Library: crtSD.lib) Version: 1:0 12/06/2005
16:58:01

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: t_putch_TEXT C:0084DA C:0084F5 1ch

Module: COMMON\PRINT_PUTROMSTRING.C (Library: crtSD.lib) Version: 1:0 12/06/
2005 16:58:02

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: mstring_TEXT C:0084AC C:0084D9 2eh

Module: COMMON\PRINT_SPUTCH.C (Library: crtSD.lib) Version: 1:0 12/06/2005
16:58:01

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: _sputch_TEXT C:008494 C:0084AB 18h

Module: COMMON\PRINT_UPUTCH.C (Library: crtSD.lib) Version: 1:0 12/06/2005
16:58:01
Sample Linker Map File UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

287
 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: _uputch_TEXT C:008474 C:008493 20h

Module: COMMON\PUTCHAR.C (Library: crtSD.lib) Version: 1:0 12/06/2005 16:58:02

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: putchar_TEXT C:00843E C:00845F 22h

Module: COMMON\SIO.C (Library: crtSD.lib) Version: 1:0 12/06/2005 16:58:03

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: NEAR_DATA R:FFB03E R:FFB03E 1h
 Segment: sio_TEXT C:0082FA C:00843D 144h

Module: common\ucase.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: CODE C:008000 C:008019 1ah

Module: common\vect08.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_08 T:0008 T:000B 4h

Module: common\vect0c.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_0C T:000C T:000F 4h

Module: common\vect10.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45
UM017105-0511 Sample Linker Map File

288

Zilog Developer Studio II – ZNEO™
User Manual
 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_10 T:0010 T:0013 4h

Module: common\vect14.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_14 T:0014 T:0017 4h

Module: common\vect1c.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_1C T:001C T:001F 4h

Module: common\vect20.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_20 T:0020 T:0023 4h

Module: common\vect24.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_24 T:0024 T:0027 4h

Module: common\vect28.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_28 T:0028 T:002B 4h

Module: common\vect2c.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45
Sample Linker Map File UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

289
 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_2C T:002C T:002F 4h

Module: common\vect30.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_30 T:0030 T:0033 4h

Module: common\vect34.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_34 T:0034 T:0037 4h

Module: common\vect38.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_38 T:0038 T:003B 4h

Module: common\vect3c.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_3C T:003C T:003F 4h

Module: common\vect40.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_40 T:0040 T:0043 4h

Module: common\vect44.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45
UM017105-0511 Sample Linker Map File

290

Zilog Developer Studio II – ZNEO™
User Manual
 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_44 T:0044 T:0047 4h

Module: common\vect48.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_48 T:0048 T:004B 4h

Module: common\vect4c.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_4C T:004C T:004F 4h

Module: common\vect50.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_50 T:0050 T:0053 4h

Module: common\vect54.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_54 T:0054 T:0057 4h

Module: common\vect58.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_58 T:0058 T:005B 4h

Module: common\vect5c.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45
Sample Linker Map File UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

291
 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_5C T:005C T:005F 4h

Module: common\vect60.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_60 T:0060 T:0063 4h

Module: common\vect64.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_64 T:0064 T:0067 4h

Module: common\vect68.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_68 T:0068 T:006B 4h

Module: common\vect6c.asm (Library: chelpSD.lib) Version: 1:0 12/06/2005
16:59:45

 Name Base Top Size
 --------------------------------------- ----------- ----------- ---------
 Segment: __VECTORS_6C T:006C T:006F 4h

EXTERNAL DEFINITIONS:
=====================

Symbol Address Module Segment
-------------------------------- ----------- --------------- -----------------

_0_exit 00000000 (User Defined)
___print_buff R:FFB015 PRINT_GLOBALS NEAR_BSS
___print_fmt R:FFB022 PRINT_GLOBALS NEAR_BSS
___print_leading_char R:FFB033 PRINT_GLOBALS NEAR_BSS
___print_len R:FFB032 PRINT_GLOBALS NEAR_BSS
UM017105-0511 Sample Linker Map File

292

Zilog Developer Studio II – ZNEO™
User Manual
___print_out R:FFB034 PRINT_GLOBALS NEAR_BSS
___print_putch C:0084DA PRINT_PUTCH t_putch_TEXT
___print_putromstring C:0084AC PRINT_PUTROMSTR mstring_TEXT
___print_sputch C:008494 PRINT_SPUTCH _sputch_TEXT
___print_uputch C:008474 PRINT_UPUTCH _uputch_TEXT
___print_xputch R:FFB03F PRINT_GLOBALS NEAR_DATA
__EXTCS0_INIT_PARAM 00008012 (User Defined)
__EXTCS1_INIT_PARAM 00008001 (User Defined)
__EXTCS2_INIT_PARAM 00000000 (User Defined)
__EXTCS3_INIT_PARAM 00000000 (User Defined)
__EXTCS4_INIT_PARAM 00000000 (User Defined)
__EXTCS5_INIT_PARAM 00000000 (User Defined)
__EXTCT_INIT_PARAM 000000C0 (User Defined)
__flash_option0 T:0000 FLASH0
____flash_option0_segment
__flash_option1 T:0001 FLASH1
____flash_option1_segment
__flash_option2 T:0002 FLASH2
____flash_option2_segment
__flash_option3 T:0003 FLASH3
____flash_option3_segment
__PAAF_INIT_PARAM 00000000 (User Defined)
__PCAF_INIT_PARAM 00000000 (User Defined)
__PDAF_INIT_PARAM 0000FF00 (User Defined)
__PFAF_INIT_PARAM 000000FF (User Defined)
__PGAF_INIT_PARAM 000000FF (User Defined)
__PHAF_INIT_PARAM 00000300 (User Defined)
__PKAF_INIT_PARAM 0000000F (User Defined)
__ucase C:008000 ucase CODE
__VECTOR_04 T:0000 startupexs __VECTORS_04
__VECTOR_08 T:0000 vect08 __VECTORS_08
__VECTOR_0C T:000C vect0c __VECTORS_0C
__VECTOR_10 T:0000 vect10 __VECTORS_10
__VECTOR_14 T:0000 vect14 __VECTORS_14
__VECTOR_18 T:0000 Z16F2800100ZCOG __VECTORS_18
__VECTOR_1C T:0000 vect1c __VECTORS_1C
__VECTOR_20 T:0000 vect20 __VECTORS_20
__VECTOR_24 T:0000 vect24 __VECTORS_24
__VECTOR_28 T:0000 vect28 __VECTORS_28
__VECTOR_2C T:0000 vect2c __VECTORS_2C
__VECTOR_30 T:0000 vect30 __VECTORS_30
__VECTOR_34 T:0000 vect34 __VECTORS_34
__VECTOR_38 T:0000 vect38 __VECTORS_38
__VECTOR_3C T:0000 vect3c __VECTORS_3C
__VECTOR_40 T:0000 vect40 __VECTORS_40
__VECTOR_44 T:0000 vect44 __VECTORS_44
__VECTOR_48 T:0000 vect48 __VECTORS_48
__VECTOR_4C T:0000 vect4c __VECTORS_4C
Sample Linker Map File UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

293
__VECTOR_50 T:0000 vect50 __VECTORS_50
__VECTOR_54 T:0000 vect54 __VECTORS_54
__VECTOR_58 T:0000 vect58 __VECTORS_58
__VECTOR_5C T:0000 vect5c __VECTORS_5C
__VECTOR_60 T:0000 vect60 __VECTORS_60
__VECTOR_64 T:0000 vect64 __VECTORS_64
__VECTOR_68 T:0000 vect68 __VECTORS_68
__VECTOR_6C T:0000 vect6c __VECTORS_6C
__VECTOR_adc T:0000 vect2c __VECTORS_2C
__VECTOR_c0 T:0000 vect6c __VECTORS_6C
__VECTOR_c1 T:0000 vect68 __VECTORS_68
__VECTOR_c2 T:0000 vect64 __VECTORS_64
__VECTOR_c3 T:0000 vect60 __VECTORS_60
__VECTOR_i2c T:0000 vect24 __VECTORS_24
__VECTOR_p0ad T:0000 vect4c __VECTORS_4C
__VECTOR_p1ad T:0000 vect48 __VECTORS_48
__VECTOR_p2ad T:0000 vect44 __VECTORS_44
__VECTOR_p3ad T:0000 vect40 __VECTORS_40
__VECTOR_p4ad T:0000 vect3c __VECTORS_3C
__VECTOR_p5ad T:0000 vect38 __VECTORS_38
__VECTOR_p6ad T:0000 vect34 __VECTORS_34
__VECTOR_p7ad T:0000 vect30 __VECTORS_30
__VECTOR_pwm_fault T:0000 vect5c __VECTORS_5C
__VECTOR_pwm_timer T:0000 vect50 __VECTORS_50
__VECTOR_reset T:0000 startupexs __VECTORS_04
__VECTOR_spi T:0000 vect28 __VECTORS_28
__VECTOR_sysexc T:0000 vect08 __VECTORS_08
__VECTOR_timer0 T:0000 Z16F2800100ZCOG __VECTORS_18
__VECTOR_timer1 T:0000 vect14 __VECTORS_14
__VECTOR_timer2 T:0000 vect10 __VECTORS_10
__VECTOR_uart0_rx T:0000 vect1c __VECTORS_1C
__VECTOR_uart0_tx T:0000 vect20 __VECTORS_20
__VECTOR_uart1_rx T:0000 vect54 __VECTORS_54
__VECTOR_uart1_tx T:0000 vect58 __VECTORS_58
_c_startup T:007C startupexs startup
_ch R:FFB004 MAIN NEAR_BSS
_EI C:008460 EI ei_TEXT
_errno R:FFB000 startupexs NEAR_BSS
_exit T:013E startupexs startup
_far_heapbot 007FFFFF (User Defined)
_far_heaptop 0081FFFF (User Defined)
_far_stack 0081FFFF (User Defined)
_getch C:0083F6 SIO sio_TEXT
_getchar C:008468 GETCHAR getchar_TEXT
_getState C:008062 Z16F2800100ZCOG _100zcog_TEXT
_gpio_init C:00815A Z16F2800100ZCOG _100zcog_TEXT
_init_uart C:00831A SIO sio_TEXT
_kbhit C:0083CC SIO sio_TEXT
UM017105-0511 Sample Linker Map File

294

Zilog Developer Studio II – ZNEO™
User Manual
_len_farbss 00000000 (User Defined)
_len_fardata 00000000 (User Defined)
_len_nearbss 00000036 (User Defined)
_len_neardata 0000000D (User Defined)
_low_far_romdata 00000000 (User Defined)
_low_farbss 00000000 (User Defined)
_low_fardata 00000000 (User Defined)
_low_near_romdata 000084F6 (User Defined)
_low_nearbss 00FFB000 (User Defined)
_low_neardata 00FFB036 (User Defined)
_main C:00801A MAIN main_TEXT
_near_heapbot 00FFB042 (User Defined)
_near_heaptop 00FFBFFF (User Defined)
_near_stack 00FFBFFF (User Defined)
_putch C:0083AC SIO sio_TEXT
_putchar C:00843E PUTCHAR putchar_TEXT
_select_port C:0082FA SIO sio_TEXT
_setState C:0080A0 Z16F2800100ZCOG _100zcog_TEXT
_State R:FFB011 Z16F2800100ZCOG NEAR_BSS
_SYS_CLK_FREQ 01312D00 (User Defined)
_SYS_CLK_SRC 00000002 (User Defined)
_sysclk_init C:00819C Z16F2800100ZCOG _100zcog_TEXT
_SysClkFreq R:FFB009 Z16F2800100ZCOG NEAR_BSS
_SysClkSrc R:FFB008 Z16F2800100ZCOG NEAR_BSS
_system_init C:0082B0 Z16F2800100ZCOG _100zcog_TEXT
_Ticks R:FFB00D Z16F2800100ZCOG NEAR_BSS
_timer_init C:008272 Z16F2800100ZCOG _100zcog_TEXT
_timer_isr C:0081FC Z16F2800100ZCOG _100zcog_TEXT

125 external symbol(s).

START ADDRESS:
==============
(T:007C) set in module ..\..\src\boot\common\startupexs.asm.

END OF LINK MAP:
================
0 Errors
0 Warnings
Sample Linker Map File UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

295
Troubleshooting the Linker

Review the following questions to learn more about common situations you may encoun-
ter when using the linker.

How do I speed up the linker?

Use the following tips to lower linker execution times:

• If you do not need a link map file, deselect the Generate Map File checkbox in the
Project Settings dialog box (Output page); see page 73.

• Make sure that all DOS windows are minimized.

How do I generate debug information without generating
code?

Use the COPY or CHANGE command in the linker to copy or change a segment to the
predefined NULL space. If you copy the segment to the NULL space, the region is still
allocated but no data is written for it. If you change the segment to the NULL space, the
region is not allocated at all.

The following examples are of commands in the linker command file:

COPYmyseg NULL
CHANGE myseg = NULL

How much memory is my program using?

Unless the Generate Map File checkbox is unchecked in the Project Settings dialog box
(Output page), the linker creates a link map file each time it is run. The link map file name
is the same as your executable file with the .map extension and resides in the same direc-
tory as your project file. The link map has a wealth of information about the memory
requirements of your program. Views of memory usage from the space, segment, and
module perspective are given as are the names and locations of all public symbols. See the
Generate Map File section on page 73 and the MAP command on page 267.

How do I create a hex file?

Select Intel Hex32 Records from the Executable Formats area in the Project Settings
dialog box (see the Project Settings—Output Page section on page 72).
UM017105-0511 Troubleshooting the Linker

296

Zilog Developer Studio II – ZNEO™
User Manual
How do I determine the size of my actual hex code?

Refer to the map file. Unless the Generate Map File checkbox is unchecked in the Project
Settings dialog box (see the Generate Map File section on page 73), the linker creates a
link map file each time it is run. The link map file name is the same as your executable file
with the .map extension and resides in the same directory as your project file.
Troubleshooting the Linker UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

297
Warning and Error Messages

If you see an internal error message, please report it to Technical Support at http://sup-
port.zilog.com. Zilog staff will use the information to diagnose or log the problem.

This section covers warning and error messages for the linker/locator.

700 Absolute segment "<name>" is not on a MAU boundary. The named segment is
not aligned on a Minimum Addressable Unit boundary. Padding or a correctly aligned
absolute location must be supplied.

701 <address range error message>. A group, section, or address space is larger than is
specified maximum length.

704 Locate of a type is invalid. Type "<typename>". It is not permitted to specify an
absolute location for a type.

708 "<name>" is not a valid group, space, or segment.

An invalid record type was encountered. Most likely, the object or library file is corrupted.

710 Merging two located spaces "<space1> <space2>" is not allowed. When merg-
ing two or more address spaces, at most one of them can be located absolutely.

711 Merging two located groups "<group1> <group2>". When merging two or more
groups, at most one can be located absolutely.

712 Space "<space>" is not located on a segment base. The address space is not
aligned with a segment boundary.

713 Space "<space>" is not defined. The named address space is not defined.

714 Multiple locates for "<name>" have been specified. Multiple absolute locations
have been specified for the named group, section, or address space.

715 Module "<name>" contains errors or warnings. Compilation of the named module
produced a nonzero exit code.

717 Invalid expression. An expression specifying a symbol value could not be parsed.

718 "<segment>" is not in the specified range. The named segment is not within the
allowed address range.

Note:
UM017105-0511 Warning and Error Messages

http://support.zilog.com
http://support.zilog.com

298

Zilog Developer Studio II – ZNEO™
User Manual
719 "<segment>" is an absolute or located segment. Relocation was ignored. An
attempt was made to relocate an absolutely located segment.

720 "<name> calls <name>" graph node which is not defined. This message provides
detailed information about how an undefined function name is called.

721 Help file "<name>" not found. The named help file could not be found. You may
need to reinstall the development system software.

723 "<name>" has not been ordered. The named group, section, or address space does
not have an order assigned to it.

724 Symbol <name> (<file>) is not defined. The named symbol is referenced in the
given file, but not defined. Only the name of the file containing the first reference is listed
within the parentheses; it can also be referenced in other files.

726 Expression structure could not be stored. Out of memory. Memory to store an
expression structure could not be allocated.

727 Group structure could not be stored. Out of memory. Memory to store a group
structure could not be allocated.

730 Range structure could not be stored. Out of memory. Memory to store a range
structure could not be allocated.

731 File "<file>" is not found. The named input file or a library file name or the structure
containing a library file name was not found.

732 Error encountered opening file "<file>". The named file could not be opened.

736 Recursion is present in call graph. A loop has been found in the call graph, indicat-
ing recursion.

738 Segment "<segment>" is not defined. The referenced segment name has not been
defined.

739 Invalid space "<space>" is defined. The named address space is not valid. It must
be either a group or an address space.

740 Space "<space>" is not defined. The referenced space name is not defined.

742 <error message>. A general-purpose error message.

743 Vector "<vector>" not defined. The named interrupt vector could not be found in
the symbol table.
Warning and Error Messages UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

299
745 Configuration bits mismatch in file <file>. The mode bit in the current input file
differs from previous input files.

746 Symbol <name> not attached to a valid segment. The named symbol is not
assigned to a valid segment.

747 <message>. General-purpose error message for reporting out-of-range errors. An
address does not fit within the valid range.

748 <message>. General-purpose error message for OMF695 to OMF251 conversion.
The requested translation could not proceed.

749 Could not allocate global register. A global register was requested, but no register
of the desired size remains available.

751 Error opening output file "<outfile>". The named load module file could not be
opened.

753 Segment '<segment>' being copied is splittable. A segment, which is to be cop-
ied, is being marked as splittable, but start-up code might assume that it is contiguous.
UM017105-0511 Warning and Error Messages

300

Zilog Developer Studio II – ZNEO™
User Manual
Warning and Error Messages UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

301
Chapter 7. Configuring Memory for Your
Program

The ZNEO CPU architecture provides a single unified address space for both internal and
external memory and I/O. Several address ranges within this space can be configured for
various purposes, providing a great deal of flexibility for creating a program configuration
tailored to your target design and application needs. The cost of this flexibility is that you
must understand how to set up the project settings and initialization to support your pre-
ferred configuration. This chapter provides the information required to configure your
project to support the programming model that best fits your needs.

This chapter covers the following topics:

• ZNEO Memory Layout – see page 301

• Programmer’s Model of ZNEO Memory – see page 303

• Program Configurations – see page 308

The first two sections describe the relationship between the ZNEO CPU’s physical mem-
ory layout and the functional address ranges available to the programmer. Understanding
this relationship is the key to correctly configuring your project. The last section presents
several examples of program configuration, covering the configurations that are expected
to be most commonly used.

ZNEO Memory Layout

The ZNEO CPU has a unique memory architecture with a unified 24-bit physical address
space. (ZNEO CPU effective addresses are 32 bits wide, but current devices ignore bits
[31:24].) The physical address space can address four types of memory and I/O, as fol-
lows:

• Internal nonvolatile memory

• Internal RAM

• Internal I/O memory and special-function registers (SFRs)

• External memory and memory mapped peripherals

The internal memory and I/O are always present in ZNEO devices, and are located at spe-
cific address ranges in the unified address space. External memory or I/O is optional, and
its location in the address space is determined by the target hardware design.

To promote code efficiency, the ZNEO CPU supports shorter 16-bit data addressing for
the address ranges 00_0000H-00_7FFFH and FF_8000H-FF_FFFFH. 32-bit addressing
UM017105-0511 Configuring Memory for Your Program

302

Zilog Developer Studio II – ZNEO™
User Manual
can also be used in these ranges. The range 00_8000H–FF_7FFFH requires 32-bit
addresses. Figure 130 on page 302 shows the typical address layout of memory types
available in the ZNEO architecture.

Figure 130. Typical ZNEO Physical Memory Layout

Memory TypeAddress

FF_FFFFH

FF_E000H
FF_DFFFH

FF_C000H
FF_BFFFH

FF_B000H

00_8000H
00_7FFFH

00_0000H

Internal I/O and SFRs

External Memory or I/O
(optional)

Internal Random Access Memory

External Memory or I/O
(optional)

Internal Flash

(4K RAM Part)

FF_AFFFH

FF_7FFFH
FF_8000H

00_FFFFH
01_0000H

(64K Flash Part)

16-Bit
Addressable

16-Bit
Addressable

Internal Memory and I/O

Not to Scale

(Data)

(Data)
ZNEO Memory Layout UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

303
ZNEO CPU-based devices have internal nonvolatile memory starting at address
00_0000H. For example, a device equipped with 128K of Flash has internal nonvolatile
memory starting at address 00_0000H and ending at address 01_FFFFH.

ZNEO CPU-based devices have internal RAM ending at address FF_BFFFH, while the
beginning address (and hence the total extent of this area) is device dependent. For exam-
ple, a device equipped with 4K of RAM has internal RAM starting at address FF_B000H
and ending at address FF_BFFFH.

ZNEO CPU-based devices reserve 8K of addresses for internal memory-mapped I/O,
located at addresses FF_E000H-FF_FFFFH. This memory contains CPU control registers
and other SFRs, on-chip peripherals, and memory-mapped I/O ports.

Finally, ZNEO CPU-based devices provide an external interface that allows seamless con-
nection to external memory and/or peripherals. External memory can be nonvolatile mem-
ory such as Flash, volatile (random access) memory, or both.

The external interface supports multiple chip select signals (CSx), which the target system
designer can use as required to enable different devices on the external interface. One chip
select is asserted whenever an external memory or I/O address is accessed. Each chip
select is available for use in a particular address range with a particular priority, but note
that the actual external address ranges available on a target system depend on its design.
For details about chip select priorities and address spaces, refer to the individual product
specification for your ZNEO CPU-based device.

To use ZDS II, a detailed understanding of chip selects is not required. It is only necessary
to enable and configure the chip selects used by the target system, and to add the actual
external address ranges, as implemented on the target, to the Address Spaces page of the
Project Settings dialog box (see page 68).

Programmer’s Model of ZNEO Memory

Different address ranges in the 24-bit ZNEO CPU memory space are suited for different
functions, depending on whether the corresponding memory is volatile or nonvolatile,
whether it can be addressed using 16 or 32 bits, and whether it is reserved or otherwise
convenient for I/O. The following considerations affect the suitability of an address range
for various memory functions:

• Volatile (random access) memory contents can be changed easily, so it is used for stor-
ing variable data, and can also contain program code downloaded temporarily or cop-
ied from nonvolatile memory.

• Nonvolatile memory is not easily changed, but is also unaffected by power loss, so it
is used for storing constants, variable initializers, program code, option bits, and vec-
tors.
UM017105-0511 Programmer’s Model of ZNEO Memory

304

Zilog Developer Studio II – ZNEO™
User Manual
• Data in 16-bit addressable memory can be addressed with short pointers and instruc-
tions, so using these spaces for data results in more compact code. However, 16-bit
addresses can access only two 32 KB areas – one in low memory and one in high
memory – so data-intensive applications might also need to use some 32-bit addressed
memory for data.

• Program code is always fetched using the 32-bit program counter; therefore there are
no addressing restrictions for program code. Placing as little program code as possible
into the 16-bit addressable (for data) space leaves more memory available in that
space for data.

• The ZNEO microcontroller I/O and special function registers are located in the high-
est 8 KB of its 24-bit address space, and extra chip selects are available for external I/O
in the space immediately below internal I/O. Locating I/O functions in the high-mem-
ory 16-bit addressable space allows efficient access to I/O devices.

ZDS II uses five configurable memory ranges to associate a functional purpose to each
part of the target system’s physical memory map. You can configure the address ranges for
each function in the Linker page of the Project Settings dialog box (see the Project Set-
tings—Address Spaces Page section on page 68). Each address range has a corresponding
mnemonic that is used with the assembly language SPACE keyword. The five address
ranges and their SPACE mnemonics are:

Constant data (ROM). This range is typically 00_0000H-00_1FFFH for devices with 32
KB of internal Flash, 00_0000H-00_3FFFH for devices with 64 KB of internal Flash, and
00_0000H-00_7FFFH for devices with 128 KB of internal Flash. The lower boundary
must be 00_0000H. The upper boundary can be lower than 00_7FFFH, but no higher.
Data in this range is addressable using 16 or 32 bits.

The ROM address range includes the ZNEO CPU option bytes and vector table. The C-
Compiler uses the ROM range for constant data, data tables, and start-up code. The assem-
bly language programmer can place any executable code in the ROM range if desired.

The ROM range typically includes only internal Flash, but can include external nonvola-
tile memory if, for example, internal Flash is disabled.

To use any external memory provided on the target system, you must configure the mem-
ory’s chip select in the Configure Target dialog box. See the Project Settings—Debugger
Page section on page 74.

Program space (EROM). Identifies any 32-bit addressed nonvolatile memory space out-
side the ROM range. This range is typically 00_2000H-00_7FFFH for devices with 32
KB of internal Flash, 00_4000H-00_FFFFH for devices with 64 KB of internal Flash, and
00_8000H-01_FFFFH for devices with 128 KB of internal Flash. Specify a larger range
only if the target system provides external nonvolatile memory.

Note:
Programmer’s Model of ZNEO Memory UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

305
The EROM range extends to the highest nonvolatile memory address in the target system.
ZDS II requires the highest EROM address to fall below the specified ERAM (if present)
and RAM ranges.

Normally, the EROM range begins immediately above the ROM range, but this is not
required. The EROM range can include both internal Flash and external nonvolatile mem-
ory, if present. The EROM range is the primary location for storing executable code in
most applications.

Extended RAM (ERAM). The ERAM address range identifies any 32-bit addressed ran-
dom access memory on the target. In current ZNEO CPU-based devices, ERAM is always
external memory. The ERAM range must begin above the highest EROM address. Also,
the ZDS II GUI does not allow an ERAM starting address below 80_0000H. An address
gap is allowed between the EROM and ERAM ranges. The C-Compiler does not support
gaps (holes) within the ERAM range.

The highest ERAM address must fall below the specified RAM address range. (Any exter-
nal volatile memory that is present at or above FF_8000H is 16-bit addressable, so it
should be assigned to the RAM range.) The ERAM address range can be used for data,
stack, or executable code. For details, see the Program Configurations section on
page 308.

Internal RAM (RAM). Typically FF_B700H-FF_BFFFH for 2KB internal RAM or
FF_B000H-FF_BFFFH for 4KB internal RAM. Despite its name, this range can be
expanded up to FF_8000H-FF_BFFFH if the target system provides external random
access memory to fill out this address range. This GUI field does not allow a high RAM
address boundary above FF_BFFFH.

The RAM address range is addressable using either 16 or 32 bits (the ZNEO CPU sign-
extends 16-bit addresses). The C-Compiler does not support gaps (holes) within the RAM
range.

ZDS II uses the RAM address range for nonpermanent storage of data during program exe-
cution. ZDS II can be configured to place code in the RAM address range, if desired. For
more information, see the Program Configurations section on page 308.

Special Function Registers and IO (IODATA). Typically FF_C000H-FF_FFFFH. The
microcontroller reserves addresses FF_E000H and above for its special function registers,
on-chip peripherals, and I/O ports. The ZDS II GUI expects addresses FF_C000H to
FF_DFFFH to be used for external I/O (if any) on the target system.

The IODATA address range is addressable using 16 or 32 bits (the ZNEO CPU sign-
extends 16-bit addresses). ZDS II does not support placing executable code in the
IODATA space.

Figure 131 on page 306 illustrates typical contents of the five ZDS II address ranges and
an example of how they might map to a target’s physical memory.
UM017105-0511 Programmer’s Model of ZNEO Memory

306

Zilog Developer Studio II – ZNEO™
User Manual

Figure 131. Typical ZNEO Programmer’s Model—General

Physical
Address

FF_FFFFH

FF_C000H
FF_BFFFH

00_4000H
00_3FFFH

00_0000H

Internal I/O

Internal RAM

External RAM

Internal Flash

16-Bit
Addressable

16-Bit
Addressable

Not to Scale

Address

IODATA

ERAM

ROM

RAM
External RAM

EROM

External I/O

08_0000H

08_FFFFH

FF_8000H

I/O Access

00_FFFFH

Small Model Stack
RAM Data

Code (Optional)

Large Model Stack
ERAM Data

Code (Optional)

Code (Default)
EROM Data

ROM Data
Start-up Code
Vector Table
Option Bytes

Unused

Unused

Contents

External Flash

(Optional)

(Optional)

(Optional)

(Optional)

Range (Space)

(Data)

(Data)

Example)
Programmer’s Model of ZNEO Memory UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

307
The following default segments are provided by the assembler and associated with spe-
cific address spaces as shown in the following table:

For a detailed description of these segments, see the Predefined Segments section on
page 213.

You can define your own segments in these address spaces using the DEFINE assembler
directive. For example:

DEFINE romseg, SPACE=ROM ; Defines the new segment romseg
SEGMENT romseg ; Sets the current segment to romseg

See the User-Defined Segments section on page 213 for further details.

Unconventional Memory Layouts

It might be necessary for a target design to locate memory or I/O in an address range that
the ZDS II GUI does not directly accommodate. Some GUI address range limitations can
be circumvented, as follows:

• The GUI rejects an ERAM range lower boundary setting below 80_0000H. If the tar-
get locates external volatile memory below this address, an unrestricted ERAM range
can be configured by adding an edited linker RANGE command to the Additional
Linker Commands field of the ZDS II project settings. For example, if the target pro-
vides 8MB of extended RAM at address 70_0000H, you would use this command:

RANGE ERAM $700000 : $FEFFFF

• The GUI rejects a RAM range upper boundary setting above FF_BFFFH. If the target
uses the space above this address for external volatile memory instead of external I/O,
a higher RAM upper boundary (up to FF_DFFFH) can be configured by adding an
edited linker RANGE command to the Additional Linker Commands field of the
ZDS II project settings. The debugger memory window always displays addresses
above FF_BFFFH as part of the I/O Data space, however. For example, if the target
provides 24KB of combined internal and external RAM beginning at FF_8000H, you
would use this command:

RANGE RAM $FF8000 : $FFDFFF

Address
Range (Space) Segment

ROM ROM_DATA, ROM_TEXT, __VECTORS

EROM CODE, EROM_DATA, EROM_TEXT

RAM NEAR_DATA, NEAR_BSS, NEAR_TEXT

ERAM FAR_DATA, FAR_BSS, FAR_TEXT

IODATA IOSEG
UM017105-0511 Programmer’s Model of ZNEO Memory

308

Zilog Developer Studio II – ZNEO™
User Manual
• The ZDS II GUI assumes external I/O is located in the range FF_C000H to FF_DFFFH.
Any external I/O that is located elsewhere can be accessed using absolute addresses.
The debugger memory window displays all addresses below FF_C000H as part of the
Memory space, however.

Program Configurations

With the information given so far in this chapter as background, you are now ready to plan
the memory configuration for your own application. At this point, you should have deter-
mined what external memory, if any, is present on your target system, enabled and config-
ured its chip selects, and added its address space to the linker address ranges. For
information about these settings, see the Project Settings—Debugger Page section on
page 74 and the Project Settings—Address Spaces Page section on page 68.

Now it is necessary to implement your program’s memory configuration using the devel-
opment environment and tools. This section presents several examples of this process,
beginning with the default program configuration provided by the Zilog development
tools. For each configuration, there is a discussion of reasons to choose the configuration
and how to implement the configuration in both C and assembly language projects.

Two distinct features of a program configuration are how its code is downloaded and how
its initial values are copied. Downloading refers to what the development tools do when
they copy your compiled or assembled code and data from your host computer to the
ZNEO CPU’s internal or external memory in preparation for a debugging or test session.
The memory space (ZDS II address range) or spaces into which your program is down-
loaded depend on the memory model that best fits your application. You might also choose
to change those spaces as your application evolves from the early stages of development
closer to production.

The copying of initial values, on the other hand, is carried out by the start-up code in your
application. Usually, the start-up code copies values from nonvolatile memory to a loca-
tion in volatile memory where they are accessed in the main body of your program. In
addition to copying data that must have a specific value on program startup, the start-up
code can also set otherwise uninitialized values to zero (to conform with the C standard).
Unlike the downloading step, the copying step continues to occur in your production code,
typically when the end-user device is powered up or reset.

Default Program Configuration

The default program configuration provided by ZNEO development tools can be used for
production code as well as development. It is designed to provide a general case that meets
the needs of many users. In this configuration, your compiled or assembled program is all
downloaded to the ROM or EROM functional address spaces; see Figure 132.
Program Configurations UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

309
 The start-up code (which is provided in the form of both source code and the standard,
precompiled C start-up module) is downloaded to ROM, and the rest of the executable
program code is downloaded to EROM. The ROM/EROM data (declared using the _Rom
or _Erom keywords in a C application or appropriate SEGMENT directives in an assem-
bly application) are downloaded into their respective address spaces. The initialized val-
ues of all initialized RAM/ERAM data are also downloaded into EROM. The Flash option
bytes and the vector table are downloaded into ROM at addresses appropriate for the spec-
ified device. The start-up module code is executed from ROM, while the rest of the exe-
cutable program code is executed from EROM. The start-up code sets up the external
interface if required, based on the target setup parameters (see Setup – see page 76), and
copies the initial values of RAM/ERAM data from EROM to their respective run-time
addresses in RAM/ERAM.

Figure 132. Programmer’s Model—Default Program Configuration

Code
EROM Data

Copy of ERAM Initializers
Copy of RAM Initializers

16-Bit
Addressable

16-Bit
Addressable

Address

IODATA

ERAM

ROM

RAM

EROM

I/O Access

Small Model Stack
RAM Data

Large Model Stack
ERAM Data

ROM Data
Start-up code
Vector Table
Option Bytes

ContentsRange (Space)

(Data)

(Data)
UM017105-0511 Program Configurations

310

Zilog Developer Studio II – ZNEO™
User Manual
Figure 132 and the other program configuration figures omit physical address and interface
information to emphasize that, once the address ranges have been defined in the project
setup, most memory locations can be expressed symbolically in terms of the functional
space (address range) in which they are located.

C Program Setup

This is the default setup provided by the development tools. You do not have to perform
any additional steps to achieve this configuration. A point to note is that if the C program
is a large model program, the data and stack reside in ERAM by default, so selecting the
large model is not appropriate unless the target has external random access memory that
you have configured in the target setup and added to the ERAM linker address range.

Assembly Program Setup

As an assembly user, you can choose either to use the default segments or to define and
use your own segments in various address spaces. To avoid problems, you must observe
the following guidelines to achieve the same configuration as that used in the default C
program configuration:

• Locate the reset vector routine in the internal memory portion of ROM. For example:

vector reset = _startup

define ROMSEG, space=ROM, org=%70
 segment ROMSEG
_startup: ; startup code here
; any external memory interface initialization should be done here
; any RAM/ERAM data copying should be done here

• Locate the rest of the executable program in EROM. For example:

segment CODE
; program code goes here

• Locate the initialized constant data in ROM/EROM.

• Only allocate space for data in RAM/ERAM using the DS assembler directive and
make sure to not perform any initializations using the DB/DW/DL directive for such
data. Any initializations of RAM/ERAM data should be done in your code. For exam-
ple:

segment NEAR_BSS
val: DS 4 ; allocate 4 uninitialized bytes: OK

segment code
ld r0, #%12345678
ld val, r0 ; initialize ram location val as part of code: OK

Note:
Program Configurations UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

311
segment NEAR_BSS
val: dl %12345678 ; incorrect usage for production code, as RAM does

; not retain value across power cycles: NOT OK

If your application has a lot of such initializations, this approach can be tedious. In
that case, an alternative is to use the linker COPY directive and perform the physical
copy for all of the RAM data as a single loop in the startup. An example can be found
in the C startup provided in the installation under src\boot\common\start-
ups.asm:

;
; Copy ROM data into internal RAM
;

LEA R0,_low_near_romdata
LEA R1,_low_neardata
LD R2,#_len_neardata+1
JP lab10

lab9:
LD.B R3,(R0++)
LD.B (R1++),R3

lab10:
DJNZ R2,lab9

The installation also includes the following linker directives:

COPY NEAR_DATA EROM
define _low_near_romdata = copy base of NEAR_DATA
define _low_neardata = base of NEAR_DATA
define _len_neardata = length of NEAR_DATA

In the above linker directives, NEAR_DATA is the RAM segment containing initialized
data:

segment NEAR_DATA
val1: dl %12345678
val2: dl %23456789
val3: dl %3456789A
…

The linker COPY directive only designates the load addresses and the run-time
addresses for the segments. The actual copying of the data must be performed by the
user code as shown above.

• Assembly users can perform their own external interface setup in the start-up code.
This can be made easier if you take advantage of some definitions provided by the
Configure Target dialog box (see the Setup section on page 76). An example can be
found in the C startup provided in the installation under src\boot\com-
mon\startupexs.asm. The ZDS II IDE generates the following linker directives
based on your settings in the Target Configure dialog box:

DEFINE __EXTCT_INIT_PARAM = $c0
UM017105-0511 Program Configurations

312

Zilog Developer Studio II – ZNEO™
User Manual
DEFINE __EXTCS0_INIT_PARAM = $8012
DEFINE __EXTCS1_INIT_PARAM = $8001
DEFINE __EXTCS2_INIT_PARAM = $0000
DEFINE __EXTCS3_INIT_PARAM = $0000
DEFINE __EXTCS4_INIT_PARAM = $0000
DEFINE __EXTCS5_INIT_PARAM = $0000
DEFINE __PFAF_INIT_PARAM = $ff
DEFINE __PGAF_INIT_PARAM = $ff
DEFINE __PDAF_INIT_PARAM = $ff00
DEFINE __PAAF_INIT_PARAM = $0000
DEFINE __PCAF_INIT_PARAM = $0000
DEFINE __PHAF_INIT_PARAM = $0300
DEFINE __PKAF_INIT_PARAM = $0f

You can initialize the external interface registers based on these defines as part of your
startup. For example:

LDR0,#__EXTCT_INIT_PARAM
LD.BEXTCT,R0; Setup EXTCT

LDR0,#EXTCS0; Setup EXTCS0-EXTCS5
LD (R0++),#((__EXTCS0_INIT_PARAM <<16)|__EXTCS1_INIT_PARAM)
LD (R0++),#((__EXTCS2_INIT_PARAM <<16)|__EXTCS3_INIT_PARAM)
LD (R0++),#((__EXTCS4_INIT_PARAM <<16)|__EXTCS5_INIT_PARAM)

 ; Setup Port Alternate functions.
LDR0,#__PAAF_INIT_PARAM
LD.WPAAF,R0
LDR0,#__PCAF_INIT_PARAM
LD.WPCAF,R0
LDR0,#__PDAF_INIT_PARAM
LD.WPDAF,R0
LDR0,#__PFAF_INIT_PARAM
LD.BPFAFL,R0
LDR0,#__PGAF_INIT_PARAM
LD.BPGAFL,R0
LDR0,#__PHAF_INIT_PARAM
LD.WPHAF,R0
LDR0,#__PKAF_INIT_PARAM
LD.BPKAFL,R0

Following the above guidelines, an assembly user can achieve the Default Program
Configuration for production code.

Download to ERAM Program Configuration

The Download to ERAM Program Configuration, shown in Figure 133, can be used only
during development and not for production code. It is similar to the Default Program Con-
Program Configurations UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

313
figuration; the only difference is that aside from the start-up code, the rest of the execut-
able program is downloaded into ERAM and executed from ERAM.

Because ERAM cannot retain values across power cycles, this configuration is meant for
development only. By using this configuration, you can avoid erasing and burning the exe-
cutable code in Flash multiple times as part of the development cycle.

This program configuration requires that the target system contain external RAM that has
been configured in the target setup and added to the ERAM linker address range.

Figure 133. Programmer’s Model—Download to ERAM Program Configuration

EROM Data
Copy of ERAM Initializers
Copy of RAM Initializers

Address

IODATA

ERAM

ROM

RAM

EROM

I/O Access

Small Model Stack
RAM Data

Large Model Stack
ERAM Data

ROM Data
Start-up Code
Vector Table
Option Bytes

ContentsRange (Space)

Code

16-Bit
Addressable

16-Bit
Addressable

(Data)

(Data)
UM017105-0511 Program Configurations

314

Zilog Developer Studio II – ZNEO™
User Manual
C Program Setup

The C program setup for the Download to ERAM Program Configuration is similar to the
Default Program Configuration with some additional steps as described in this section.

The C-Compiler by default generates the executable program code under one unified seg-
ment named CODE. The CODE segment belongs to EROM address space. To set up this
configuration, you must move this CODE segment from EROM to ERAM address space.
Do this by adding the following linker command in the Additional Linker Directives dia-
log box (see the Additional Directives section on page 62):

change code=ERAM /* The linker will then allocate code segment in
ERAM */

To go back to the Default Program Configuration for production code, remove this direc-
tive from the Additional Linker Directives dialog box.

Special Case: Partial Download to ERAM

A special case of this configuration is to download program code from just one C source
file into ERAM, while retaining the rest of the code in EROM. This example is included
for completeness because similar cases of partitioning the code are discussed for the other
configurations that are covered in this chapter.

Perform the following steps:

1. Select the Distinct Code Segment for Each Module checkbox in the Advanced
page in the Project Settings dialog box (discussed on page 59). This option directs
the C-Compiler to generate different code segment names for each file.

2. Use the linker CHANGE directive to move the particular segment to ERAM.

For example, to download the code for main.c to ERAM, add the following linker
command in the Additional Linker Directives dialog box (see Additional Directives
– see page 62):

change main_TEXT = ERAM

To go back to the Default Program Configuration for production code, remove this
directive from the Additional Linker Directives dialog box.

Assembly Program Setup

The Assembly program setup for the Download to ERAM Program Configuration is simi-
lar to the Default Program Configuration with some additional guidelines, as described in
this section.

Write all of the executable program (non-start-up) code under the CODE segment. This
segment belongs to EROM address space. To set up this configuration, you must move the
CODE segment from EROM to the ERAM address space by adding the following linker
Program Configurations UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

315
command in the Additional Linker Directives dialog box (see Additional Directives – see
page 62):

change code=ERAM /* The linker will then allocate code segment in
ERAM */

To go back to the Default Program Configuration for production code, remove this direc-
tive from the Additional Linker Directives dialog box.

Special Case: Partial Download to ERAM

A special case of this configuration is to download program code from just one assembly
segment into ERAM, while retaining the rest of the code in EROM.

Perform the following steps:

1. Use a distinct segment name for the particular segment.

For example:

Define main_TEXT, space=EROM
segment main_TEXT
; code goes here

2. Use the linker CHANGE directive to move the particular segment to ERAM. For
example:

To download the code for the main_TEXT segment to ERAM, add the following
linker command in the Additional Linker Directives dialog box (see Additional
Directives – see page 62):

change main_TEXT = ERAM

To go back to the Default Program Configuration for production code, remove this
directive from the Additional Linker Directives dialog box.

Download to RAM Program Configuration

The Download to RAM Program Configuration, shown in Figure 134, can be used only
during development and not for production code. It is similar to the Default Program Con-
figuration, the only difference is that the rest of the executable program code is down-
loaded in RAM and executed from RAM.
UM017105-0511 Program Configurations

316

Zilog Developer Studio II – ZNEO™
User Manual
Because RAM cannot retain values across power cycles, this configuration is meant for
development only. By using this configuration, you can avoid erasing and burning the exe-
cutable code in Flash multiple times as part of development cycle. In this respect, this con-
figuration obviously is very similar to the Download to ERAM Program Configuration
discussed in Download to ERAM Program Configuration – see page 312. The main differ-
ence is that RAM is typically internal memory, while ERAM is external. Therefore, to use
the Download to ERAM Program Configuration, you must provide external memory and
configure its interface. By using the Download to RAM Program Configuration, you avoid
that task. On the other hand, the amount of internal memory is rather limited on many

Figure 134. Programmer’s Model—Download to RAM Program Configuration

EROM Data
Copy of ERAM Initializers
Copy of RAM Initializers

16-Bit
Addressable

Address

IODATA

ERAM

ROM

RAM

EROM

I/O Access

Small Model Stack
RAM Data

Large Model Stack
ERAM Data

ROM Data
Start-up Code
Vector Table
Option Bytes

ContentsRange (Space)

Code

(Data)

16-Bit
Addressable

(Data)
Program Configurations UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

317
ZNEO devices, so the Download to RAM Program Configuration could be limited to
small applications or portions of applications during development.

C Program Setup

The C program setup for Download to RAM Program Configuration is similar to the
Default Program Configuration with some additional steps, as described in this section.

The C-Compiler by default generates the executable program code under one unified seg-
ment named CODE. The CODE segment belongs to EROM address space. To set up this
configuration, you must move the CODE segment from EROM to the RAM address
space. Do this by adding the following linker command in the Additional Linker Direc-
tives dialog box (see Additional Directives – see page 62):

change code=RAM /* The linker will then allocate code segment in
RAM */

To go back to the Default Program Configuration for production code, remove this direc-
tive from the Additional Linker Directives dialog box.

Special Case: Partial Download to RAM

A special case of this configuration is when you want to download program code from just
one C source file into RAM, while retaining the rest of the code in EROM. This allows
you to experiment with different partitions of your code, for example, if you are consider-
ing the Partial Copy to RAM Program Configuration discussed in the Special Case: Partial
Copy to RAM section on page 325. Perform the following steps:

1. Select the Distinct Code Segment for Each Module checkbox in the Advanced
page in the Project Settings dialog box (discussed on page 59).

This option directs the C-Compiler to generate different code segment names for each
file.

2. Use the linker CHANGE directive to move the particular segment to RAM. For exam-
ple:

To download the code for main.c to RAM, add the following linker command in the
Additional Linker Directives dialog box (see Additional Directives – see page 62):

change main_TEXT = RAM

To go back to the Default Program Configuration for production code, remove this
directive from the Additional Linker Directives dialog box.

Assembly Program Setup

The Assembly program setup for the Download to RAM Program Configuration is similar
to the Default Program Configuration with some additional guidelines, as described in this
section.
UM017105-0511 Program Configurations

318

Zilog Developer Studio II – ZNEO™
User Manual
Write all of the executable program code (non-start-up code) under the CODE segment.
This segment belongs to EROM address space. To set up this configuration, you must
move the CODE segment from EROM to the RAM address space. Do this by adding the
following linker command in the Additional Linker Directives dialog box (see Addi-
tional Directives – see page 62):

change code=RAM /* The linker will then allocate code segment in
RAM */

To go back to the Default Program Configuration for production code, remove this direc-
tive from the Additional Linker Directives dialog box.

Special Case: Partial Download to RAM

A special case of this configuration is when you want to download program code from just
one assembly segment into RAM, while retaining the rest of the code in EROM. This
allows you to experiment with different partitions of your code, for instance if you are
considering the Partial Copy to RAM Program Configuration discussed in the Special
Case: Partial Copy to RAM section on page 325. Perform the following steps:

1. Use a distinct segment name for the particular segment. For example:

Define main_TEXT, space=EROM
segment main_TEXT
; code goes here

2. Use the linker CHANGE directive to move the particular segment to RAM.

For example, to download the code for the main_TEXT segment to RAM, add the fol-
lowing linker command in the Additional Linker Directives dialog box (see Addi-
tional Directives – see page 62):

change main_TEXT = RAM

To go back to the Default Program Configuration for production code, remove this
directive from the Additional Linker Directives dialog box.

Copy to ERAM Program Configuration

The Copy to ERAM Program Configuration, shown in Figure 135, can be used for pro-
duction as well as development code. It is somewhat similar to the Default Program Con-
figuration, the only difference being that aside from the start-up code, the rest of the
executable program is downloaded into EROM, copied from EROM to ERAM by the
start-up code, and then executed from ERAM. The reason for choosing this configuration
is that while internal Flash on ZNEO-CPU-based devices can be accessed quickly enough
to keep up with the CPU, that might not be true of external Flash. If you have both exter-
nal Flash (as part of the EROM address range) and external RAM (as part of ERAM) in
your application and if the external RAM is faster than the external Flash, the user pro-
gram might execute faster on ERAM. Therefore, this configuration might be advantageous
if you want to execute your program from external memory (for example, because your
Program Configurations UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

319
program is too large to fit into internal Flash), but you do not want your execution speed to
be limited by the access speed of external Flash memory.

C Program Setup

The C program setup for Copy to ERAM Program Configuration is similar to the Default
Program Configuration with some additional steps as described in this section.

The C-Compiler by default generates the executable program code under one unified seg-
ment named CODE. The CODE segment belongs to EROM address space.

Figure 135. Programmer’s Model—Copy to ERAM Program Configuration

EROM Data
Copy of Code

Copy of ERAM Initializers

16-Bit
Addressable

Address

IODATA

ERAM

ROM

RAM

EROM

I/O Access

Small Model Stack
RAM Data

Large Model Stack
ERAM Data

ROM Data
Start-up Code
Vector Table
Option Bytes

ContentsRange (Space)

Code

Copy of RAM Initializers

(Data)

16-Bit
Addressable

(Data)
UM017105-0511 Program Configurations

320

Zilog Developer Studio II – ZNEO™
User Manual
1. To set up this configuration, you must place the CODE segment in ERAM at run time
and EROM at load time. Do this by adding the following linker commands in the
Additional Linker Directives dialog box (see Additional Directives – see page 62):

change code=ERAM /* Run time CODE is in ERAM space */
copy code EROM /* Load time CODE is in EROM space */

define _low_code_copy = copy base of CODE
define _low_code = base of CODE
define _len_code = length of CODE

2. The linker COPY directive only designates the load addresses and the run-time
addresses for the segment. The actual copying of the segment must be performed by
the start-up code. For example if you are using the small model, copy and modify the
C startup provided in the installation under src\boot\common\startupexs.asm,
rewriting the relevant section as follows:

;
; Copy CODE into ERAM
;

LEA R0,_low_code_copy
LEA R1,_low_code
LD R2,#_len_code+1
JP clab1

clab0:
LD.B R3,(R0++)
LD.B (R1++),R3

clab1:
DJNZ R2,clab0

XREF _low_code_copy:EROM
XREF _len_code:ERAM
XREF _low_code:ERAM

3. Finally, add your modified start-up module to your project. Select the Included in
Project button in the Objects and Libraries page of the Project Settings dialog box
(see C Start-up Module – see page 66) and also add the modified source code file to
your project using the Add Files command from the Project menu.

Special Case: Partial Copy to ERAM

A special case of this configuration is when you want to copy program code from just one
C source file into ERAM, while retaining the rest of the code in EROM. This allows you
to gain the potential speed advantages of external RAM over external Flash for a specific
module. Perform the following steps:

1. Select the Distinct Code Segment for Each Module checkbox in the Advanced
page in the Project Settings dialog box (see page 59).
Program Configurations UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

321
This directs the C-Compiler to generate different code segment names for each file.

2. Add the linker commands to place the particular segment in ERAM at run time and
EROM at load time.

For example, to copy the code for main.c to ERAM, add the following linker com-
mands in the Additional Linker Directives dialog box (see Additional Directives –
see page 62):

change main_TEXT=ERAM /* Run time main_TEXT is in ERAM space */
copy main_TEXT EROM /* Load time main_TEXT is in EROM space */

define _low_main_copy = copy base of main_TEXT
define _low_main = base of main_TEXT
define _len_main = length of main_TEXT

3. The linker COPY directive only designates the load addresses and the run-time
addresses for the segment. The actual copying of the segment must be performed by
the start-up code. For example, if you are using the small model, copy and modify the
C startup provided in the installation under src\boot\common\startupexs.asm,
rewriting the relevant section as follows:

;
; Copy main_TEXT into ERAM
;

LEA R0,_low_main_copy
LEA R1,_low_main
LD R2,#_len_main+1
JP mlab1

mlab0:
LD.B R3,(R0++)
LD.B (R1++),R3

mlab1:
DJNZ R2,mlab0

XREF _low_main_copy:EROM
XREF _len_main:ERAM
XREF _low_main:ERAM

4. Finally, add your modified start-up module to your project by selecting the Included
in Project button in the Objects and Libraries page of the Project Settings dialog
box (see C Start-up Module – see page 66) and also add the modified source code file
to your project using the Add Files command from the Project menu.

Assembly Program Setup

The Assembly program setup for the Copy to ERAM Program Configuration is similar to
the Default Program Configuration with some additional guidelines, as described in this
section.
UM017105-0511 Program Configurations

322

Zilog Developer Studio II – ZNEO™
User Manual
Write all of the executable program code (non-start-up code) under the CODE segment.
This segment belongs to EROM address space. To set up this configuration, you must
copy the CODE segment from EROM to the ERAM address space. Perform steps 2 and 3
from the C Program Setup for this configuration, as described in the C Program Setup sec-
tion on page 319. In step 3, add the code to your assembly start-up code instead of the
standard C startup.

Special Case: Partial Copy to ERAM

A special case of this configuration is when you want to copy program code from just one
assembly segment into ERAM, while retaining the rest of the code in EROM. This allows
you to gain the potential speed advantages of external RAM over external Flash for a spe-
cific module. Perform the following steps:

1. Use a distinct segment name for the particular segment. For example:

Define main_TEXT, space=EROM
segment main_TEXT
; code goes here

2. To copy the main_TEXT segment from EROM to the ERAM address space, perform
steps 2 and 3 from the C Program Setup, Special Case, for this configuration as
described in the C Program Setup section on page 319. In step 3, add the code to your
assembly start-up code instead of the standard C startup.

Copy to RAM Program Configuration

The Copy to RAM Program Configuration, shown in Figure 136, can be used for produc-
tion as well as development code. It is somewhat similar to the Default Program Configu-
ration, the only difference being that the executable program code is downloaded in
EROM, copied from EROM to RAM by the start-up code, and then executed from RAM.
The reason for choosing this configuration is that while internal Flash on ZNEO-CPU-
based devices can be accessed quickly enough to keep up with the CPU, that might not be
true of external Flash. If you have external Flash (as part of the EROM address space) and
if the internal RAM is faster than the external Flash, the user program might execute faster
from RAM.
Program Configurations UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

323

In this respect, this configuration obviously is very similar to the Copy to ERAM Program
Configuration discussed in Copy to ERAM Program Configuration – see page 318. The
main difference is that RAM is typically internal memory, while ERAM is external.
Therefore, to use the Copy to ERAM Program Configuration, you must provide external
memory and configure its interface. By using the Copy to RAM Program Configuration,
you avoid that work. On the other hand, the amount of internal memory is rather limited
on many ZNEO devices, so the Copy to RAM Program Configuration might tend to be
limited to small applications or portions of applications during development.

Figure 136. Programmer’s Model—Copy to RAM Program Configuration

EROM Data
Copy of Code

Copy of ERAM Initializers

16-Bit
Addressable

Address

IODATA

ERAM

ROM

RAM

EROM

I/O Access

Small Model Stack
RAM Data

Large Model Stack
ERAM Data

ROM Data
Start-up Code
Vector Table
Option Bytes

ContentsRange (Space)

Copy of RAM Initializers

Code

(Data)

16-Bit
Addressable

(Data)
UM017105-0511 Program Configurations

324

Zilog Developer Studio II – ZNEO™
User Manual
C Program Setup

The C program setup for Copy to RAM Program Configuration is similar to the Default
Program Configuration with some additional steps as described in this section.

The C-Compiler by default generates the executable program code under one unified seg-
ment named CODE. The CODE segment belongs to the EROM address space.

1. To set up this configuration, you must place the CODE segment in RAM at run time
and EROM at load time. Do this by adding the following linker commands in the
Additional Linker Directives dialog box (see Additional Directives – see page 62):

change code=RAM /* Run time CODE is in RAM space */
copy code EROM /* Load time CODE is in EROM space */

define _low_code_copy = copy base of CODE
define _low_code = base of CODE
define _len_code = length of CODE

2. The linker COPY directive only designates the load addresses and the run-time
addresses for the segment. The actual copying of the segment must be performed by
the start-up code. For example, if you are using the small model, copy and modify the
C startup provided in the installation under src\boot\common\startupexs.asm,
rewriting the relevant section as follows:

;
; Copy CODE into RAM
;

LEA R0,_low_code_copy
LEA R1,_low_code
LD R2,#_len_code+1
JP clab1

clab0:
LD.B R3,(R0++)
LD.B (R1++),R3

clab1:
DJNZ R2,clab0

XREF _low_code_copy:EROM
XREF _len_code
XREF _low_code:RAM

3. Finally, add your modified start-up module to your project by selecting the Included
in Project button in the Objects and Libraries page of the Project Settings dialog
box (see C Start-up Module – see page 66) and also add the modified source code file
to your project using the Add Files command from the Project menu.
Program Configurations UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

325
Special Case: Partial Copy to RAM

A special case of this configuration is when you want to copy program code from just one
C source file into RAM, while retaining the rest of the code in EROM. This allows you to
investigate whether there might be power or speed savings to be realized by partitioning
your application in this way. Perform the following steps:

1. Select the Distinct Code Segment for Each Module checkbox in the Advanced
page in the Project Settings dialog box (see page 59) to direct the C-Compiler to
generate different code segment names for each file.

2. Add the linker commands to place the particular segment in RAM at run time and
EROM at load time.

For example, to copy the code for main.c to RAM, add the following linker com-
mands in the Additional Linker Directives dialog box (see Additional Directives –
see page 62):

change main_TEXT=RAM /* Run time main_TEXT is in RAM space */
copy main_TEXT EROM /* Load time main_TEXT is in EROM space */

define _low_main_copy = copy base of main_TEXT
define _low_main = base of main_TEXT
define _len_main = length of main_TEXT

3. The linker COPY directive only designates the load addresses and the run-time
addresses for the segment. The actual copying of the segment must be performed by
the start-up code. For example, if you are using the small model, copy and modify the
C startup provided in the installation under src\boot\common\startupexs.asm,
rewriting the relevant section as follows:

;
; Copy main_TEXT into ERAM
;

LEA R0,_low_main_copy
LEA R1,_low_main
LD R2,#_len_main+1
JP mlab1

mlab0:
LD.B R3,(R0++)
LD.B (R1++),R3

mlab1:
DJNZ R2,mlab0

XREF _low_main_copy:EROM
XREF _len_main
XREF _low_main:RAM
UM017105-0511 Program Configurations

326

Zilog Developer Studio II – ZNEO™
User Manual
4. Finally, add your modified start-up module to your project by selecting the Included
in Project button in the Objects and Libraries page of the Project Settings dialog
box (see C Start-up Module – see page 66) and also add the modified source code file
to your project using the Add Files command from the Project menu.

Assembly Program Setup

The Assembly program setup for the Copy to RAM Program Configuration is similar to
the Default Program Configuration with some additional guidelines, as described in this
section.

Write all of the executable program code (non-start-up code) under the CODE segment.
This segment belongs to EROM address space. To set up this configuration, you must
copy the CODE segment from EROM to RAM address space. Perform steps 2 and 3 from
the C Program Setup for this configuration, as described in the C Program Setup section
on page 324. In step 3, add the code to your assembly start-up code instead of the standard
C startup.

Special Case: Partial Copy to RAM

A special case of this configuration is when you want to copy program code from just one
assembly segment into RAM, while retaining the rest of the code in EROM. This allows
you to investigate whether there might be power or speed savings to be realized by parti-
tioning your application in this way. Perform the following steps:

1. Use a distinct segment name for the particular segment. For example:

Define main_TEXT, space=EROM
segment main_TEXT
; code goes here

2. To copy the main_TEXT segment from EROM to the RAM address space, perform
steps 2 and 3 from the C Program Setup, Special Case, for this configuration as
described in the C Program Setup section on page 324. In step 3, add the code to your
assembly start-up code instead of the standard C startup.
Program Configurations UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

327
Chapter 8. Using the Debugger

The source-level debugger is a program that allows you to find problems in your code at
the C or assembly level. You can also write batch files to automate debugger tasks (for
details about the debugger, see the appendix titled Using the Command Processor, on
page 359). The following topics are covered in this section:

• Status Bar – see page 328

• Code Line Indicators – see page 328

• Debug Windows – see page 329

• Using Breakpoints – see page 343

From the Build menu, select Debug, then select Reset to transition to Debug Mode. The
Debug toolbar and Debug Windows toolbar are displayed, as shown in Figure 137. (For
more information, see the Debug Output Window section on page 30.)

Figure 137. Debug and Debug Window Toolbars
UM017105-0511 Using the Debugger

328

Zilog Developer Studio II – ZNEO™
User Manual
The Debug toolbar is described in the Debug Toolbar section on page 20, and the Debug
Windows toolbar is described in the Debug Windows Toolbar section on page 22.

Project code cannot be rebuilt while in Debug Mode. The ZDS II will prompt you if you
request a build during a debug session. If you edit code during a debug session and then
attempt to execute the code, ZDS II will stop the current debug session, rebuild the project,
and then attempt to start a new debug session if you elect to do so when prompted.

Status Bar

The status bar displays the current status of your program’s execution. The status can be
STOP, STEP or RUN. In STOP mode, your program is not executing. In STEP mode, a
Step Into, Step Over, or Step Out command is in progress. In RUN mode, a Go command
has been issued, your program is executing, and no breakpoint has yet been encountered.

Code Line Indicators

The Edit window displays your source code with line numbers and code line indicators.
The debugger indicates the status of each line visually with the following code line indica-
tors:

• A red octagon indicates an active breakpoint at the code line; a white octagon indi-
cates a disabled breakpoint

• Blue dots are displayed to the left of all valid code lines; these are lines where break-
points can be set, the program can be run to, and so on

Some source lines do not display blue dots because the code has been optimized out of the
executable (and the corresponding debug information).

• A program counter code line indicator (yellow arrow) indicates the code line at which
the program counter is located

• A program counter code line indicator on a breakpoint (yellow arrow on a red octa-
gon) indicates a code line indicator has stopped on a breakpoint

If the program counter steps into another file in your program, the Edit window switches
to the new file automatically.

Note:

Note:
Status Bar UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

329
Debug Windows

The Debug Windows toolbar (described in the Debug Windows Toolbar section on
page 22) allows you to display the following Debug windows:

• Registers Window – see page 329

• Special Function Registers Window – see page 330

• Clock Window – see page 331

• Memory Window – see page 331

• Watch Window – see page 337

• Locals Window – see page 339

• Call Stack Window – see page 340

• Symbols Window – see page 340

• Simulated UART Output Window – see page 342

Registers Window

Click the Registers Window button to show or hide the Registers window. The Registers
window, shown in Figure 138, displays all of the registers in the standard ZNEO architec-
ture.

To change register values, perform the following brief procedure.

1. In the Registers window, highlight the value you want to change.

2. Enter the new value and press the Enter key. The changed value is displayed in red.

Figure 138. Registers Window
UM017105-0511 Debug Windows

330

Zilog Developer Studio II – ZNEO™
User Manual
Special Function Registers Window

Click the Special Function Registers Window button to open up to ten Special Function
Registers windows. Each Special Function Registers window, shown in Figure 139, dis-
plays the special function registers in the standard ZNEO architecture that belong to the
selected group. Addresses F00 through FFF are reserved for special function registers
(SFRs).

Use the Group drop-down list to view a particular group of SFRs.

There are several SFRs that, when read, are cleared or clear an associated register. To pre-
vent the debugger from changing the behavior of the code, a special group of SFRs was
created that groups these state changing registers. The group is called SPECIAL_CASE.
If this group is selected, the behavior of the code changes, and the program must be reset.

To use the FLASH_OPTIONBITS group, you must reset the device for the changes to
take effect. Use the FLASH_OPTIONBITS group to view the values of all of the Flash
option bit registers, with the exception of the following registers:

• Temperature sensor trim register

• Precision oscillator trim register

• Flash capacity configuration register

To change special function register values, perform the following brief procedure.

Figure 139. Special Function Registers Window

Notes:
Debug Windows UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

331
1. In the Special Function Registers window, highlight the value you want to change.

2. Enter the new value and press the Enter key. The changed value is displayed in red.

Clock Window

Click the Clock Window button to show or hide the Clock window.

The Clock window displays the number of states executed since the most recent reset. You
can reset the contents of the Clock window at any time by selecting the number of cycles
(Figure 140 displays 82895 cycles), entering a 0, and pressing the Enter key. Updated val-
ues are displayed in red.

The Clock window will only display clock data when the Simulator is the active debug
tool.

Memory Window

Click the Memory Window button to open up to ten Memory windows; see Figure 141.

Figure 140. Clock Window

Note:
UM017105-0511 Debug Windows

332

Zilog Developer Studio II – ZNEO™
User Manual
Each Memory window displays data located in the target’s memory. The ASCII text for
memory values is shown in the last column. The address is displayed in the far left column
with an I# to denote the IOData address space or with an M# to denote the Memory
address space.

Use the Memory window to perform the following brief procedure.

• Change Values – see page 332

• View the Values for Other Memory Spaces – see page 333

• View or Search for an Address – see page 333

• Fill Memory – see page 334

• Save Memory to a File – see page 335

• Load a File into Memory – see page 335

• Perform a Cyclic Redundancy Check – see page 336

The Page Up and Page Down keys (on your keyboard) are not functional in the Memory
window. Instead, use the up and down arrow buttons to the right of the Space and Address
fields.

Change Values

To change the values in the Memory window, perform the following brief procedure.

Figure 141. Memory Window

Note:

Note:
Debug Windows UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

333
1. In the window, highlight the value you want to change. The values begin in the second
column after the Address column.

2. Enter the new value and press the Enter key. The changed value is displayed in red.

View the Values for Other Memory Spaces

To view the values for other memory spaces, use one of the following procedures:

• Replace the initial letter with a different valid memory prefix and press the entry key.
For example, type I for the IOData memory space.

• Select the space name in the Space drop-down list.

View or Search for an Address

To quickly view or search for an address in the Memory window, perform the following
brief procedure.

1. In the Memory window, highlight the address in the Address field, as shown in
Figure 142.

2. Enter the address you want to find and press the Enter key; for example, find 60. The
system moves the selected address to the top of the Memory window, as shown in
Figure 143.

Figure 142. Memory Window—Starting Address
UM017105-0511 Debug Windows

334

Zilog Developer Studio II – ZNEO™
User Manual
Fill Memory

Use this procedure to write a common value in all of the memory spaces in the specified
address range, for example, to clear memory for the specified address range.

To fill a specified address range of memory, perform the following brief procedure.

1. Select the memory space in the Space drop-down list.

2. Right-click in the Memory window list box to display the context menu.

3. Select Fill Memory. The Fill Memory dialog box is displayed; see Figure 144.

4. In the Fill Value area, select the characters to fill memory with or select the Other but-
ton. If you select the Other button, enter the fill characters in the Other field.

5. Enter the start address in hexadecimal format in the Start Address (Hex) field and
enter the end address in hexadecimal format in the End Address (Hex) field. This
address range is used to fill memory with the specified value.

Figure 143. Memory Window—Requested Address

Figure 144. Fill Memory Dialog Box
Debug Windows UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

335
6. Click OK to fill the selected memory.

Save Memory to a File

Perform the following procedure to save memory specified by an address range to a
binary, hexadecimal, or text file.

1. Select the memory space in the Space drop-down list.

2. Right-click in the Memory window list box to display the context menu.

3. Select Save to File. The Save to File dialog box is displayed; see Figure 145.

4. In the File Name field, enter the path and name of the file you want to save the mem-
ory to or click the Browse button () to search for a file or directory.

5. Enter the start address in hexadecimal format in the Start Address (Hex) field and
enter the end address in hexadecimal format in the End Address (Hex) field to spec-
ify the address range of memory to save to the specified file.

6. Select whether to save the file as text, hex (hexadecimal), or binary.

7. Click OK to save the memory to the specified file.

Load a File into Memory

Perform the following steps to load or to initialize memory from an existing binary, hexa-
decimal, or text file.

1. Select the memory space in the Space drop-down list.

2. Right-click in the Memory window list box to display the context menu.

3. Select Load from File. The Load from File dialog box is displayed; see Figure 146.

Figure 145. Save to File Dialog Box
UM017105-0511 Debug Windows

336

Zilog Developer Studio II – ZNEO™
User Manual
4. In the File Name field, enter the path and name of the file to load or click the Browse
button () to search for the file.

5. In the Start Address (Hex) field, enter the start address.

6. Select whether to load the file as text, hex (hexadecimal), or binary.

7. Click OK to load the file’s contents into the selected memory.

Perform a Cyclic Redundancy Check

Observe the following procedure to perform a cyclic redundancy check (CRC).

1. Select the memory space in the Space drop-down list.

2. Right-click in the Memory window list box to display the context menu.

3. Select Show CRC. The Show CRC dialog box is displayed; see Figure 147.

4. Enter the start address in the Start Address field. The start address must be on a 4 K
boundary. If the address is not on a 4 K boundary, ZDS II produces an error message.

Figure 146. Load from File Dialog Box

Figure 147. Show CRC Dialog Box
Debug Windows UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

337
5. Enter the end address in the End Address field. If the end address is not a 4 K incre-
ment, it is rounded up to a 4 K increment.

6. Click Read. The checksum is displayed in the CRC field.

Watch Window

Click the Watch Window button to show or hide the Watch window, shown in Figure 148.

The Watch window displays all of the variables and their values defined using the
WATCH command. If the variable is not in scope, the variable is not displayed. The values
in the Watch window change as the program executes. Updated values appear in red.

The 0x prefix indicates that the values are displayed in hexadecimal format. If you want
the values to be displayed in decimal format, select Hexadecimal Display from the con-
text menu.

If the Watch window displays unexpected values, deselect the Use Register Variables
checkbox. See Use Register Variables – see page 57.

Use the Watch window to perform the following procedures.

• Add New Variables – see page 338

• Change Values – see page 338

• Remove an Expression – see page 338

• View a Hexadecimal Value – see page 338

• View a Decimal Value – see page 339

Figure 148. Watch Window

Notes:
UM017105-0511 Debug Windows

338

Zilog Developer Studio II – ZNEO™
User Manual
• View an ASCII Value – see page 339

• View a NULL-Terminated ASCII (ASCIZ) String – see page 339

Add New Variables

To add new variables in the Watch window, use one of the following two procedures.

• Click <new watch> in the Expression column, enter the expression, and press the
Enter key.

• Select the variable in the source file, then drag and drop it into the Watch window.

Change Values

To change values in the Watch window, perform the following brief procedure.

1. In the window, highlight the value you want to change.

2. Enter the new value and press the Enter key. The changed value is displayed in red.

Remove an Expression

To remove an expression from the Watch window, perform the following brief procedure.

1. In the Expression column, click the expression you want to remove.

2. Press the Delete key to clear both columns.

View a Hexadecimal Value

To view the hexadecimal values of an expression, perform the following brief procedure.

1. Enter a hexadecimal expression in the format hex expression in the Expression col-
umn; for example, enter hex tens.

You can also enter just the expression (for example, tens) to view the hexadecimal value
of any expression. Hexadecimal format is the default.

2. Press the Enter key. The hexadecimal value displays in the Value column.

To view the hexadecimal values for all expressions, select Hexadecimal Display from the
context menu.

Note:

Note:
Debug Windows UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

339
View a Decimal Value

To view the decimal values of an expression, perform the following brief procedure.

1. Enter a decimal expression in the format dec expression in the Expression column;
for example, enter dec huns.

2. Press the Enter key. The decimal value displays in the Value column.

To view the decimal values for all expressions, select Hexadecimal Display from the con-
text menu.

View an ASCII Value

To view the ASCII values of an expression, perform the following brief procedure.

1. Enter an ASCII expression in the format ascii expression in the Expression col-
umn; for example, enter ascii ones.

2. Press the Enter key. The ASCII value displays in the Value column.

View a NULL-Terminated ASCII (ASCIZ) String

To view the NULL-terminated ASCII (ASCIZ) values of an expression, perform the fol-
lowing brief procedure.

1. Enter an ASCIZ expression in the format asciz expression in the Expression col-
umn; for example, enter asciz ones.

2. Press the Enter key. The ASCIZ value displays in the Value column.

Locals Window

Click the Locals Window button to show or hide the Locals window. The Locals window,
shown in Figure 149, displays all local variables that are currently in scope. Updated val-
ues appear in red.

The 0x prefix indicates that the values are displayed in hexadecimal format. If you want
the values to be displayed in decimal format, select Hexadecimal Display from the con-
text menu.

If the Locals window displays unexpected values, deselect the Use Register Variables
checkbox. See Use Register Variables – see page 57.

Note:

Note:
UM017105-0511 Debug Windows

340

Zilog Developer Studio II – ZNEO™
User Manual
Call Stack Window

Click the Call Stack Window button to show or hide the Call Stack window, shown in
Figure 150. If you want to copy text from the Call Stack Window, select the text and then
select Copy from the context menu.

The Call Stack window allows you to view function frames that have been pushed onto the
stack. Information in the Call Stack window is updated every time a debug operation is
processed.

Symbols Window

Click the Symbols Window button to show or hide the Symbols window; see Figure 151.

Figure 149. Locals Window

Figure 150. Call Stack Window
Debug Windows UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

341
Close the Symbols window before running a command script.

The Symbols window displays the address for each symbol in the program.

Disassembly Window

Click the Disassembly Window button to show or hide the Disassembly window; see
Figure 152.

Figure 151. Symbols Window

Figure 152. Disassembly Window

Note:
UM017105-0511 Debug Windows

342

Zilog Developer Studio II – ZNEO™
User Manual
The Disassembly window displays the assembly code associated with the code shown in
the Code window. For each line in this window, the address location, the machine code,
the assembly instruction, and its operands are displayed.

When you right-click in the Disassembly window, the context menu allows you to perform
the following brief procedure.

• Copy text

• Go to the source code

• Insert, edit, enable, disable, or remove breakpoints

For more information about breakpoints, see the Using Breakpoints section on page 343.

• Reset the debugger

• Stop debugging

• Start or continue running the program (Go)

• Run to the cursor

• Pause the debugging (Break)

• Step into, over, or out of program instructions

• Set the next instruction at the current line

• Enable and disable source annotation and source line numbers

• Print the contents of the disassembly window

• Save the contents of the disassembly window to a file

Simulated UART Output Window

Click the Simulated UART Output Window button to show or hide the Simulated UART
Output window; see Figure 153.

Note:
Debug Windows UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

343
The Simulated UART Output window displays the simulated output of the selected UART.
Use the drop-down list to view the output for a particular UART.

Right-clicking in the Simulated UART Output window displays a context menu that pro-
vides access to the following features:

• Clear the buffered output for the selected UART

• Copy selected text to the Windows clipboard

The Simulated UART Output window is available only when the Simulator is the active
debug tool.

Using Breakpoints

This section to describes how to work with breakpoints while you are debugging. The fol-
lowing topics are covered:

• Inserting Breakpoints – see page 344

• Viewing Breakpoints – see page 344

• Moving to a Breakpoint – see page 345

• Enabling Breakpoints – see page 345

• Disabling Breakpoints – see page 346

• Removing Breakpoints – see page 346

Figure 153. Simulated UART Output Window

Note:
UM017105-0511 Using Breakpoints

344

Zilog Developer Studio II – ZNEO™
User Manual
Inserting Breakpoints

There are three ways to place a breakpoint in your file:

• Click the line of code in which you want to insert the breakpoint. You can set a break-
point in any line with a blue dot displayed to the left of the line (shown in Debug mode
only). Next, click the Insert/Remove Breakpoint button () on the Build or
Debug toolbar.

• Click the line in which you want to add a breakpoint and select Insert Breakpoint
from the context menu. You can set a breakpoint in any line with a blue dot displayed
to the left of the line (shown in Debug mode only).

• Double-click in the gutter to the left of the line in which you want to add a breakpoint.
You can set a breakpoint in any line with a blue dot displayed to the left of the line
(shown in Debug mode only).

A red octagon shows that you have set a breakpoint at that location; see Figure 154.

Viewing Breakpoints

There are two ways to view breakpoints in your project:

• Select Manage Breakpoints from the Edit menu to display the Breakpoints dialog
box; see Figure 155.

• Select Edit Breakpoints from the context menu to display the Breakpoints dialog
box.

Figure 154. Setting a Breakpoint
Using Breakpoints UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

345
You can use the Breakpoints dialog box to view, go to, enable, disable, or remove break-
points in an active project when in or out of Debug mode.

Moving to a Breakpoint

To quickly move the cursor to a breakpoint you have previously set in your project, per-
form the following brief procedure.

1. Select Manage Breakpoints from the Edit menu. The Breakpoints dialog box is dis-
played.

2. Highlight the breakpoint you want.

3. Click Go to Code. Your cursor moves to the line in which the breakpoint is set.

Enabling Breakpoints

To make all breakpoints in a project active, perform the following brief procedure.

1. Select Manage Breakpoints from the Edit menu.The Breakpoints dialog box is dis-
played.

2. Click Enable All. Check marks are displayed to the left of all enabled breakpoints.

3. Click OK.

There are three ways to enable one breakpoint:

• Double-click the white octagon to remove the breakpoint and then double-click where
the octagon was to enable the breakpoint

Figure 155. Viewing Breakpoints
UM017105-0511 Using Breakpoints

346

Zilog Developer Studio II – ZNEO™
User Manual
• Place your cursor in the line in the file where you want to activate a disabled break-
point and click the Enable/Disable Breakpoint button on the Build or Debug toolbar

• Place your cursor in the line in the file where you want to activate a disabled break-
point and select Enable Breakpoint from the context menu

The white octagon becomes a red octagon to indicate that the breakpoint is enabled.

Disabling Breakpoints

There are two ways to make all breakpoints in a project inactive:

• Select Manage Breakpoints from the Edit menu to display the Breakpoints dialog
box. Click Disable All. Disabled breakpoints are still listed in the Breakpoints dialog
box. Click OK.

• Click the Disable All Breakpoints button on the Debug toolbar.

There are two ways to disable one breakpoint:

• Place your cursor in the line in the file where you want to deactivate an active break-
point and click the Enable/Disable Breakpoint button on the Build or Debug toolbar.

• Place your cursor in the line in the file where you want to deactivate an active break-
point and select Disable Breakpoint from the context menu.

The red octagon becomes a white octagon to indicate that the breakpoint is disabled.

Removing Breakpoints

There are two ways to delete all breakpoints in a project:

• Select Manage Breakpoints from the Edit menu to display the Breakpoints dialog
box. Click Remove All, then click OK. All breakpoints are removed from the Break-
points dialog box, as well as all project files.

• Click the Remove All Breakpoints button on the Build or Debug toolbar.

There are four ways to delete a single breakpoint:

• Double-click the red octagon to remove the breakpoint.

• Select Manage Breakpoints from the Edit menu to display the Breakpoints dialog
box. Click Remove, then click OK. The breakpoint is removed from the Breakpoints
dialog box and the file.
Using Breakpoints UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

347
• Place your cursor in the line in the file where there is a breakpoint and click the Insert/
Remove Breakpoint button on the Build or Debug toolbar.

• Place your cursor in the line in the file where there is a breakpoint and select Remove
Breakpoint from the context menu.
UM017105-0511 Using Breakpoints

348

Zilog Developer Studio II – ZNEO™
User Manual
Using Breakpoints UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

349
Appendix A. Running ZDS II from the
Command Line

You can run ZDS II from the command line. ZDS II generates a make file
(project_Debug.mak or project_Release.mak, depending on the project configuration)
every time you build or rebuild a project. For a project named test.zdsproj set up in
the Debug configuration, ZDS II generates a make file named test_Debug.mak in the
project directory. You can use this make file to run your project from the command line.

This section covers the following topics:

• Building a Project from the Command Line – see page 349

• Running the Compiler from the Command Line – see page 350

• Running the Assembler from the Command Line – see page 351

• Running the Linker from the Command Line – see page 351

• Assembler Command Line Options – see page 351

• Compiler Command Line Options – see page 354

• Librarian Command Line Options – see page 356

• Linker Command Line Options – see page 357

Building a Project from the Command Line

To build a project from the command line, observe the following procedure:

1. Add the ZDS II bin directory (for example, C:\Program
Files\Zilog\ZDSII_Z8Encore!_4.11.0\bin) to your path by setting the PATH
environment variable. The make utility is available in this directory.

2. Open the project using the IDE.

3. Export the make file for the project using the Export Makefile command in the Proj-
ect menu.

4. Open a DOS window and change to the intermediate files directory.

5. Build the project using the make utility on the command line in a DOS window.

6. To build a project by compiling only the changed files, use the following command:

make -f sampleproject_Debug.mak

To rebuild the entire project, use the following command:
UM017105-0511 Building a Project from the Command Line

350

Zilog Developer Studio II – ZNEO™
User Manual
make rebuildall -f sampleproject_Debug.mak

Running the Compiler from the Command Line

To run the compiler from the command line:

1. Open the make file in a text editor.

2. Copy the options in the CFLAGS section.

3. In a Command Prompt window, enter the path to the compiler, the options from the
CFLAGS section (on a single line and without backslashes), and your C file. For
example:

C:\PROGRA~1\Zilog\ZDSII_ZNEO_4.11.0\bin\eZ8cc -alias -asm -
const:RAM
-debug -define:_z8f64 -NOexpmac -NOfplib -intsrc -intrinsic -
NOkeepasm
-NOkeeplst -NOlist -NOlistinc -maxerrs:50 -NOmodsect -promote -
quiet -NOstrict -NOwatch -optsize -localopt -localcse -localfold -
localcopy -peephole
-globalopt -NOglobalcse -NOglobalfold -NOglobalcopy -NOloopopt -
NOsdiopt
-NOjmpopt -
stdinc:"..\include;C:\PROGRA~1\Zilog\ZDSII_ZNEO_4.11.0\include" -
usrinc:"..\include" -cpu:z8f64 -bitfieldsize:24 -charsize:8 -
doublesize:32
-floatsize:32 -intsize:24 -longsize:32 -shortsize:16 -asmsw:"-
cpu:z8f64" test.c

If you use DOS, use double quotation marks for the -stdinc and -usrinc commands
for the C-Compiler.

For example,
 -stdinc:"C:\ez8\include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the -
stdinc and -usrinc commands for the C-Compiler.

For example,
 -stdinc:'{C:\ez8\include}'

Notes:
Running the Compiler from the Command Line UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

351
Running the Assembler from the Command Line

To run the assembler from the command line:

1. Open the make file in a text editor.

2. Copy the options in the AFLAGS section.

3. In a Command Prompt window, enter the path to the assembler, the options from the
AFLAGS section (on a single line and without backslashes), and your assembly file.
For example,

C:\PROGRA~1\Zilog\ZDSII_ZNEO_4.11.0\bin\eZ8asm -debug -genobj -
NOigcase
-include:"..\include" -list -NOlistmac -name -pagelen:56 -
pagewidth:80 -quiet -warn -NOzmasm -cpu:z8f64 test.asm

Running the Linker from the Command Line

To run the linker from the command line:

1. Open the make file in a text editor.

2. In a Command Prompt window, enter the path to the linker and your linker file. For
example,

C:\PROGRA~1\Zilog\ZDSII_ZNEO_4.11.0\bin\eZ8lnk
@e:\ez8\rtl\testfiles\test\test.linkcmd

Assembler Command Line Options

Table 23 describes the assembler command line options.

If you use DOS, use double quotation marks for the -stdinc and -usrinc commands
for the C compiler. For example,
 -stdinc:"C:\ez8\include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the -
stdinc and -usrinc commands for the C compiler.

For example,
 -stdinc:'{C:\ez8\include}'

Notes:
UM017105-0511 Running the Assembler from the Command Line

352

Zilog Developer Studio II – ZNEO™
User Manual
Table 23. Assembler Command Line Options

Option Name Description

-cpu:name Sets the CPU.

-debug Generates debug information for the symbolic debugger. The default set-
ting is -nodebug.

-define:name[=value] Defines a symbol and sets it to the constant value. For example:
 -define:DEBUG=0
This option is equivalent to the C #define statement. The alternate syntax,
 -define:myvar, is the same as -define:myvar=1.

-FP=Qn The ZNEO architecture allows you to specify which quad register is to be
used as the frame pointer, which is implicitly used in the LINK and UNLNK
instructions. The assembler accepts FP as a quad register, and the FP
command line option and directive tell the assembler which quad register
to use as the frame pointer.

-genobj Generates an object file with the .obj extension. This is the default set-
ting.

-help Displays the assembler help screen.

-igcase Suppresses case sensitivity of user-defined symbols. When this option is
used, the assembler converts all symbols to uppercase. This is the default
setting.

-include:path Allows the insertion of source code from another file into the current
source file during assembly.

-list Generates an output listing with the .lst extension. This is the default
setting.

-listmac Expands macros in the output listing. This is the default setting.

-listoff Does not generate any output in list file until a directive in assembly file
sets the listing as on.

-MAXBRANCH=<expression> The MAXBRANCH directive allows control over how large a branch the
assembler generates in the jump translation phase, especially when the
label branched to is in a separate assembly unit, so the assembler must
assume the largest possible branch. A possible use of the command line
option is in an application expected to fit in 64K of code space so that no
branches of more than a 16-bit offset are required. Use the directive to
override the command line option to impose either a stricter or more
lenient requirement.

-metrics Keeps track of how often an instruction is used. This is a static rather than
a dynamic measure of instruction frequency.

-name Displays the name of the source file being assembled.
Assembler Command Line Options UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

353
-nodebug Does not create a debug information file for the symbolic debugger. This is
the default setting.

-nogenobj Does not generate an object file with the .obj extension. The default set-
ting is genobj.

-noigcase Enables case sensitivity of user-defined symbols. The default setting is
igcase.

-nolist Does not create a list file. The default setting is list.

-nolistmac Does not expand macros in the output listing. The default setting is list-
mac.

-noquiet Displays title and other information. This is the default.

-nosdiopt Does not perform span-dependent optimizations. All size optimizable
instructions use the largest instruction size. The default is sdiopt.

-nowarns Suppresses the generation of warning messages to the screen and listing
file. A warning count is still maintained. The default is to generate warning
messages.

-pagelength:n Sets the new page length for the list file. The page length must immedi-
ately follow the = (with no space between). The default is 56. For exam-
ple:
 -pagelength=60

-pagewidth:n Sets the new page width for the list file. The page width must immediately
follow the = (with no space between). The default and minimum page
width is 80. The maximum page width is 132. For example:
 -pagewidth=132

-quiet Suppresses title information that is normally displayed to the screen.
Errors and warnings are still displayed. The default setting is to display
title information.

-relist:mapfile Generates an absolute listing by making use of information contained in a
linker map file. This results in a listing that matches linker-generated out-
put. mapfile is the name of the map file created by the linker. For example:
 -relist:product.map

-sdiopt Performs span-dependent optimizations. The smallest instruction size
allowed is selected for all size optimizable instructions. This is the default
setting.

-trace Debug information for internal use.

-version Prints the version number of the assembler.

-warns Toggles display warnings.

Table 23. Assembler Command Line Options (Continued)

Option Name Description
UM017105-0511 Assembler Command Line Options

354

Zilog Developer Studio II – ZNEO™
User Manual
Compiler Command Line Options

Table 24 describes the compiler command line options.

If you use DOS, use double quotation marks for the -stdinc and -usrinc commands
for the C compiler.

For example,
 -stdinc:"C:\ez8\include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the -
stdinc and -usrinc commands for the C compiler.

For example,
 -stdinc:'{C:\ez8\include}'

Table 24. Compiler Command Line Options

Option Name Description

-asm Assembles compiler-generated assembly file. This switch results in the generation
of an object module. The assembly file is deleted if no assemble errors are
detected and the keepasm switch is not given. The default is asm.

-asmsw:"sw" Passes sw to the assembler when assembling the compiler-generated assembly
file.

-chartype:[s|u] Selects whether plain char is implemented as signed or unsigned. The default is
unsigned.

-cpu:cpu Sets the CPU.

-debug Generates debug information for the symbolic debugger.

-define:def Defines a symbol and sets it to a constant value. For example:
 -define:myvar= 0
The alternate syntax, -define:myvar, is the same as -define:myvar=1.

-genprintf The format string is parsed at compile time, and direct inline calls to the lower level
helper functions are generated. The default is genprintf.

-help Displays the compiler help screen.

-keepasm Keeps the compiler-generated assembly file.

-keeplst Keeps the assembly listing file (.lst).

-list Generates a .lis source listing file.

Notes:
Compiler Command Line Options UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

355
-listinc Displays included files in the compiler listing file.

-model:model Selects the memory model. Select S for a small memory model or L for a large
memory model. The default is S.

-modsect Generate distinct code segment name for each module.

-noasm Does not assemble the compiler-generated assembly file.

-nodebug Does not generate symbol debug information. This is the default.

-nogenprint A call to printf() or sprintf() parses the format string at run time to gener-
ate the required output.

-nokeepasm Deletes the compiler-generated assembly file. This is the default.

-nokeeplst Does not keep the assembly listing file (.lst). This is the default.

-nolist Does not produce a source listing. All errors are identified on the console. This is
the default.

-nolistinc Does not show include files in the compiler listing file. This is the default.

-nomodsect Does not generate a distinct code segment name for each module. The code seg-
ment is named as “code” for every module; this is the default.

-noquiet Displays the title information. This is the default.

-noregvar Turns off the use of register variables.

-quiet Suppresses title information that is normally displayed to the screen. Errors and
warnings are still displayed.

-regvar Turns on the use of register variables. This is the default.

-stdinc:"path" Sets the path for the standard include files. This defines the location of include
files using the #include file.h syntax. Multiple paths are separated by semico-
lons. For example:
 -stdinc:"c:\rtl;c:\myinc"
In this example, the compiler looks for the include file in
1. the current directory
2. the c:\rtl directory
3. the c:\myinc directory
If the file is not found after searching the entire path, the compiler flags an error.

Omitting this switch tells the compiler to search only the current and default direc-
tory.

Table 24. Compiler Command Line Options (Continued)

Option Name Description
UM017105-0511 Compiler Command Line Options

356

Zilog Developer Studio II – ZNEO™
User Manual
Librarian Command Line Options

Table 25 describes the librarian command line options.

If you use DOS, use double quotation marks for the -stdinc and -usrinc commands for
the C compiler.

For example,
 -stdinc:"C:\ez8\include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the -
stdinc and -usrinc commands for the C compiler.

For example,
 -stdinc:'{C:\ez8\include}'

-usrinc:"path" Sets the search path for user include files. This defines the location of include files
using the #include "file.h" syntax. Multiple paths are separated by semicolons.
For example:
 -usrinc:"c:\rtl;c:\myinc"
In this example, the compiler looks for the include file in
1. the current directory
2. the c:\rtl directory
3. the c:\myinc directory
If the file is not found after searching the entire path, the compiler flags an error.

Omitting this switch tells the compiler to search only the current directory.

-version Prints the version number of the compiler.

Table 25. Librarian Command Line Options

Option Name Description

-help Displays the librarian help screen.

-list Generates an output listing with the .lst extension. This is the default setting.

-noquiet Displays the title information.

-nowarn Suppresses warning messages.

Table 24. Compiler Command Line Options (Continued)

Option Name Description

Notes:
Librarian Command Line Options UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

357
Linker Command Line Options

Table 26 describes the linker command line options.

If you use DOS, use double quotation marks for the -stdinc and -usrinc commands for
the C compiler.

For example,
 -stdinc:"C:\ez8\include"

If you use cygwin, use single quotation marks on both sides of a pair of braces for the -
stdinc and -usrinc commands for the C compiler.

For example,
 -stdinc:'{C:\ez8\include}'

-quiet Suppresses title information that is normally displayed to the screen. Errors and warnings
are still displayed. The default setting is to display title information.

-version Displays the version number of the librarian.

-warn Displays warnings.

Table 26. Linker Command Line Options

Option Name Description

copy segment = space Makes a copy of a segment into a specified address space.

-debug Turns on debug information generation.

define symbol = expr Defines a symbol and sets it to the constant value. For exam-
ple:
 -define:DEBUG=0
This option is equivalent to the C #define statement. The
alternate syntax,
-define:myvar, is the same as -define:myvar=1.

-format:[intel|intel32|omf695] Sets the format of the hex file output of the linker to intel or
intel32 (Intel Hex records) or omf695 (IEEE695 format).

Table 25. Librarian Command Line Options (Continued)

Option Name Description

Notes:
UM017105-0511 Linker Command Line Options

358

Zilog Developer Studio II – ZNEO™
User Manual
-igcase Suppresses case sensitivity of user-defined symbols. When
this option is used, the linker converts all symbols to upper-
case. This is the default setting.

locate segment at expr Specifies the address where a group, address space, or seg-
ment is to be located.

-nodebug Turns off debug information generation.

-noigcase Enables case sensitivity of user-defined symbols. The default
setting is igcase.

order segment_list or space_list Establishes a linking sequence and sets up a dynamic range
for contiguously mapped address spaces.

range space = address_range Sets the lower and upper bounds of a group, address space,
or segment.

sequence segment_list or space_list Allocates a group, address space, or segment in the order
specified.

Table 26. Linker Command Line Options (Continued)

Option Name Description
Linker Command Line Options UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

359
Appendix B. Using the Command
Processor

The Command Processor allows you to use commands or script files to automate the exe-
cution of a significant portion of the functionality of the integrated development environ-
ment (IDE). This section covers the following topics:

• Sample Command Script File – see page 363

• Supported Script File Commands – see page 364

• Running the Flash Loader from the Command Processor – see page 387

You can run commands in either of the following ways:

• Using the Command Processor toolbar in the IDE to run a single command. Com-
mands entered into the Command Processor toolbar are executed after you press the
Enter (or Return) key or click the Run Command button. The toolbar is described in
Command Processor Toolbar – see page 19.

• Using the batch command to run a command script file from the Command Proces-
sor toolbar in the IDE. For example:

batch "c:\path\to\command\file\runall.cmd"
batch "commands.txt"

• Passing a command script file to the IDE when it is started.

You must precede the script file with an at symbol (@) when passing the path and name
of the command script file to the IDE on the command line. For example:

zds2ide @c:\path\to\command\file\runall.cmd
zds2ide @commands.txt

Processed commands are echoed, and associated results are displayed in the Command
Output window in the IDE and, if logging is enabled (see the log command on page 373),
in the log file as well.

Commands are not case-sensitive.

In directory or path-based parameters, you can use \, \\, or / as separators as long as you
use the same separator throughout a single parameter. The following examples show legal
usage:

cd "..\path\to\change\to"
cd "..\\path\\to\\change\\to"
cd "../path/to/change/to"
UM017105-0511

360

Zilog Developer Studio II – ZNEO™
User Manual
The following examples show illegal usage:

cd "..\path/to\change/to"
cd "..\\path\to\change\to"

Table 27 lists ZDS II menu commands and dialog box options that have corresponding
script file commands. Each of these commands is described on the corresponding linked
page.

Table 27. Script File Commands

ZDS II
Menu ZDS II Commands Dialog Box Options Script File Commands Page

File New Project new project 374

Open Project open project 375

Exit exit 372

Edit Manage Breakpoints
Go to Code
Enable All
Disable All
Remove
Remove All

list bp

cancel bp
cancel all

373

366
366

Project Add Files add file 364

Settings (General page) CPU Family
CPU
Show Warnings
Generate Debug Information
Ignore Case of Symbols
Intermediate Files Directory

option general cpu
option general warn
option general debug
option general igcase
option general outputdir

378

Settings (Assembler
page)

Includes
Defines
Generate Assembly Listing
Files
 (.lst)
Expand Macros
Page Width
Page Length

option assembler include
option assembler define
option assembler list

option assembler listmac
option assembler
pagewidth
option assembler pagelen

376

Settings (Code Genera-
tion page)

Limit Optimizations for Easier
 Debugging
Memory Model

option compiler reduceopt

option compiler model

377
 UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

361
Project
(cont’d)

Settings (Listing Files
page)

Generate C Listing Files (.lis)
With Include Files
Generate Assembly Source
Code Generate Assembly List-
ing Files
 (.lst)

option compiler list
option compiler listinc
option compiler keepasm
option compiler keeplst

377

Settings (Preprocessor
page)

Preprocessor Definitions
Standard Include Path
User Include Path

option compiler define
option compiler stdinc
option compiler usrinc

377

Settings (Advanced page) Use Register Variables
Generate Printfs Inline
Distinct Code Segment for
Each
 Module
Default Type of Char

option compiler regvar
option compiler genprintf
option compiler modsect

option compiler chartype

377

Settings (Librarian page) Output File Name option librarian outfile 378

Settings (Commands
page)

Always Generate from Settings
Additional Directives
Edit (Additional Linker
 Directives dialog box)
Use Existing

option linker createnew
option linker useadddirec-
tive
option linker directives

option linker linkctlfile

379

Settings (Objects and
Libraries page)

Additional Object/Library Mod-
ules
Standard
Included in Project
Use Standard Startup Linker
 Commands
C Runtime Library
Floating Point Library

option linker objlibmods
option linker startuptype
option linker startuptype
option linker startuplnkc-
mds

option linker usecrun
option linker fplib

379

Settings (Address Spaces
page)

Constant Data (ROM)
Internal Ram (RAM)
SFRs and IO (IOData)
Program Space (EROM)
Extended RAM (ERAM)

option linker rom
option linker ram
option linker iodata
option linker erom
option linker eram

379

Settings (Warnings page) Treat All Warnings as Fatal
Treat Undefined Symbols as
Fatal
Warn on Segment Overlap

option linker warnisfatal
option linker undefisfatal
option linker warnoverlap

379

Table 27. Script File Commands (Continued)

ZDS II
Menu ZDS II Commands Dialog Box Options Script File Commands Page
UM017105-0511

362

Zilog Developer Studio II – ZNEO™
User Manual
Project
(cont’d)

Settings (Output page) Output File Name
Generate Map File
Sort Symbols By
Show Absolute Addresses in
 Assembly Listings
Executable Formats
Fill Unused Hex File Bytes with
 0xFF
Maximum Bytes per Hex File
Line

option linker of
option linker map
option linker sort
option linker relist

option linker exeform
option linker padhex

option linker maxhexlen

379

Settings (Debugger page) Use Page Erase Before Flash-
ing
Target
 Setup
 Add
 Copy
 Delete
Debug Tool
 Setup

target set
target options
target create
target copy

debugtool set
debugtool set

385
384
383
383

369
369

Export Makefile makfile
makefile

374

Build Build build 366

Rebuild All rebuild 381

Stop Build stop 383

Set Active Configuration set config 382

Manage Configurations set config
delete config

382
370

Debug Stop Debugging quit 381

Reset reset 381

Go go 372

Break stop 383

Step Into stepin 382

Step Over step 382

Step Out stepout 383

Table 27. Script File Commands (Continued)

ZDS II
Menu ZDS II Commands Dialog Box Options Script File Commands Page
 UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

363
Sample Command Script File

A script file is a text-based file that contains a collection of commands. The file can be
created with any editor that can save or export files in a text-based format. Each command
must be listed on its own line. Anything following a semicolon (;) is considered a com-
ment.

The following example presents a command script file:

; change to correct default directory
cd "m:\ZNEO\test\focustests"
open project "focus1.zdsproj"
log "focus1.log" ; Create log file
log on ; Enable logging
rebuild
reset
bp done
go
wait 2000 ; Wait 2 seconds
print "pc = %x" reg PC
log off ; Disable logging
quit ; Exit debug mode
close project
wait 2000
open project "focus2.zdsproj"
reset
bp done
go
wait 2000 ; Wait 2 seconds
log "focus2.log" ; Open log file
log on ; Enable logging
print "pc = %x" reg PC
log off ; Disable logging
quit
exit; Exit debug mode

Tools Flash Loader 387

Calculate File Checksum checksum 367

Show CRC crc 367

Table 27. Script File Commands (Continued)

ZDS II
Menu ZDS II Commands Dialog Box Options Script File Commands Page
UM017105-0511 Sample Command Script File

364

Zilog Developer Studio II – ZNEO™
User Manual
This script consecutively opens two projects, sets a breakpoint at label done, runs to the
breakpoint, and logs the value of the PC register. After the second project is complete, the
script exits the IDE. The first project is also rebuilt.

Supported Script File Commands

The Command Processor supports the following script file commands:

In the following syntax descriptions, items enclosed in angle brackets (< >) must be
replaced with actual values, items enclosed in square brackets ([]) are optional, double
quotes (") indicate where double quotes must exist, and all other text must be included as
it is presented.

add file

The add file command adds the given file to the currently open project. If the full path
is not supplied, the current working directory is used. The following example presents the
syntax of the add file command:

add file "<[path\]<filename>"

For example:

add file "c:\project1\main.c"

add file
batch
bp
build
cancel all
cancel bp
cd
checksum
crc
debugtool copy
debugtool create
debugtool get
debugtool help
debugtool list
debugtool save
debugtool set
debugtool setup
defines

delete config
examine (?) for Expressions
examine (?) for Variables
exit
fillmem
go
list bp
loadmem
log
makfile or makefile
new project
open project
option
print
pwd
quit
rebuild
reset

savemem
set config
step
stepin
stepout
stop
target copy
target create
target get
target help
target list
target options
target save
target set
target setup
wait
wait bp
Supported Script File Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

365
batch

The batch command runs a script file through the Command Processor. If the full path is
not supplied, the current working directory is used. The following example presents the
syntax of the batch command:

batch [wait] "<[path\]<filename>"

The wait parameter blocks processing of the current script until the invoked batch file
completes, making this parameter useful when nesting script files.

For example:

BATCH "commands.txt"
batch wait "d:\batch\do_it.cmd"

bp

The bp command sets a breakpoint at a given label or line in a file. The syntax can take
one of the following forms:

bp line <line number>

sets/removes a breakpoint on the given line of the active file.

bp <symbol>

sets a breakpoint at the given symbol. This version of the bp command can only be used
during a debug session.

For example:

bp main
bp line 20

Starting in ZDS II version 4.11.0, you can also use the bp when command to set access
breakpoints. You can have up to three access breakpoints set at one time. Access break-
points can be set and cleared while the target is running. The following example presents
the syntax of the bp when command:

bp when [READ|WRITE] <address> [MASK <mask>]

If not specified, MASK defaults to 0xFFFFFE (1 bit masked).

The valid MASK range is 0xFF8000 (15 bits masked) to 0xFFFFFF (0 bits masked).

For example:

BP WHEN READ 0xFFBFF0 MASK 0xFFFFF0 break when read address in range
0xFFBFF0-0xFFBFFF

BP WHEN WRITE 0x1234 break when write to address 0x1234

BP WHEN 0xFFE030 break when read or write address
0xFFE030 (SFR IRQ0)
UM017105-0511 Supported Script File Commands

366

Zilog Developer Studio II – ZNEO™
User Manual
BP WHEN READ &my_var break when read variable my_var

You can use the cancel bp or cancel all commands to clear access breakpoints. See
the cancel all section on page 366 and the cancel bp section on page 366.

build

The build command builds the currently open project. This command blocks the execu-
tion of other commands until the build process is complete. The following example pres-
ents the syntax of the build command:

build

cancel all

The cancel all command clears all breakpoints in the currently loaded project. The fol-
lowing example presents the syntax of the cancel all command:

cancel all

Starting in version 4.11.0, you can also use the cancel all command to clear all break-
points, including access breakpoints. For example:

cancel all

To clear a specified breakpoint, see cancel bp. To set access breakpoints, see bp.

cancel bp

The cancel bp command clears the breakpoint at the bp list index. Use the list bp
command to retrieve the index of a particular breakpoint. The following example presents
the syntax of the cancel bp command:

cancel bp <index>

For example:

cancel bp 3

Starting in version 4.11.0, you can also use the cancel bp when command to clear an
access breakpoint set at a specified address. The following example presents the syntax of
the cancel bp when command:

cancel bp when <address>

To clear all access breakpoints, see cancel all. To set access breakpoints, see bp.
Supported Script File Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

367
cd

The cd command changes the working directory to dir. The following example presents
the syntax of the cd command:

cd "<dir>"

For example:

cd "c:\temp"
cd "../another_dir"

checksum

The checksum command calculates the checksum of a hex file. The following example
presents the syntax of the checksum command:

checksum "<filename>"

For example, if you use the following command:

checksum "ledblink.hex"

The file checksum for the example is:

0xCEA3

crc

The CRC command performs a cyclic redundancy check (CRC). The syntax can take one
of two forms:

• crc calculates the CRC for the whole Flash memory.

• crc STARTADDRESS="<address>" ENDADDRESS="<endaddress>" calculates
the CRC for 4K-increment blocks. STARTADDRESS must be on a 4K boundary; if the
address is not on a 4K boundary, ZDS II produces an error message. ENDADDRESS
must be a 4K increment; if the end address is not a 4K increment, it is rounded up to a
4K increment.

For example:

crc STARTADDRESS="1000" ENDADDRESS="1FFF"

debugtool copy

The debugtool copy command creates a copy of an existing debug tool with the given
new name. The syntax can take one of two forms:
UM017105-0511 Supported Script File Commands

368

Zilog Developer Studio II – ZNEO™
User Manual
• debugtool copy NAME="<new debug tool name>" creates a copy of the
active debug tool named the value given for NAME.

• debugtool copy NAME="<new debug tool name>" SOURCE="<existing
debug tool name>" creates a copy of the SOURCE debug tool named the value
given for NAME.

For example:

debugtool copy NAME="Sim3" SOURCE="Z16F2811AL"

debugtool create

The debugtool create command creates a new debug tool with the given name and
using the given communication type: usb, tcpip, ethernet, or simulator. The fol-
lowing example presents the syntax of the debugtool create command:

debugtool create NAME="<debug tool name>" COMMTYPE="<comm type>"

For example:

debugtool create NAME="emulator2" COMMTYPE="ethernet"

debugtool get

The debugtool get command displays the current value for the given data item for the
active debug tool. Use the debugtool setup command to view available data items and
current values. The following example presents the syntax of the debugtool get com-
mand:

debugtool get "<data item>"

For example:

debugtool get "ipAddress"

debugtool help

The debugtool help command displays all debugtool commands. The following exam-
ple presents the syntax of the debugtool help command:

debugtool help

debugtool list

The debugtool list command lists all available debug tools. The syntax can take one
of two forms:

• debugtool list displays the names of all available debug tools.
Supported Script File Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

369
• debugtool list COMMTYPE="<type>" displays the names of all available
debug tools using the given communications type: usb, tcpip, ethernet, or simu-
lator.

For example:

debugtool list COMMTYPE="ethernet"

debugtool save

The debugtool save command saves a debug tool configuration to disk. The syntax can
take one of two forms:

• debugtool save saves the active debug tool.

• debugtool save NAME ="<Debug Tool Name>" saves the given debug tool.

For example:

debugtool save NAME="USBSmartCable"

debugtool set

The debugtool set command sets the given data item to the given data value for the
active debug tool or activates a particular debug tool. The syntax can take one of two
forms:

• debugtool set "<data item>" "<new value>" sets data item to new value
for the active debug tool. Use debugtool setup to view available data items and
current values.

For example:

debugtool set "ipAddress" "123.456.7.89"

• debugtool set "<debug tool name>" activates the debug tool with the given
name. Use debugtool list to view available debug tools.

debugtool setup

The debugtool setup command displays the current configuration of the active debug
tool. The following example presents the syntax of the debugtool setup command:

debugtool setup
UM017105-0511 Supported Script File Commands

370

Zilog Developer Studio II – ZNEO™
User Manual
defines

The defines command provides a mechanism to add to, remove from, or replace define
strings in the compiler preprocessor defines and assembler defines options. This command
provides a more flexible method to modify the defines options than the option com-
mand, which requires that the entire defines string be set with each use. Each defines
parameter is a string containing a single define symbol, such as "TRACE" or
"_SIMULATE=1". The defines command can take one of three forms:

• defines <compiler|assembler> add "<new define>" adds the given define
to the compiler or assembler defines, as indicated by the first parameter.

• defines <compiler|assembler> replace "<new define>" "<old
define>" replaces <old define> with <new define> for the compiler or assembler
defines, as indicated by the first parameter. If <old define> is not found, no change is
made.

• defines <compiler|assembler> remove "<define to be removed>"
removes the given define from the compiler or assembler defines, as indicated by the
first parameter.

For example:

defines compiler add "_TRACE"
defines assembler add "_TRACE=1"
defines assembler replace "_TRACE" "_NOTRACE"
defines assembler replace "_TRACE=1" "_TRACE=0"
defines compiler remove "_NOTRACE"

delete config

The delete config command deletes the given existing project build configuration.
The following example presents the syntax of the delete config command:

delete config "<config_name>"

If <config_name> is active, the first remaining build configuration, if any, is made active.
If <config_name> does not exist, no action is taken.

For example:

delete config "MyDebug"

examine (?) for Expressions

The examine command evaluates the given expression and displays the result. It accepts
any legal expression made up of constants, program variables, and C operators. The syn-
tax takes the following form:
Supported Script File Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

371
? [<data_type>] [<radix>] <expr> [:<count>]

<data_type> can consist of one of the following types:

short
int[eger]
long
ascii
asciz

<radix> can consist of one of the following types:

dec[imal]
hex[adecimal]
oct[al]
bin[ary]

Omitting a <data_type> or <radix> results in using the $data_type or $radix pseudo-
variable, respectively.

[:<count>] represents the number of items to display.

The following list presents examples.

examine (?) for Variables

The examine command displays the values of variables. This command works for values
of any type, including arrays and structures. The following example presents the syntax:

? <expression>

The following list presents examples:

? x shows the value of x using $data_type and $radix.

? ascii STR shows the ASCII string representation of STR.

? 0x1000 shows the value of 0x1000 in the $data_type and $radix.

? *0x1000 shows the byte at address 0x1000.

? *0x1000 :25 shows 25 bytes at address 0x1000.

? L0 shows the value of register D0:0 using $data_type and $radix.

? asciz D0:0 shows the null-terminated string pointed to by the contents of register
D0:0.

To see the value of z, enter: ?z

To see the nth value of array x, enter: ? x[n]

To see all values of array x, enter: ?x
UM017105-0511 Supported Script File Commands

372

Zilog Developer Studio II – ZNEO™
User Manual
When displaying a structure's value, the examine command also displays the names of each
of the structure's elements.

exit

The exit command exits the IDE. The following example presents the syntax of the exit
command:

exit

fillmem

The fillmem command fills a block of a specified memory space with the specified
value. The functionality is similar to the Fill Memory command available from the context
menu in the Memory window (see the Fill Memory section on page 334). The syntax of
the fillmem command is:

fillmem SPACE="<displayed spacename>" FILLVALUE="<hexcadecimal
value>"

[STARTADDRESS="<hexadecimal address>"]
[ENDADDRESS="<hexadecimal address>"]

If STARTADDRESS and ENDADDRESS are not specified, all of the memory contents of a
specified space are filled.

For example:

fillmem SPACE="ROM" VALUE="AA"
fillmem SPACE="ROM" VALUE="AA" STARTADDRESS="1000"
ENDADDRESS="2FFF"

go

The go command executes the program code from the current program counter until a
breakpoint or, optionally, a symbol is encountered. This command starts a debug session if
one has not been started. The go command can take one of the following forms:

• go resumes execution from the current location.

• go <symbol> resumes execution at the function identified by <symbol>. This version
of the go command can only be used during a debug session.

To see the nth through the n+5th values of array x, enter: ?x[n]:5

If x is an array of pointers to strings, enter: ? asciz *x[n]

Note:
Supported Script File Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

373
The following list presents examples:

go
go myfunc

list bp

The list bp command displays a list of all of the current breakpoints of the active file.
The following example presents the syntax of the list bp command:

list bp

loadmem

The loadmem command loads the data of an Intel hex file, a binary file, or a text file to a
specified memory space at a specified address. The functionality is similar to the Load
from File command available from the context menu in the Memory window (see Load a
File into Memory – see page 335). The following example presents the syntax of the
loadmem command:

loadmem SPACE="<displayed spacename>" FORMAT=<HEX | BIN |TEXT>
"<[PATH\]name>"
 [STARTADDRESS="<hexadecimal address>"]

If STARTADDRESS is not specified, the data is loaded at the memory lower address.

For example:

loadmem SPACE="RDATA" FORMAT=BIN "c:\temp\file.bin"
STARTADDRESS="20"
loadmem SPACE="ROM" FORMAT=HEX "c:\temp\file.hex"
loadmem SPACE="ROM" FORMAT=TEXT "c:\temp\file.txt"
STARTADDRESS="1000"

log

The log command manages the IDE’s logging feature. The log command can take one of
three forms:

• log "<[path\]filename>" [APPEND]

sets the path and file name for the log file. If APPEND is not provided, an existing log
file with the same name is truncated when the log is next activated.

• log on activates the logging of data

• log off deactivates the logging of data
UM017105-0511 Supported Script File Commands

374

Zilog Developer Studio II – ZNEO™
User Manual
For example:

log "buildall.log"
log on
log off

makfile or makefile

The makfile and makefile commands export a make file for the current project. The
syntax can take one of two forms:

• makfile "<[path\]file name>"

• makefile "<[path\]file name>"

If path is not provided, the current working directory is used.

For example:

makfile "myproject.mak"
makefile "c:\projects\test.mak"

new project

The new project command creates a new project designated by project_name, target,
and the type supplied. If the full path is not supplied, the current working directory is used.
By default, existing projects with the same name are replaced. Use NOREPLACE to prevent
the overwriting of existing projects. The syntax can take one of the following forms:

• new project "<[path\]name>" "<target>" "<exe|lib>" ["<cpu>"]
[NOREPLACE]

• new project "<[path\]name>" "<target>" "<project type>"
"<exe|lib>" "<cpu>" [NOREPLACE]

where:

• <name> is the path and name of the new project. If the path is not provided, the cur-
rent working directory is assumed. Any file extension can be used, but none is
required. If not provided, the default extension of .zdsproj is used.

• <target> must match that of the IDE (that is, the ZNEO IDE can only create
ZNEO-based projects).

• <exe|lib> must be either exe (Executable) or lib (Static Library).

• ["<cpu>"] is the name of the CPU to configure for the new project.

• "<project type"> can be "Standard" or "Assembly Only". Standard is the
default.
Supported Script File Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

375
• NOREPLACE is an optional parameter to use to prevent the overwriting of existing
projects.

For example:

new project "test1.zdsproj" "ZNEO" "exe"
new project "test1.zdsproj" "ZNEO" "exe" NOREPLACE

open project

The open project command opens the project designated by project_name. If the full
path is not supplied, the current working directory is used. The command fails if the spec-
ified project does not exist. The following example presents the syntax of the open
project command:

open project "<project_name>"

For example:

open project "test1.zdsproj"
open project "c:\projects\test1.zdsproj"

option

The option command manipulates project settings for the active build configuration of
the currently open project. Each call to option applies to a single tool but can set multiple
options for the given tool. The following example presents the syntax for the option
command:

option <tool_name> expr1 expr2 . . . exprN,

where:

expr is (<option name> = <option value>)

For example:

option assembler debug = TRUE
option compiler debug = TRUE keeplst = TRUE
option debugger readmem = TRUE
option linker igcase = "FALSE"
option linker code = 0000-FFFF
option general cpu=z8f64

Many of these script file options are also available from the command line. For more
details, see Running ZDS II from the Command Line on Running ZDS II from the Com-
mand Line – see page 349.

Note:
UM017105-0511 Supported Script File Commands

376

Zilog Developer Studio II – ZNEO™
User Manual
Table 28 lists some command line examples and the corresponding script file commands.

The following script file options are available:

• Assembler Options – see page 376

• Compiler Options – see page 377

• Debugger Options – see page 378

• General Options – see page 378

• Librarian Options – see page 378

• Linker Options – see page 379

Assembler Options

Table 28. Command Line Examples

Script File Command Examples
Corresponding Command Line
Examples

option compiler keepasm = TRUE eZ8cc -keepasm

option compiler keepasm = FALSE eZ8cc -nokeepasm

option compiler const = RAM eZ8cc -const:RAM

option assembler debug = TRUE eZ8asm -debug

option linker igcase = "FALSE" eZ8link -NOigcase

option librarian warn = FALSE eZ8lib -nowarn

Table 29. Assembler Options

Option Name
Description or Corresponding Option in
Project Settings Dialog Box Acceptable Values

define Assembler page, Defines field string (separate multiple defines
with semicolons)

include Assembler page, Includes field string (separate multiple paths
with semicolons)

list Assembler page, Generate Assembler Listing Files
(.lst) checkbox

TRUE, FALSE

listmac Assembler page, Expand Macros checkbox TRUE, FALSE

pagelen Assembler page, Page Length field integer

pagewidth Assembler page, Page Width field integer
Supported Script File Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

377
Compiler Options

quiet Toggles quiet assemble. TRUE, FALSE

sdiopt Toggles Jump Optimization. TRUE, FALSE

Table 30. Compiler Options

Option Name
Description or Corresponding Option in
Project Settings Dialog Box Acceptable Values

chartype Advanced page, Default Type of Char drop-down
menu.

string (“unsigned” or “signed”)

define Preprocessor page, Preprocessor Definitions field. string (separate multiple defines
with semicolons)

genprintf Advanced page, Generate Assembly Source Code
checkbox.

TRUE, FALSE

keepasm Listing Files page, Preprocessor Definitions field.

keeplst Listing Files page, Generate Assembly Listing
Files (.lst) checkbox.

TRUE, FALSE

list Listing Files page, Generate C Listing Files (.lis)
checkbox.

TRUE, FALSE

listinc Listing Files page, With Include Files checkbox.
Only applies if list option is currently true.

TRUE, FALSE

model Code Generation page, Memory Model drop-down
menu.

string (“large” or “small”)

modsect Advanced page, Distinct Code Segment for Each
Module checkbox.

TRUE, FALSE

optspeed Toggles optimizing for speed. TRUE (optimize for speed),
FALSE (optimize for size)

reduceopt Code Generation page, Limit Optimizations for
Easier Debugging checkbox.

TRUE, FALSE

regvar Advanced page, Use Register Variables checkbox. TRUE, FALSE

Table 29. Assembler Options (Continued)

Option Name
Description or Corresponding Option in
Project Settings Dialog Box Acceptable Values
UM017105-0511 Supported Script File Commands

378

Zilog Developer Studio II – ZNEO™
User Manual
Debugger Options

For debugger options, use the target help and debugtool help commands.

General Options

Librarian Options

stdinc Preprocessor page, Standard Include Path field. string (separate multiple paths
with semicolons)

usrinc Preprocessor page, User Include Path field. string (separate multiple paths
with semicolons)

Table 31. General Options

Option Name
Corresponding Option in Project Settings Dialog
Box Acceptable Values

cpu General page, CPU drop-down field. string (valid CPU name)

debug General page, Generate Debug Information checkbox. TRUE, FALSE

igcase General page, Ignore Case of Symbols checkbox. TRUE, FALSE

outputdir General page, Intermediate Files Directory field. string (path)

warn General page, Show Warnings checkbox. TRUE, FALSE

Table 32. Librarian Options

Option Name
Corresponding Option in Project Settings
Dialog Box Acceptable Values

outfile Librarian page, Output File Name field string (library file name with option path)

Table 30. Compiler Options (Continued)

Option Name
Description or Corresponding Option in
Project Settings Dialog Box Acceptable Values
Supported Script File Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

379
Linker Options

Table 33. Linker Options

Option Name
Description or Corresponding Option in
Project Settings Dialog Box Acceptable Values

createnew Commands page, Always Generate from Settings
button.

TRUE, FALSE

directives Commands page, Edit button, Additional Linker
Directives dialog box. Contains the text for addi-
tional directives.

string

eram Address Spaces page, Extended RAM (ERAM)
field.

string (address range in the format
“<low>-<high>”)

erom Address Spaces page, Program Space (EROM). string (address range in the format
“<low>-<high>”)

exeform Output page, Executable Formats area. string (one or more of “IEEE 695”
or “Intel Hex32”)

fplib Objects and Libraries page, Floating Point Library
drop-down menu.

string (“real”, “dummy”, or “none”)

iodata Address Spaces page, SFRs and IO (IOData) field. string (address range in the format
“<low>-<high>”)

linkconfig Commands page, Use Existing button, Select
Linker Command File dialog box.

string (“All Internal” or “External
Included”)

linkctlfile Sets the linker command file (path and) name. The
value is only used when createnew is set to 1.

string

map Output page, Generate Map File checkbox. TRUE, FALSE

maxhexlen Output page, Maximum Bytes per Hex File Line
drop-down menu.

integer (16, 32, 64, or 128)

objlibmods Objects and Libraries page, Additional Object/
Library Modules field.

string (separate multiple modules
names with commas)

of Output page, Output File Name field. string (path and file name, exclud-
ing file extension)

padhex Output page, Fill Unused Hex File Bytes with 0xFF
checkbox.

TRUE, FALSE

ram Address Spaces page, Internal RAM (RAM) field. string (address range in the format
“<low>-<high>”)

relist Output page, Show Absolute Addresses in Assem-
bly checkbox.

TRUE, FALSE
UM017105-0511 Supported Script File Commands

380

Zilog Developer Studio II – ZNEO™
User Manual
print

The print command writes formatted data to the Command Output window and the log
(if the log is enabled). Each expression is evaluated, and the value is inserted into the
format_string, which is equivalent to that supported by a C language printf. The follow-
ing example presents the syntax of the print command:

print "<format_string>" expression1 expression2 ... expressionN

For example:

PRINT "the pc is %x" REG PC
print "pc: %x, sp: %x" REG PC REG SP

pwd

The pwd command retrieves the current working directory. The following example pres-
ents the syntax of the pwd command:

pwd

rom Address Spaces page, Constant Data (ROM) field. string (address range in the format
“<low>-<high>”)

sort Output page, Sort Symbols By buttons. string

startuptype Objects and Libraries page, C Start-up Module
area.

string (“standard” or “included”)

undefisfatal Warnings page, Treat Undefined Symbols as Fatal
checkbox.

TRUE, FALSE

usecrun Objects and Libraries page, Use C Runtime Library
checkbox.

TRUE, FALSE

warnisfatal Warnings page, Treat All Warnings as Fatal check-
box.

TRUE, FALSE

warnoverlap Warnings page, Warn on Segment Overlap check-
box.

TRUE, FALSE

Table 33. Linker Options (Continued)

Option Name
Description or Corresponding Option in
Project Settings Dialog Box Acceptable Values
Supported Script File Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

381
quit

The quit command ends the current debug session. The following example presents the
syntax of the quit command:

quit

rebuild

The rebuild command rebuilds the currently open project. This command blocks the
execution of other commands until the build process is complete. The following example
presents the syntax of the rebuild command:

rebuild

reset

The reset command resets execution of program code to the beginning of the program.
This command starts a debug session if one has not been started. The following example
presents the syntax of the reset command:

reset

By default, the reset command resets the PC to symbol 'main'. If you deselect the Reset
to Symbol 'main' (Where Applicable) checkbox on the Debugger tab of the Options
dialog box (see Options—Debugger Tab – see page 102), the PC resets to the first line of
the program.

savemem

The savemem command saves the memory content of the specified range into an Intel hex
file, a binary file, or a text file. The functionality is similar to the Save to File command
available from the context menu in the Memory window (see Save Memory to a File – see
page 335). The following example presents the syntax of the savemem command:

savemem SPACE="<displayed spacename>" FORMAT=<HEX | BIN |TEXT>
"<[PATH\]name>"
 [STARTADDRESS="<hexadecimal address>"] [ENDADDRESS="<hexadecimal
address>"]

If STARTADDRESS and ENDADDRESS are not specified, all of the memory contents of a
specified space are saved.

For example:

savemem SPACE="RDATA" FORMAT=BIN "c:\temp\file.bin"
STARTADDRESS="20" ENDADDRESS="100"
savemem SPACE="ROM" FORMAT=HEX "c:\temp\file.hex"
UM017105-0511 Supported Script File Commands

382

Zilog Developer Studio II – ZNEO™
User Manual
savemem SPACE="ROM" FORMAT=TEXT "c:\temp\file.txt"
STARTADDRESS="1000" ENDADDRESS="2FFF"

set config

The set config command activates an existing build configuration for or creates a new
build configuration in the currently loaded project. The following example presents the
syntax of the set config command:

set config "config_name" ["copy_from_config_name"]

The set config command performs the following functions:

• Activates config_name if it exists.

• Creates a new configuration named config_name if it does not yet exist. When com-
plete, the new configuration is made active. When creating a new configuration, the
Command Processor copies the initial settings from the copy_from_config_name
parameter, if provided. If not provided, the active build configuration is used as the
copy source. If config_name exists, the copy_from_config_name parameter is ignored.

The active/selected configuration is used with commands such as option tool
name="value" and build.

step

The step command performs a single step (stepover) from the current location of the pro-
gram counter. If the count is not provided, a single step is performed. This command starts
a debug session if one has not been started. The following example presents the syntax of
the step command:

step

stepin

The stepin command steps into the function at the PC. If there is no function at the cur-
rent PC, this command is equivalent to step. This command starts a debug session if one
has not been started. The following example presents the syntax of the stepin command:

stepin

Note:
Supported Script File Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

383
stepout

The stepout command steps out of the function. This command starts a debug session if
one has not been started. The following example presents the syntax of the stepout com-
mand:

stepout

stop

The stop command stops the execution of program code. The following example presents
the syntax of the stop command:

stop

target copy

The target copy command creates a copy of the existing target with a given name with
the given new name. The syntax can take one of two forms:

• target copy NAME="<new target name>" creates a copy of the active target
named the value given for NAME.

• target copy NAME="<new target name>" SOURCE="<existing target
name>" creates a copy of the SOURCE target named the value given for NAME.

For example:

target copy NAME="mytarget" SOURCE="Sim3"

target create

The target create command creates a new target with the given name and using the
given CPU. The following example presents the syntax of the target create com-
mand:

target create NAME="<target name>" CPU="<cpu name>"

For example:

target create NAME="mytarget" CPU="Z16F2811AL"

target get

The target get command displays the current value for the given data item for the
active target. The following example presents the syntax of the target get command:

target get "<data item>"
UM017105-0511 Supported Script File Commands

384

Zilog Developer Studio II – ZNEO™
User Manual
Use the target setup command to view available data items and current values.

For example:

target get "cpu"

target help

The target help command displays all target commands. The following example pres-
ents the syntax of the target help command:

target help

target list

The target list command lists all available targets. The syntax can take one of three
forms:

• target list displays the names of all available targets (restricted to the currently
configured CPU family).

• target list CPU="<cpu name>" displays the names of all available targets asso-
ciated with the given CPU name.

• target list FAMILY="<family name>" displays the names of all available tar-
gets associated with the given CPU family name.

For example:

target list FAMILY="ZNEO"

target options

See a target in the following directory for a list of categories and options:

<ZDS Installation Directory>\targets

where <ZDS Installation Directory> is the directory in which Zilog Developer Studio
was installed. By default, this filepath is:

C:\Program Files\Zilog\ZDSII_ZNEO_<version>,

where <version> can be 4.11.0 or 5.0.0.

Note:
Supported Script File Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

385
To set a target value, use one of the following syntaxes:

target options CATEGORY="<Category>" OPTION="<Option>" "<token
name>"="<value to set>"
target options CATEGORY="<Category>" "<token name>"="<value to
set>"
target options "<token name>"="<value to set>"

To select a target, use the following syntax:

target options NAME ="<Target Name>"

target save

The target save command saves a target. To save the selected target, use the following
syntax:

target save

To save a specified target, use the following syntax:

target save NAME="<Target Name>"

For example:

target save Name="Sim3"

target set

The target set command sets the given data item to the given data value for the active
target or activates a particular target. The syntax can take one of two forms:

• target set "<data item>" "<new value>" sets data item to new value for the
active debug tool. Use target setup to view available data items and current val-
ues.

For example:

target set "frequency" "20000000"

• target set "<target name>" activates the target with the given name. Use
target list to view available targets.

target setup

The target setup command displays the current configuration. The following example
presents the syntax of the target setup command:

target setup
UM017105-0511 Supported Script File Commands

386

Zilog Developer Studio II – ZNEO™
User Manual
wait

The wait command instructs the Command Processor to wait the specified milliseconds
before executing the next command. The following example presents the syntax of the
wait command:

wait <milliseconds>

For example:

wait 5000

wait bp

The wait bp command instructs the Command Processor to wait until the debugger stops
executing. The optional max_milliseconds parameter provides a method to limit the
amount of time a wait takes (that is, wait until the debugger stops or max_milliseconds
passes). The following example presents the syntax of the wait bp command:

wait bp [max_milliseconds]

For example:

wait bp
wait bp 2000
Supported Script File Commands UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

387
Running the Flash Loader from the Command
Processor

You can run the Flash Loader from the Command field. Command Processor keywords
have been added to allow for easy scripting of the Flash loading process. Each of the
parameters is persistent, which allows for the repetition of the Flash and verification pro-
cesses with a minimum amount of repeated key strokes.

Observe the following procedure to run the Flash Loader:

1. Create a project or open a project with a ZNEO microcontroller selected in the CPU
Family and CPU fields of the General page of the Project Settings dialog box (see
Project Settings—General Page – see page 47).

2. Set up the USB communication in the Configure Target dialog box (see Figure 61 on
page 76).

3. In the Command field (in the Command Processor toolbar), enter one of the follow-
ing command sequences to use the Flash Loader.

Displaying Flash Help

Setting Up Flash Options

Flash Setup Displays the Flash setup in the Command Output window

Flash Help Displays the Flash command format in the Command Output window

Flash Options "<File Name>" File to be flashed

Flash Options OFFSET = "<address>" Offset address in hex file

Flash Options NAUTO Do not automatically select
external Flash device

Flash Options AUTO Automatically select external
Flash device

Flash Options INTMEM Set to internal memory

Flash Options EXTMEM Set to external memory

Flash Options BOTHMEM Set to both internal and external
memory

Flash Options NEBF Do not erase before flash

Flash Options EBF Erase before flash

Flash Options NISN Do not include serial number
UM017105-0511 Running the Flash Loader from the Command

388

Zilog Developer Studio II – ZNEO™
User Manual
Executing Flash Commands

The Flash Loader dialog box and the Command Processor interface use the same
parameters. If an option is not specified with the Command Processor interface,
the current setting in the Flash Loader dialog box is used. If a setting is changed
in the Command Processor interface, the Flash Loader dialog box settings are
changed.

Examples

The following are valid examples:

FLASH Options INTMEM

Flash Options ISN Include a serial number

Flash Options NPBF Do not page-erase Flash mem-
ory; use mass erase

Flash Options PBF Page-erase Flash memory

Flash Options SERIALADDRESS = "<address>" Serial number address

Flash Options SERIALNUMBER = "<Number in Hex>" Initial serial number value

Flash Options SERIALSIZE = <1-8> Number of bytes in serial number

Flash Options INCREMENT = "<Decimal value>" Increment value for serial num-
ber

Flash READSERIAL Read the serial number

Flash READSERIAL REPEAT Read the serial number and repeat

Flash BURNSERIAL Program the serial number

Flash BURNSERIAL REPEAT Program the serial number and repeat

Flash ERASE Erase Flash memory

Flash ERASE REPEAT Erase Flash memory and repeat

Flash BURN Program Flash memory

Flash BURN REPEAT Program Flash memory and repeat

Flash BURNVERIFY Program and verify Flash memory

Flash BURNVERIFY REPEAT Program and verify Flash memory and repeat

Flash VERIFY Verify Flash memory

Flash VERIFY REPEAT Verify Flash memory and repeat

Caution:
Running the Flash Loader from the Command Processor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

389
FLASH Options "c:\testing\test.hex"
FLASH BURN REPEAT

or

flash options intmem
flash options "c:\testing\test.hex"
flash burn repeat

The file test.hex is loaded into internal Flash memory. After the Flashing is completed,
you are prompted to program an additional unit.

FLASH VERIFY

The file test.hex is verified against internal Flash memory.

FLASH SETUP

The current Flash Loader parameters settings are displayed in the Command Output win-
dow.

FLASH HELP

The current Flash Loader command options are displayed in the Command Output win-
dow.

Flash Options NAUTO

The Flash Loader does not automatically select the external Flash device.

Flash Options PBF

Page erase is enabled instead of mass erase for internal and external Flash programming.
UM017105-0511 Running the Flash Loader from the Command

390

Zilog Developer Studio II – ZNEO™
User Manual
Running the Flash Loader from the Command Processor UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

391
Appendix C. C Standard Library

As described in the Run-Time Library section on page 177, the ZNEO C-Compiler pro-
vides a collection of run-time libraries. The largest section of these libraries consists of an
implementation of much of the C Standard Library.

The ZNEO C-Compiler is a conforming freestanding 1989 ANSI C implementation with
some exceptions. In accordance with the definition of a freestanding implementation, the
compiler supports the required standard header files <float.h>, <limits.h>,
<stdarg.h>, and <stddef.h>. It also supports additional standard header files and
Zilog-specific nonstandard header files. The latter are described in the Run-Time Library
section on page 177.

The standard header files and functions are, with minor exceptions, fully compliant with
the ANSI C Standard. The deviations from the ANSI Standard in these files are summa-
rized in Library Files Not Required for Freestanding Implementation – see page 196. The
standard header files provided with the compiler are listed in Table 34 and described in
detail in the Standard Header Files section on page 392. The following sections describe
the use and format of the standard portions of the run-time libraries:

• Standard Header Files – see page 392

• Standard Functions – see page 407

Table 34. Standard Headers

Header Description Page

<assert.h> Diagnostics 394

<ctype.h> Character-handling functions 394

<errno.h> Error numbers 393

<float.h> Floating-point limits 396

<limits.h> Integer limits 395

<math.h> Math functions 398

<setjmp.h> Nonlocal jump functions 401

<stdarg.h> Variable arguments functions 401

<stddef.h> Standard defines 393

<stdio.h> Standard input/output functions 402

<stdlib.h> General utilities functions 403

<string.h> String-handling functions 405
UM017105-0511

392

Zilog Developer Studio II – ZNEO™
User Manual
The standard include header files are located in the following directory:

<ZDS Installation Directory>\include\std

where <ZDS Installation Directory> is the directory in which Zilog Developer Studio was
installed. By default, this would be C:\Program Files\Zilog\ZDSII_ZNEO_<ver-
sion>, where <version> might be 4.11.0 or 5.0.0.

Standard Header Files

Each library function is declared in a header file. The header files can be included in the
source files using the #include preprocessor directive. The header file declares a set of
related functions, any necessary types, and additional macros required to facilitate their
use.

Header files can be included in any order; each can be included more than once in a given
scope with no adverse effect. Header files must be included in the code before the first ref-
erence to any of the functions they declare or types and macros they define.

The following sections describe the standard header files:

• Errors <errno.h> – see page 393

• Standard Definitions <stddef.h> – see page 393

• Diagnostics <assert.h> – see page 394

• Character Handling <ctype.h> – see page 394

• Limits <limits.h> – see page 395

• Floating Point <float.h> – see page 396

• Mathematics <math.h> – see page 398

• Nonlocal Jumps <setjmp.h> – see page 401

• Variable Arguments <stdarg.h> – see page 401

• Input/Output <stdio.h> – see page 402

• General Utilities <stdlib.h> – see page 403

• String Handling <string.h> – see page 405

Note:
Standard Header Files UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

393
Errors <errno.h>

The <errno.h> header defines macros relating to the reporting of error conditions.

Macros

Additional macro definitions, beginning with E and an uppercase letter, can also be speci-
fied by the implementation.

Standard Definitions <stddef.h>

The following types and macros are defined in several headers referred to in the descrip-
tions of the functions declared in that header, as well as the common <stddef.h> stan-
dard header.

Macros

Types

EDOM Expands to a distinct nonzero integral constant expression.

ERANGE Expands to a distinct nonzero integral constant expression.

errno A modifiable value that has type int. Several libraries set errno to a posi-
tive value to indicate an error. errno is initialized to zero at program
startup, but it is never set to zero by any library function. The value of
errno can be set to nonzero by a library function even if there is no error,
depending on the behavior specified for the library function in the ANSI
Standard.

NULL Expands to a null pointer constant.

offsetof (type,
identifier)

Expands to an integral constant expression that has type size_t and pro-
vides the offset in bytes, from the beginning of a structure designated by
type to the member designated by identifier.

ptrdiff_t Signed integral type of the result of subtracting two pointers.

size_t Unsigned integral type of the result of the sizeof operator.

wchar_t Integral type whose range of values can represent distinct codes for all
members of the largest extended character set specified among the sup-
ported locales.
UM017105-0511 Standard Header Files

394

Zilog Developer Studio II – ZNEO™
User Manual
Diagnostics <assert.h>

The <assert.h> header declares two macros.

Macros

Character Handling <ctype.h>

The <ctype.h> header declares several macros and functions useful for testing and map-
ping characters. In all cases, the argument is an int, the value of which is represented as
an unsigned char or equals the value of the EOF macro. If the argument has any other
value, the behavior is undefined.

Macros

The above character-handling macros are nonstandard macros.

Functions

The functions in this section return nonzero (true) if, and only if, the value of the argument
c conforms to that in the description of the function. The term printing character refers to
a member of a set of characters, each of which occupies one printing position on a display
device. The term control character refers to a member of a set of characters that are not
printing characters.

NDEBUG The <assert.h> header defines the assert() macro. It refers to the
NDEBUG macro that is not defined in the header. If NDEBUG is
defined as a macro name before the inclusion of this header, the
assert() macro is defined simply as:

#define assert(ignore)((void) 0)

assert(expression); Tests the expression and, if false, prints the diagnostics including
the expression, file name, and line number. Also calls exit with non-
zero exit code if the expression is false.

TRUE Expands to a constant 1.

FALSE Expands to a constant 0.

Note:
Standard Header Files UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

395
Character Testing

Character Case Mapping

Limits <limits.h>

The <limits.h> header defines macros that expand to various limits and parameters.

Macros

int isalnum(int c); Tests for alphanumeric character.

int isalpha(int c); Tests for alphabetic character.

int iscntrl(int c); Tests for control character.

int isdigit(int c); Tests for decimal digit.

int isgraph(int c); Tests for printable character except space.

int islower(int c); Tests for lowercase character.

int isprint(int c); Tests for printable character.

int ispunct(int c); Tests for punctuation character.

int isspace(int c); Tests for white-space character.

int isupper(int c); Tests for uppercase character.

int isxdigit(int c); Tests for hexadecimal digit.

int tolower(int c); Tests character and converts to lowercase if upper-
case.

int toupper(int c); Tests character and converts to uppercase if lower-
case.

CHAR_BIT Maximum number of bits for smallest object that is not a bit-field (byte).

CHAR_MAX Maximum value for an object of type char.

CHAR_MIN Minimum value for an object of type char.

INT_MAX Maximum value for an object of type int.

INT_MIN Minimum value for an object of type int.

LONG_MAX Maximum value for an object of type long int.

LONG_MIN Minimum value for an object of type long int.

SCHAR_MAX Maximum value for an object of type signed char.

SCHAR_MIN Minimum value for an object of type signed char.
UM017105-0511 Standard Header Files

396

Zilog Developer Studio II – ZNEO™
User Manual
If the value of an object of type char sign-extends when used in an expression, the value of
CHAR_MIN is the same as that of SCHAR_MIN, and the value of CHAR_MAX is the
same as that of SCHAR_MAX. If the value of an object of type char does not sign-extend
when used in an expression, the value of CHAR_MIN is 0, and the value of CHAR_MAX
is the same as that of UCHAR_MAX.

Floating Point <float.h>

The <float.h> header defines macros that expand to various limits and parameters.

Macros

SHRT_MAX Maximum value for an object of type short int.

SHRT_MIN Minimum value for an object of type short int.

UCHAR_MAX Maximum value for an object of type unsigned char.

UINT_MAX Maximum value for an object of type unsigned int.

ULONG_MAX Maximum value for an object of type unsigned long int.

USHRT_MAX Maximum value for an object of type unsigned short int.

MB_LEN_MAX Maximum number of bytes in a multibyte character.

DBL_DIG Number of decimal digits of precision.

DBL_MANT_DIG Number of base-FLT_RADIX digits in the floating-point mantissa.

DBL_MAX Maximum represented floating-point numbers.

DBL_MAX_EXP Maximum integer such that FLT_RADIX raised to that power
approximates a floating-point number in the range of represented
numbers.

DBL_MAX_10_EXP Maximum integer such that 10 raised to that power approximates a
floating-point number in the range of represented value
((int)log10(DBL_MAX), and so on).

DBL_MIN Minimum represented positive floating-point numbers.

DBL_MIN_EXP Minimum negative integer such that FLT_RADIX raised to that
power approximates a positive floating-point number in the range of
represented numbers.

DBL_MIN_10_EXP Minimum negative integer such that 10 raised to that power
approximates a positive floating-point number in the range of repre-
sented values ((int)log10(DBL_MIN), and so on).

FLT_DIG Number of decimal digits of precision.

FLT_MANT_DIG Number of base-FLT_RADIX digits in the floating-point mantissa.

FLT_MAX Maximum represented floating-point numbers.
Standard Header Files UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

397
The limits for the double and long double data types are the same as that for the float data
type for the ZNEO C-Compiler.

FLT_MAX_EXP Maximum integer such that FLT_RADIX raised to that power
approximates a floating-point number in the range of represented
numbers.

FLT_MAX_10_EXP Maximum integer such that 10 raised to that power approximates a
floating-point number in the range of represented value
((int)log10(FLT_MAX), and so on).

FLT_MIN Minimum represented positive floating-point numbers.

FLT_MIN_EXP Minimum negative integer such that FLT_RADIX raised to that
power approximates a positive floating-point number in the range of
represented numbers

FLT_MIN_10_EXP Minimum negative integer such that 10 raised to that power
approximates a positive floating-point number in the range of repre-
sented values ((int)log10(FLT_MIN), and so on).

FLT_RADIX Radix of exponent representation.

FLT_ROUND Rounding mode for floating-point addition.
-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

LDBL_DIG Number of decimal digits of precision.

LDBL_MANT_DIG Number of base-FLT_RADIX digits in the floating-point mantissa.

LDBL_MAX Maximum represented floating-point numbers.

LDBL_MAX_EXP Maximum integer such that FLT_RADIX raised to that power
approximates a floating-point number in the range of represented
numbers.

LDBL_MAX_10_EX
P

Maximum integer such that 10 raised to that power approximates a
floating-point number in the range of represented value
((int)log10(LDBL_MAX), and so on).

LDBL_MIN Minimum represented positive floating-point numbers.

LDBL_MIN_EXP Minimum negative integer such that FLT_RADIX raised to that
power approximates a positive floating-point number in the range of
represented numbers.

LDBL_MIN_10_EXP Minimum negative integer such that 10 raised to that power
approximates a positive floating-point number in the range of repre-
sented values ((int)log10(LDBL_MIN), and so on).

Note:
UM017105-0511 Standard Header Files

398

Zilog Developer Studio II – ZNEO™
User Manual
Mathematics <math.h>

The <math.h> header declares several mathematical functions and defines one macro.
The functions take double-precision arguments and return double-precision values. Integer
arithmetic functions and conversion functions are discussed later.

The double data type is implemented as float in the ZNEO C-Compiler.

Macro

Treatment of Error Conditions

The behavior of each of these functions is defined for all values of its arguments. Each
function must return as if it were a single operation, without generating any externally vis-
ible exceptions.

For all functions, a domain error occurs if an input argument to the function is outside the
domain over which the function is defined. On a domain error, the function returns a spec-
ified value; the integer expression errno acquires the value of the EDOM macro.

Similarly, a range error occurs if the result of the function cannot be represented as a dou-
ble value. If the result overflows (the magnitude of the result is so large that it cannot be
represented in an object of the specified type), the function returns the value of the
HUGE_VAL macro, with the same sign as the correct value of the function; the integer
expression errno acquires the value of the ERANGE macro. If the result underflows (the
magnitude of the result is so small that it cannot be represented in an object of the speci-
fied type), the function returns zero.

Functions

Trigonometric

HUGE_VAL Expands to a positive double expression, not necessarily represented as
a float.

double acos(double x); Calculates arc cosine of x.

double asin(double x) Calculates arc sine of x.

double atan(double x); Calculates arc tangent of x.

double atan2(double y, double x); Calculates arc tangent of y/x.

double cos(double x); Calculates cosine of x.

Note:
Standard Header Files UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

399
The following additional trigonometric functions are provided:

Hyperbolic

The following additional hyperbolic functions are provided:

Exponential

double sin(double x); Calculates sine of x.

double tan(double x); Calculates tangent of x.

float acosf(float x); Calculates arc cosine of x.

float asinf(float x); Calculates arc sine of x.

float atanf(float x); Calculates arc tangent of x.

float atan2f(float y, float x); Calculates arc tangent of y/x.

float cosf(float x); Calculates cosine of x.

float sinf(float x); Calculates sine of x.

float tanf(float x); Calculates tangent of x.

double cosh(double x); Calculates hyperbolic cosine of x.

double sinh(double x); Calculates hyperbolic sine of x.

double tanh(double x); Calculates hyperbolic tangent of x.

float coshf(float x); Calculates hyperbolic cosine of x.

float sinhf(float x); Calculates hyperbolic sine of x.

float tanhf(float x); Calculates hyperbolic tangent of x.

double exp(double x); Calculates exponential function of x.

double frexp(double value, int *exp); Shows x as product of mantissa (the value
returned by frexp) and 2 to the n.

double ldexp(double x, int exp); Calculates x times 2 to the exp.
UM017105-0511 Standard Header Files

400

Zilog Developer Studio II – ZNEO™
User Manual
The following additional exponential functions are provided:

Logarithmic

The following additional logarithmic functions are provided:

Power

The following additional power functions are provided:

Nearest Integer

float expf(float x); Calculates exponential function of x.

float frexpf(float value, int *exp); Shows x as product of mantissa (the value
returned by frexp) and 2 to the n.

float ldexpf(float x, int exp); Calculates x times 2 to the exp.

double log(double x); Calculates natural logarithm of x.

double log10(double x); Calculates base 10 logarithm of x.

double modf(double value, double
*iptr);

Breaks down x into integer (the value returned by
modf) and fractional (n) parts.

float logf(float x); Calculates natural logarithm of x.

float log10f(float x); Calculates base 10 logarithm of x.

float modff(float value, float *iptr); Breaks down x into integer (the value returned by
modf) and fractional (n) parts.

double pow(double x, double y); Calculates x to the y.

double sqrt(double x); Finds square root of x.

float powf(float x, float y); Calculates x to the y.

float sqrtf(float x); Finds square root of x.

double ceil(double x); Finds integer ceiling of x.

double fabs(double x); Finds absolute value of x.

double floor(double x); Finds largest integer less than or equal to x.

double fmod(double x,double y); Finds floating-point remainder of x/y.
Standard Header Files UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

401
The following additional nearest integer functions are provided:

Nonlocal Jumps <setjmp.h>

The <setjmp.h> header declares two functions and one type for bypassing the normal
function call and return discipline.

Type

Functions

Variable Arguments <stdarg.h>

The <stdarg.h> header declares a type and a function and defines two macros for
advancing through a list of arguments whose number and types are not known to the called
function when it is translated.

A function can be called with a variable number of arguments of varying types. A Func-
tion Definitions parameter list contains one or more parameters. The rightmost parameter
plays a special role in the access mechanism and is designated parmN in this description.

Type

float ceilf(float x); Finds integer ceiling of x.

float fabsf(float x); Finds absolute value of x.

float floorf(float x); Finds largest integer less than or equal to x.

float fmodf(float x,float y); Finds floating-point remainder of x/y.

jmp_buf An array type suitable for holding the information required to restore a
calling environment.

int setjmp(jmp_buf env); Saves a stack environment.

void longjmp(jmp_buf env, int val); Restores a saved stack environ-
ment.

va_list An array type suitable for holding information required by the macro
va_arg and the function va_end. The called function declares a variable
(referred to as ap in this section) having type va_list. The variable ap can
be passed as an argument to another function.
UM017105-0511 Standard Header Files

402

Zilog Developer Studio II – ZNEO™
User Manual
Variable Argument List Access Macros and Function

The va_start and va_arg macros described in this section are implemented as macros, not
as real functions. If #undef is used to remove a macro definition and obtain access to a
real function, the behavior is undefined.

Functions

Input/Output <stdio.h>

The <stdio.h> header declares input and output functions.

Macro

Functions

Formatted Input/Output

Character Input/Output

void va_start(va_list ap, parmN); Sets pointer to beginning of argument list.

type va_arg (va_list ap, type); Retrieves argument from list.

void va_end(va_list ap); Resets pointer.

EOF Expands to a negative integral constant. Returned by functions to indi-
cate end of file.

int printf(const char *format, ...); Writes formatted data to stdout.

int scanf(const char *format, ...); Reads formatted data from stdin.

int sprintf(char *s, const char *format, ...); Writes formatted data to string.

int sscanf(const char *s, const char *format, ...); Reads formatted data from string.

int vprintf(const char *format, va_list arg); Writes formatted data to a stdout.

int vsprintf(char *s, const char *format, va_list arg); Writes formatted data to a string.

int getchar(void); Reads a character from stdin.

char *gets(char *s); Reads a line from stdin.

int putchar(int c); Writes a character to stdout.

int puts(const char *s); Writes a line to stdout.
Standard Header Files UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

403
General Utilities <stdlib.h>

The <stdlib.h> header declares several types, functions of general utility, and macros.

Types

Macros

Functions

String Conversion

The atof, atoi, and atol functions do not affect the value of the errno macro on an
error. If the result cannot be represented, the behavior is undefined.

div_t Structure type that is the type of the value returned by the div function.

ldiv_t Structure type that is the type of the value returned by the ldiv function.

size_t Unsigned integral type of the result of the sizeof operator.

wchar_t Integral type whose range of values can represent distinct codes for all
members of the largest extended character set specified among the sup-
ported locales.

EDOM Expands to distinct nonzero integral constant expressions.

ERANGE Expands to distinct nonzero integral constant expressions.

EXIT_SUCCESS Expands to integral expression which indicates successful termina-
tion status.

EXIT_FAILURE Expands to integral expression which indicates unsuccessful termi-
nation status.

HUGE_VAL Expands to a positive double expression, not necessarily repre-
sented as a float.

NULL Expands to a null pointer constant.

RAND_MAX Expands to an integral constant expression, the value of which is
the maximum value returned by the rand function.

double atof(const char *nptr); Converts string to double.

int atoi(const char *nptr); Converts string to int.

long int atol(const char *nptr); Converts string to long.
UM017105-0511 Standard Header Files

404

Zilog Developer Studio II – ZNEO™
User Manual
The following additional string conversion functions are provided:

Pseudorandom Sequence Generation

Memory Management

The order and contiguity of storage allocated by successive calls to the calloc, malloc,
and realloc functions are unspecified. The pointer returned if the allocation succeeds is
suitably aligned so that it can be assigned to a pointer to any type of object and then used
to access such an object in the space allocated (until the space is explicitly freed or reallo-
cated).

Searching and Sorting Utilities

double strtod(const char *nptr, char **endptr); Converts string pointed to by nptr to
a double.

long int strtol(const char *nptr, char **endptr, int
base);

Converts string to a long decimal
integer that is equal to a number with
the specified radix.

float atoff(const char *nptr); Converts string to float.

float strtof(const char *nptr, char **endptr); Converts string pointed to by nptr to
a double.

int rand(void) Gets a pseudorandom number.

void srand(unsigned int seed); Initializes pseudorandom series.

void *calloc(size_t nmemb, size_t size); Allocates storage for array.

void free(void *ptr); Frees a block allocated with calloc, malloc, or
realloc.

void *malloc(size_t size); Allocates a block.

void *realloc(void *ptr, size_t size); Reallocates a block.

void *bsearch(void *key, void *base, size_t nmemb,
size_t size, int (*compar)(void *, void *));

Performs binary search.

void qsort(void *base, size_t nmemb, size_t size, int
(*compar)(void *, void *));

Performs a quick sort.
Standard Header Files UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

405
Integer Arithmetic

String Handling <string.h>

The <string.h> header declares several functions useful for manipulating character
arrays and other objects treated as character arrays. Various methods are used for deter-
mining the lengths of arrays, but in all cases a char* or void* argument points to the initial
(lowest addressed) character of the array. If an array is written beyond the end of an object,
the behavior is undefined.

Type

Macro

Functions

Copying

int abs(int j); Finds absolute value of integer value.

div_t div(int numer, int denom); Computes integer quotient and remainder.

long int labs(long int j); Finds absolute value of long integer value.

ldiv_t ldiv(long int numer, long int denom); Computes long quotient and remainder.

size_t Unsigned integral type of the result of the sizeof operator.

NULL Expands to a null pointer constant.

void *memcpy(void *s1, const void *s2, size_t n); Copies a specified number of char-
acters from one buffer to another.

void *memmove(void *s1, const void *s2, size_t n); Moves a specified number of charac-
ters from one buffer to another.

char *strcpy(char *s1, const char *s2); Copies one string to another.

char *strncpy(char *s1, const char *s2, size_t n); Copies n characters of one string to
another.
UM017105-0511 Standard Header Files

406

Zilog Developer Studio II – ZNEO™
User Manual
Concatenation

Comparison

The sign of the value returned by the comparison functions is determined by the sign of
the difference between the values of the first pair of characters that differ in the objects
being compared.

Search

char *strcat(char *s1, const char *s2); Appends a string.

char *strncat(char *s1, const char *s2, size_t n); Appends n characters of string.

int memcmp(const void *s1, const void *s2, size_t n); Compares the first n characters.

int strcmp(const char *s1, const char *s2); Compares two strings.

int strncmp(const char *s1, const char *s2, size_t n); Compares n characters of two
strings.

void *memchr(const void *s, int c, size_t n); Returns a pointer to the first
occurrence, within a specified
number of characters, of a given
character in the buffer.

char *strchr(const char *s, int c); Finds first occurrence of a given
character in string.

size_t strcspn(const char *s1, const char *s2); Finds first occurrence of a charac-
ter from a given character in
string.

char *strpbrk(const char *s1, const char *s2); Finds first occurrence of a charac-
ter from one string to another.

char *strrchr(const char *s, int c); Finds last occurrence of a given
character in string.

size_t strspn(const char *s1, const char *s2); Finds first substring from a given
character set in string.

char *strstr(const char *s1, const char *s2); Finds first occurrence of a given
string in another string.

char *strtok(char *s1, const char *s2); Finds next token in string.
Standard Header Files UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

407
Miscellaneous

Standard Functions

The following functions are standard functions:

abs

Computes the absolute value of an integer j. If the result cannot be represented, the behav-
ior is undefined.

Synopsis
#include <stdlib.h>
int abs(int j);

void *memset(void *s, int c, size_t n); Uses a given character to initialize a speci-
fied number of bytes in the buffer.

size_t strlen(const char *s); Finds length of string.

abs acos, acosf asin, asinf assert atan, atanf

atan2, atan2f atof, atoff atoi atol bsearch

calloc ceil, ceilf cos, cosf cosh, coshf div

exp, expf fabs, fabsf floor, floorf fmod, fmodf free

frexp, frexpf getchar gets isalnum isalpha

iscntrl isdigit isgraph islower isprint

ispunct isspace isupper isxdigit labs

ldexp, ldexpf ldiv log, logf log10, log10f longjmp

malloc memchr memcmp memcpy memmove

memset modf, modff pow, powf printf putchar

puts qsort rand realloc scanf

setjmp sin, sinf sinh, sinhf sprintf sqrt, sqrtf

srand sscanf strcat strchr strcmp

strcpy strcspn strlen strncat strncmp

strncpy strpbrk strrchr strspn strstr

strtod, strtof strtok strtol tan, tanf tanh, tanhf

tolower toupper va_arg va_end va_start

vprintf vsprintf
UM017105-0511 Standard Functions

408

Zilog Developer Studio II – ZNEO™
User Manual
Returns

The absolute value.

Example
int I=-5632;
int j;
j=abs(I);

acos, acosf

Computes the principal value of the arc cosine of x. A domain error occurs for arguments
not in the range [-1,+1].

Synopsis
#include <math.h>
double acos(double x);
float acosf(float x);

Returns

The arc cosine in the range [0, pi].

Example
double y=0.5635;
double x;
x=acos(y)

asin, asinf

Computes the principal value of the arc sine of x. A domain error occurs for arguments not
in the range [-1,+1].

Synopsis
#include <math.h>
double asin(double x);
float asinf(float x);

Returns

The arc sine in the range [-pi/2,+pi/2].
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

409
Example
double y=.1234;
double x;
x = asin(y);

assert

Puts diagnostics into programs. When it is executed, if expression is false (that is, eval-
uates to zero), the assert macro writes information about the particular call that failed
(including the text of the argument, the name of the source file, and the source line num-
ber—the latter are respectively the values of the preprocessing macros __FILE__ and
__LINE__) on the serial port using the printf() function. It then loops forever.

Synopsis
#include <assert.h>
void assert(int expression);

Returns

If expression is true (that is, evaluates to nonzero), the assert macro returns no value.

Example
#include <assert.h>

char str[] = "COMPASS";

void main(void)
{
 assert(str[0] == 'B');
}

atan, atanf

Computes the principal value of the arc tangent of x.

Synopsis
#include <math.h>
double atan(double x);
float atanf(float x);

Returns

The arc tangent in the range (-pi/2, +pi/2).
UM017105-0511 Standard Functions

410

Zilog Developer Studio II – ZNEO™
User Manual
Example
double y=.1234;
double x;
x=atan(y);

atan2, atan2f

Computes the principal value of the arc tangent of y/x, using the signs of both arguments
to determine the quadrant of the return value. A domain error occurs if both arguments are
zero.

Synopsis
#include <math.h>
double atan2(double y, double x);
float atan2f(float y, float x);

Returns

The arc tangent of y/x, in the range [-pi, +pi].

Example
double y=.1234;
double x=.4321;
double z;
z=atan2(y,x);

atof, atoff

Converts the string pointed to by nptr to double representation. Except for the behavior on
error, atof is equivalent to strtod (nptr, (char **)NULL), and atoff is equiva-
lent to strtof (nptr, (char **)NULL).

Synopsis
#include <stdlib.h>
double atof(const char *nptr);
float atoff(const char *nptr);

Returns

The converted value.
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

411
Example
char str []="1.234";
double x;
x= atof(str);

atoi

Converts the string pointed to by nptr to int representation. Except for the behavior on
error, it is equivalent to (int)strtol(nptr, (char **)NULL, 10).

Synopsis
#include <stdlib.h>
int atoi(const char *nptr);

Returns

The converted value.

Example
char str []="50";
int x;
x=atoi(str);

atol

Converts the string pointed to by nptr to long int representation. Except for the behavior
on error, it is equivalent to strtol(nptr, (char **)NULL, 10).

Synopsis
#include <stdlib.h>
long int atol(const char *nptr);

Returns

The converted value.

Example
char str[]="1234567";
long int x;
x=atol(str);
UM017105-0511 Standard Functions

412

Zilog Developer Studio II – ZNEO™
User Manual
bsearch

Searches an array of nmemb objects, the initial member of which is pointed to by base, for
a member that matches the object pointed to by key. The size of each object is specified by
size.

The array has been previously sorted in ascending order according to a comparison func-
tion pointed to by compar, which is called with two arguments that point to the objects
being compared. The compar function returns an integer less than, equal to, or greater
than zero if the first argument is considered to be respectively less than, equal to, or
greater than the second.

Synopsis
#include <stdlib.h>
void *bsearch(const void *key, const void *base, size_t nmemb,
size_t size, int (*compar)(const void *, const void *));

Returns

A pointer to the matching member of the array or a null pointer, if no match is found.

Example

#include <stdlib.h>
int list[]={2,5,8,9};
int k=8;

int compare (const void * x, const void * y);
int main(void)
{
 int *result;
 result = bsearch(&k, list, 4, sizeof(int), compare);
}

int compare (const void * x, const void * y)
{
 int a = *(int *) x;
 int b = *(int *) y;
 if (a < b) return -1;
 if (a == b)return 0;
 return 1;
}

The compare function prototype is, as shown in the preceding example:

int compare (const void * x, const void * y);
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

413
calloc

Allocates space for an array of nmemb objects, each of whose size is size. The space is
initialized to all bits zero.

Synopsis
#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Returns

A pointer to the start (lowest byte address) of the allocated space. If the space cannot be
allocated, or if nmemb or size is zero, the calloc function returns a null pointer.

Example
char *buf;
buf = (char*)calloc(40, sizeof(char));
if (buf != NULL)
/*success*/
else
/*fail*/

ceil, ceilf

Computes the smallest integer not less than x.

Synopsis
#include <math.h>
double ceil(double x);
float ceilf(float x);

Returns

The smallest integer not less than x, expressed as a double for ceil and expressed as a
float for ceilf.

Example
double y=1.45;
double x;
x=ceil(y);
UM017105-0511 Standard Functions

414

Zilog Developer Studio II – ZNEO™
User Manual
cos, cosf

Computes the cosine of x (measured in radians). A large magnitude argument can yield a
result with little or no significance.

Synopsis
#include <math.h>
double cos(double x);
float cosf(float x);

Returns

The cosine value.

Example
double y=.1234;
double x;
x=cos(y);

cosh, coshf

Computes the hyperbolic cosine of x. A range error occurs if the magnitude of x is too
large.

Synopsis
#include <math.h>
double cosh(double x);
float coshf(float x);

Returns

The hyperbolic cosine value.

Example
double y=.1234;
double x
x=cosh(y);

div

Computes the quotient and remainder of the division of the numerator numer by the
denominator denom. If the division is inexact, the sign of the quotient is that of the mathe-
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

415
matical quotient, and the magnitude of the quotient is the largest integer less than the mag-
nitude of the mathematical quotient.

Synopsis
#include <stdlib.h>
div_t div(int numer, int denom);

Returns

A structure of type div_t, comprising both the quotient and the remainder. The structure
contains the following members, in either order:

int quot; /* quotient */
int rem; /* remainder */

Example
int x=25;
int y=3;
div_t t;
int q;
int r;
t=div (x,y);
q=t.quot;
r=t.rem;

exp, expf

Computes the exponential function of x. A range error occurs if the magnitude of x is too
large.

Synopsis
#include <math.h>
double exp(double x);
float expf(float x);

Returns

The exponential value.

Example
double y=.1234;
double x;
x=exp(y);
UM017105-0511 Standard Functions

416

Zilog Developer Studio II – ZNEO™
User Manual
fabs, fabsf

Computes the absolute value of a floating-point number x.

Synopsis
#include <math.h>
double fabs(double x);
float fabsf(float x);

Returns

The absolute value of x.

Example
double y=6.23;
double x;
x=fabs(y);

floor, floorf

Computes the largest integer not greater than x.

Synopsis
#include <math.h>
double floor(double x);
float floorf(float x);

Returns

The largest integer not greater than x, expressed as a double for floor and expressed as
a float for floorf.

Example
double y=6.23;
double x;
x=floor(y);

fmod, fmodf

Computes the floating-point remainder of x/y. If the quotient of x/y cannot be represented,
the behavior is undefined.
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

417
Synopsis
#include <math.h>
double fmod(double x, double y);
float fmodf(float x, float y);

Returns

The value of x if y is zero. Otherwise, it returns the value f, which has the same sign as x,
such that x - i * y + f for some integer i, where the magnitude of f is less than the magni-
tude of y.

Example
double y=7.23;
double x=2.31;
double z;
z=fmod(y,x);

free

Causes the space pointed to by ptr to be deallocated; that is, made available for further
allocation. If ptr is a null pointer, no action occurs. Otherwise, if the argument does not
match a pointer earlier returned by the calloc, malloc, or realloc function, or if the
space has been deallocated by a call to free or realloc, the behavior is undefined. If
freed space is referenced, the behavior is undefined.

Synopsis
#include <stdlib.h>
void free(void *ptr);

Example
char *buf;
buf=(char*) calloc(40, sizeof(char));
free(buf);

frexp, frexpf

Breaks a floating-point number into a normalized fraction and an integral power of 2. It
stores the integer in the int object pointed to by exp.
UM017105-0511 Standard Functions

418

Zilog Developer Studio II – ZNEO™
User Manual
Synopsis
#include <math.h>
double frexp(double value, int *exp);
float frexpf(float value, int *exp);

Returns

The value x, such that x is a double (frexp) or float (frexpf) with magnitude in the
interval [1/2, 1] or zero, and value equals x times 2 raised to the power *exp. If value is
zero, both parts of the result are zero.

Example
double y, x=16.4;
int n;
y=frexp(x,&n);

getchar

Waits for the next character to appear at the serial port and return its value.

Synopsis
#include <stdio.h>
int getchar(void);

Returns

The next character from the input stream pointed to by stdin. If the stream is at end-of-file,
the end-of-file indicator for the stream is set, and getchar returns EOF. If a read error
occurs, the error indicator for the stream is set, and getchar returns EOF.

Example
int i;
i=getchar();

The UART must be initialized using the Zilog init_uart() function. See the init_uart
command on page 182.

Note:
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

419
gets

Reads characters from the input stream into the array pointed to by s, until end-of-file is
encountered or a new-line character is read. The new-line character is discarded, and a null
character is written immediately after the last character read into the array.

Synopsis
#include <stdio.h>
char *gets(char *s);

Returns

The value of s, if successful. If a read error occurs during the operation, the array contents
are indeterminate, and a null pointer is returned.

Example
char *r;
char buf [80];
r=gets(buf);
if (r==NULL)
 /*No input*/

The UART must be initialized using the Zilog init_uart() function. See the init_uart
command on page 182.

isalnum

Tests for any character for which isalpha or isdigit is true.

Synopsis
include <ctype.h>
int isalnum(int c);

Example
int r;
char c='a';
r=isalnum(c);

Note:
UM017105-0511 Standard Functions

420

Zilog Developer Studio II – ZNEO™
User Manual
isalpha

Tests for any character for which isupper or islower is true.

Synopsis
#include <ctype.h>
int isalpha(int c);

Example
int r;
char c='a';
r=isalpha(c);

iscntrl

Tests for any control character.

Synopsis
#include <ctype.h>
int iscntrl(int c);

Example
int r;
char c=NULL;
r=iscntrl(c);

isdigit

Tests for any decimal digit.

Synopsis
#include <ctype.h>
int isdigit(int c);

Example
int r;
char c='4';
r=isdigit(c);
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

421
isgraph

Tests for any printing character except space (' ').

Synopsis
#include <ctype.h>
int isgraph(int c);

Example
int r;
char c='';
r=isgraph(c);

islower

Tests for any lowercase letter 'a' to 'z'.

Synopsis
#include <ctype.h>
int islower(int c);

Example
int r;
char c='a';
r=islower(c);

isprint

Tests for any printing character including space (' ').

Synopsis
#include <ctype.h>
int isprint(int c);

Example
int r;
char c='1';
r=isprint(c);
UM017105-0511 Standard Functions

422

Zilog Developer Studio II – ZNEO™
User Manual
ispunct

Tests for any printing character except space (' ') or a character for which isalnum is true.

Synopsis
#include <ctype.h>
int ispunct(int c);

Example
int r;
char c='a';
r=ispunct(c);

isspace

Tests for the following white-space characters: space (' '), form feed ('\f'), new line ('\n'),
carriage return ('\r'), horizontal tab ('\t'), or vertical tab ('\v').

Synopsis
#include <ctype.h>
int isspace(int c);

Example
int r;
char c='';
r=isspace(c);

isupper

Tests for any uppercase letter 'A' to 'Z'.

Synopsis
#include <ctype.h>
int isupper(int c);

Example
int r;
char c='a';
r=isupper(c);
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

423
isxdigit

Tests for any hexadecimal digit '0' to '9' and 'A' to 'F'.

Synopsis
#include <ctype.h>
int isxdigit(int c);

Example
int r;
char c='f';
r=isxdigit(c);

labs

Computes the absolute value of a long int j.

Synopsis
#include <stdlib.h>
long labs(long j);

Example
long i=-193250;
long j
j=labs(i);

ldexp, ldexpf

Multiplies a floating-point number by an integral power of 2. A range error can occur.

Synopsis
#include <math.h>
double ldexp(double x, int exp);
float ldexpf(float x, int exp);

Returns

The value of x times 2 raised to the power of exp.
UM017105-0511 Standard Functions

424

Zilog Developer Studio II – ZNEO™
User Manual
Example
double x=1.235
int exp=2;
double y;
y=ldexp(x,exp);

ldiv

Computes the quotient and remainder of the division of the numerator numer by the
denominator denom. If the division is inexact, the sign of the quotient is that of the
mathematical quotient, and the magnitude of the quotient is the largest integer less than
the magnitude of the mathematical quotient.

Synopsis
#include <stdlib.h>
ldiv_t ldiv(long numer, long denom);

Example
long x=25000;
long y=300;
ldiv_t t;
long q;
long r;
t=ldiv(x,y);
q=t.quot;
r=t.rem;

log, logf

Computes the natural logarithm of x. A domain error occurs if the argument is negative. A
range error occurs if the argument is zero.

Synopsis
#include <math.h>
double log(double x);
float logf(float x);

Returns

The natural logarithm.
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

425
Example
double x=2.56;
double y;
y=log(x);

log10, log10f

Computes the base-ten logarithm of x. A domain error occurs if the argument is negative.
A range error occurs if the argument is zero.

Synopsis
#include <math.h>
double log10(double x);
float log10f(float x);

Returns

The base-ten logarithm.

Example
double x=2.56;
double y;
y=log10(x);

longjmp

Restores the environment saved by the most recent call to setjmp in the same invocation
of the program, with the corresponding jmp_buf argument. If there has been no such call,
or if the function containing the call to setjmp has executed a return statement in the
interim, the behavior is undefined.

All accessible objects have values as of the time longjmp was called, except that the
values of objects of automatic storage class that do not have volatile type and have
been changed between the setjmp and longjmp call are indeterminate.

As it bypasses the usual function call and returns mechanisms, the longjmp function exe-
cutes correctly in contexts of interrupts, signals, and any of their associated functions.
However, if the longjmp function is invoked from a nested signal handler (that is, from a
function invoked as a result of a signal raised during the handling of another signal), the
behavior is undefined.
UM017105-0511 Standard Functions

426

Zilog Developer Studio II – ZNEO™
User Manual
Synopsis
#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Returns

After longjmp is completed, program execution continues as if the corresponding call to
setjmp had just returned the value specified by val. The longjmp function cannot cause
setjmp to return the value 0; if val is 0, setjmp returns the value 1.

Example
int i;
jmp_buf env;
i=setjmp(env);
longjmp(env,i);

malloc

Allocates space for an object whose size is specified by size.

The existing implementation of malloc() depends on the heap area being located from
the bottom of the heap (referred to by the symbol __heapbot) to the top of the stack (SP).
Care must be taken to avoid holes in this memory range. Otherwise, the malloc() func-
tion might not be able to allocate a valid memory object.

Synopsis
#include <stdlib.h>
void *malloc(size_t size);

Returns

A pointer to the start (lowest byte address) of the allocated space. If the space cannot be
allocated, or if size is zero, the malloc function returns a null pointer.

Example
char *buf;
buf=(char *) malloc(40*sizeof(char));
if(buf !=NULL)
 /*success*/
else
 /*fail*/

Note:
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

427
memchr

Locates the first occurrence of c (converted to an unsigned char) in the initial n charac-
ters of the object pointed to by s.

Synopsis
#include <string.h>
void *memchr(const void *s, int c, size_t n);

Returns

A pointer to the located character or a null pointer if the character does not occur in the
object.

Example
char *p1;
char str[]="COMPASS";
c='p';
p1=memchr(str,c,sizeof(char));

memcmp

Compares the first n characters of the object pointed to by s2 to the object pointed to by s1.

Synopsis
#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Returns

An integer greater than, equal to, or less than zero, according as the object pointed to by s1
is greater than, equal to, or less than the object pointed to by s2.

Example
char s1[]="COMPASS";
char s2[]="IDE";
int res;
res=memcmp(s1, s2, sizeof (char));
UM017105-0511 Standard Functions

428

Zilog Developer Studio II – ZNEO™
User Manual
memcpy

Copies n characters from the object pointed to by s2 into the object pointed to by s1. If the
two regions overlap, the behavior is undefined.

Synopsis
#include <string.h>
void *memcpy(void *s1, const void *s2, size_t n);

Returns

The value of s1.

Example
char s1[10];
char s2[10] = "COMPASS";
memcpy(s1, s2, 8);

memmove

Moves n characters from the object pointed to by s2 into the object pointed to by s1.
Copying between objects that overlap takes place correctly.

Synopsis
#include <string.h>
void *memmove(void *s1, const void *s2, size_t n);

Returns

The value of s1.

Example
char s1[10];
char s2[]="COMPASS";
memmove(s1, s2, 8*sizeof(char));

memset

Copies the value of c (converted to an unsigned char) into each of the first n characters
of the object pointed to by s.
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

429
Synopsis
#include <string.h>
void *memset(void *s, int c, size_t n);

Returns

The value of s.

Example
char str[20];
char c='a';
memset(str, c, 10*sizeof(char));

modf, modff

Breaks the argument value into integral and fractional parts, each of which has the same
sign as the argument. It stores the integral part as a double (modf) or float (modff) in
the object pointed to by iptr.

Synopsis
#include <math.h>
double modf(double value, double *iptr);
float modff(float value, float *iptr);

Returns

The signed fractional part of value.

Example
double x=1.235;
double f;
double i;
i=modf(x, &f);

pow, powf

Computes the x raised to the power of y. A domain error occurs if x is zero and y is less
than or equal to zero, or if x is negative and y is not an integer. A range error can occur.

Synopsis
#include <math.h>
double pow(double x, double y);
float powf(float x, float y);
UM017105-0511 Standard Functions

430

Zilog Developer Studio II – ZNEO™
User Manual
Returns

The value of x raised to the power y.

Example
double x=2.0;
double y=3.0;
double res;
res=pow(x,y);

printf

Writes output to the stream pointed to by stdout, under control of the string pointed to by
format that specifies how subsequent arguments are converted for output.

A format string contains two types of objects: plain characters, which are copied
unchanged to stdout, and conversion specifications, each of which fetch zero or more sub-
sequent arguments. The results are undefined if there are insufficient arguments for the
format. If the format is exhausted while arguments remain, the excess arguments are eval-
uated but otherwise ignored. The printf function returns when the end of the format
string is encountered.

Each conversion specification is introduced by the character “%”. After this % character,
the following events occur in sequence:

1. Zero or more flags that modify the meaning of the conversion specification.

2. An optional decimal integer specifying a minimum field width. If the converted value
has fewer characters than the field width, it is padded on the left (or right, if the left
adjustment flag, described later, has been given) to the field width. The padding is
with spaces unless the field width integer starts with a zero, in which case the padding
is with zeros.

3. An optional precision that gives the minimum number of digits to appear for the d, i,
o, u, x, and X conversions, the number of digits to appear after the decimal point for e,
E, and f conversions, the maximum number of significant digits for the g and G con-
versions, or the maximum number of characters to be written from a string in s con-
version. The precision takes the form of a period (.) followed by an optional decimal
integer; if the integer is omitted, it is treated as zero. The amount of padding specified
by the precision overrides that specified by the field width.

4. An optional h specifies that a following d, i, o, u, x, or X conversion character applies
to a short_int or unsigned_short_int argument (the argument has been pro-
moted according to the integral promotions, and its value is converted to short_int
or unsigned_short_int before printing). An optional l (ell) specifies that a follow-
ing d, i, o, u, x or X conversion character applies to a long_int or
unsigned_long_int argument. An optional L specifies that a following e, E, f, g, or
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

431
G conversion character applies to a long_double argument. If an h, l, or L appears
with any other conversion character, it is ignored.

5. A character that specifies the type of conversion to be applied.

6. A field width or precision, or both, can be indicated by an asterisk (*) instead of a
digit string. In this case, an int argument supplies the files width or precision. The
arguments specifying field width or precision displays before the argument (if any) to
be converted. A negative field width argument is taken as a - flag followed by a posi-
tive field width. A negative precision argument is taken as if it were missing.

For more specific information about the flag characters and conversion characters for the
printf function, see the printf Flag Characters section on page 431.

Synopsis
#include <stdio.h>
int printf(const char *format, ...);

Returns

The number of characters transmitted or a negative value if an output error occurred.

Example
int i=10;
printf("This is %d",i);

The UART must be initialized using the Zilog init_uart() function. See the init_uart
command on page 182.

printf Flag Characters

– The result of the conversion is left-justified within the field.

+ The result of a signed conversion always begins with a plus or a minus sign.

Note:

Note:
UM017105-0511 Standard Functions

432

Zilog Developer Studio II – ZNEO™
User Manual
printf Conversion Characters

space If the first character of a signed conversion is not a sign, a space is added before
the result. If the space and + flags both appear, the space flag is ignored

The result is to be converted to an ''alternate form''. For c, d, i, s, and u conver-
sions, the flag has no effect. For o conversion, it increases the precision to force
the first digit of the result to be a zero. For x (or X) conversion, a nonzero result
always contains a decimal point, even if no digits follow the point (normally, a
decimal point appears in the result of these conversions only if a digit follows it).
For g and G conversions, trailing zeros are not removed from the result, as they
normally are.

d,i,o,u,x,X The int argument is converted to signed decimal (d or i), unsigned octal (o),
unsigned decimal (u), or unsigned hexadecimal notation (x or X); the letters
abcdef are used for x conversion and the letters ABCDEF for X conversion.
The precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it is expanded with
leading zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is no characters.

f The double argument is converted to decimal notation in the style [-
]ddd.ddd, where the number of digits after the decimal point is equal to the
precision specification. If the precision is missing, it is taken as 6; if the pre-
cision is explicitly zero, no decimal point appears. If a decimal point
appears, at least one digit appears before it. The value is rounded to the
appropriate number of digits.

e,E The double argument is converted in the style [-]d.ddde+dd, where there is
one digit before the decimal point and the number of digits after it is equal to
the precision; when the precision is missing, six digits are produced; if the
precision is zero, no decimal point appears. The value is rounded to the
appropriate number of digits. The E conversion character produces a num-
ber with E instead of e introducing the exponent. The exponent always con-
tains at least two digits. However, if the magnitude to be converted is
greater than or equal to lE+100, additional exponent digits are written as
necessary.

g,G The double argument is converted in style f or e (or in style E in the case of
a G conversion character), with the precision specifying the number of sig-
nificant digits. The style used depends on the value converted; style e is
used only if the exponent resulting from the conversion is less than -4 or
greater than the precision. Trailing zeros are removed from the result; a
decimal point appears only if it is followed by a digit.

c The int argument is converted to an unsigned char, and the resulting char-
acter is written.
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

433
In no case does a nonexistent or small field width cause truncation of a field. If the result
of a conversion is wider than the field width, the field is expanded to contain the conver-
sion result.

putchar

Writes a character to the serial port.

Synopsis
#include <stdio.h>
int putchar(int c);

Returns

The character written. If a write error occurs, putchar returns EOF.

Example
int i;
charc='a';
i=putchar(c);

The UART must be initialized using the Zilog init_uart() function. See the init_uart
command on page 182.

s The argument is taken to be a (const char *) pointer to a string. Characters
from the string are written up to, but not including, the terminating null char-
acter, or until the number of characters indicated by the precision are writ-
ten. If the precision is missing it is taken to be arbitrarily large, so all
characters before the first null character are written.

p The argument is taken to be a (const void) pointer to an object. The value of
the pointer is converted to a sequence of hex digits.

n The argument is taken to be an (int) pointer to an integer into which is writ-
ten the number of characters written to the output stream so far by this call
to printf. No argument is converted.

% A % is written. No argument is converted.

Note:
UM017105-0511 Standard Functions

434

Zilog Developer Studio II – ZNEO™
User Manual
puts

Writes the string pointed to by s to the serial port and appends a new-line character to the
output. The terminating null character is not written.

Synopsis
#include <stdio.h>
int puts(char *s);

Returns

EOF if an error occurs; otherwise, it is a non-negative value.

Example
int i;
char strp[]="COMPASS";
i=puts(str);

The UART must be initialized using the Zilog init_uart() function. See init_uart – see
page 182.

qsort

Sorts an array of nmemb objects, the initial member of which is pointed to by any base.
The size of each object is specified by size.

The array is sorted in ascending order according to a comparison function pointed to by
compar, which is called with two arguments that point to the objects being compared. The
compar function returns an integer less than, equal to, or greater than zero if the first argu-
ment is considered to be respectively less than, equal to, or greater than the second.

If two members in the array compare as equal, their order in the sorted array is unspeci-
fied.

Synopsis
#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size, int
(*compar)(const void *, const void *));

Note:
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

435
Example
int lst[]={5,8,2,9};
int compare (const void * x, const void * y);
qsort (lst, sizeof(int), 4, compare);

int compare (const void * x, const void * y)
{
 int a = *(int *) x;
 int b = *(int *) y;
 if (a < b) return -1;
 if (a == b)return 0;
 return 1;
}

The compare function prototype is, as shown in the preceding example:

int compare (const void * x, const void * y);

rand

Computes a sequence of pseudorandom integers in the range 0 to RAND_MAX.

Synopsis
#include <stdlib.h>
int rand(void);

Returns

A pseudorandom integer.

Example
int i;
srand(1001);
i=rand();

realloc

Changes the size of the object pointed to by ptr to the size specified by size. The contents
of the object are unchanged up to the lesser of the new and old sizes. If ptr is a null pointer,
the realloc function behaves in a similar fashion to the malloc function for the speci-
fied size. Otherwise, if ptr does not match a pointer earlier returned by the calloc, mal-
loc, or realloc function, or if the space has been deallocated by a call to the free or
realloc function, the behavior is undefined. If the space cannot be allocated, the real-
loc function returns a null pointer and the object pointed to by ptr is unchanged. If size is
UM017105-0511 Standard Functions

436

Zilog Developer Studio II – ZNEO™
User Manual
zero, the realloc function returns a null pointer and, if ptr is not a null pointer, the object
it points to is freed.

Synopsis
#include <stdlib.h>
void *realloc(void *ptr, size_t size);

Returns

Returns a pointer to the start (lowest byte address) of the possibly moved object.

Example
char *buf;
buf=(char *) malloc(40*sizeof(char));
buf=(char *) realloc(buf, 80*sizeof(char));
if(buf !=NULL)
 /*success*/
else
 /*fail*/

scanf

Reads input from the stream pointed to by stdin, under control of the string pointed to by
format that specifies the admissible input sequences and how they are to be converted for
assignment, using subsequent arguments as pointers to the object to receive the converted
input. If there are insufficient arguments for the format, the behavior is undefined. If the
format is exhausted while arguments remain, the excess arguments are evaluated but oth-
erwise ignored.

The format is composed of zero or more directives from the following list:

• one or more white-space characters

• an ordinary character (not %)

• a conversion specification

Each conversion specification is introduced by the “%” character. After this % character,
the following items appear in sequence:

1. An optional assignment-suppressing character (*).

2. An optional decimal integer that specifies the maximum field width.

3. An optional h, l or L indicating the size of the receiving object. The conversion char-
acters d, l, n, o, and x can be preceded by h to indicate that the corresponding argu-
ment is a pointer to short_int rather than a pointer to int, or by l to indicate that it is
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

437
a pointer to long_int. Similarly, the conversion character u can be preceded by h to
indicate that the corresponding argument is a pointer to unsigned_short_int
rather than a pointer to unsigned_int, or by l to indicate that it is a pointer to
unsigned_long_int. Finally, the conversion character e, f, and g can be preceded
by l to indicate that the corresponding argument is a pointer to double rather than a
pointer to float, or by L to indicate a pointer to long_double. If an h, l, or L appears
with any other conversion character, it is ignored.

4. A character that specifies the type of conversion to be applied. The valid conversion
characters are described in the following paragraphs.

The scanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the scanf function returns. Failures are described as input failures (due to
the unavailability of input characters), or matching failures (due to inappropriate input).

A directive composed of white space is executed by reading input up to the first non-
white-space character (which remains unread), or until no more characters can be read. A
white-space directive fails if no white-space character can be found.

A directive that is an ordinary character is executed by reading the next character of the
stream. If the character differs from the one comprising the directive, the directive fails,
and the character remains unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each character. A conversion specification is executed in the follow-
ing steps:

1. Input white-space characters (as specified by the isspace function) are skipped,
unless the specification includes a ’[’, ’c,’ or ’n’ character.

2. An input item is read from the stream, unless the specification includes an n character.
An input item is defined as the longest sequence of input characters (up to any speci-
fied maximum field width) which is an initial subsequence of a matching sequence.
The first character, if any, after the input item remains unread. If the length of the input
item is zero, the execution of the directive fails: this condition is a matching failure,
unless an error prevented input from the stream, in which case it is an input failure.

3. Except in the case of a % character, the input item (or, in the case of a %n directive, the
count of input characters) is converted to a type appropriate to the conversion charac-
ter. If the input item is not a matching sequence, the execution of the directive fails:
this condition is a matching failure. Unless assignment suppression was indicated by a
*, the result of the conversion is placed in the object pointed to by the first argument
following the format argument that has not already received a conversion result. If this
object does not have an appropriate type, or if the result of the conversion cannot be
represented in the space provided, the behavior is undefined.
UM017105-0511 Standard Functions

438

Zilog Developer Studio II – ZNEO™
User Manual
See the next section, scanf Conversion Characters, for valid input information.

Synopsis
#include <stdio.h>
int scanf(const char *format, ...);

Returns

The value of the macro EOF if an input failure occurs before any conversion. Otherwise,
the scanf function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early conflict between an input character and
the format.

Examples
int i
scanf("%d", &i);

The following example reads in two values. var1 is an unsigned char with two decimal
digits, and var2 is a float with three decimal place precision.

scanf("%2d,%f",&var1,&var2);

scanf Conversion Characters

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of the strtol function with the value 10 for the
base argument. The corresponding argument is a pointer to integer.

i Matches an optionally signed integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 0 for the base argu-
ment. The corresponding argument is a pointer to integer.

o Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence of the strtol function with the value 8 for the
base argument. The corresponding argument is a pointer to integer.

u Matches an unsigned decimal integer, whose format is the same as expected for
the subject sequence of the strtol function with the value 10 for the base argu-
ment. The corresponding argument is a pointer to unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the same as
expected for the subject sequence of the strtol function with the value of 16 for
the base argument. The corresponding argument is a pointer to integer.

e,f,g Matches an optionally signed floating-point number, whose format is the same as
expected for the subject string of the strtod function. The corresponding argu-
ment is a pointer to floating.

Note:
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

439
If a conversion specification is invalid, the behavior is undefined.

The conversion characters e, g and x can be capitalized. However, the use of upper case is
ignored.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an input
failure; otherwise, unless execution of the current directive is terminated with a matching
failure, execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is
left unread in the input stream. Trailing white space (including new-line characters) is left
unread unless matched by a directive. The success of literal matches and suppressed
assignments is not directly determinable other than using the %n directive.

s Matches a sequence of non-white-space characters. The corresponding argu-
ment is a pointer to the initial character of an array large enough to accept the
sequence and a terminating null character, which is added automatically.

[Matches a sequence of expected characters (the scanset). The corresponding
argument is a pointer to the initial character of an array large enough to accept
the sequence and a terminating null character, which is added automatically. The
conversion character includes all subsequent characters is the format string, up
to and including the matching right bracket (]). The characters between the
brackets (the scanlist) comprise the scanset, unless the character after the left
bracket is a circumflex (̂), in which case the scanset contains all characters that
do not appear in the scanlist between the circumflex and the right bracket. As a
special case, if the conversion character begins with [] or [^], the right bracket
character is in the scanlist and next right bracket character is the matching right
bracket that ends the specification. If a - character is in the scanlist and is neither
the first nor the last character, the behavior is indeterminate.

c Matches a sequence of characters of the number specified by the field width (1 if
no field width is present in the directive). The corresponding argument is a
pointer to the initial character of an array large enough to accept the sequence.
No null character is added.

p Matches a hexadecimal number. The corresponding argument is a pointer to a
pointer to void.

n No input is consumed. The corresponding argument is a pointer to integer into
which is to be written the number of characters read from the input stream so far
by this call to the scanf function. Execution of a %n directive does not increment
the assignment count returned at the completion of execution of the scanf func-
tion.

% Matches a single %; no conversion or assignment occurs.
UM017105-0511 Standard Functions

440

Zilog Developer Studio II – ZNEO™
User Manual
setjmp

Saves its calling environment in its jmp_buf argument, for later use by the longjmp
function.

Synopsis
#include<setjmp.h>
int setjmp(jmp_buf env);

Returns

If the return is from a direct invocation, the setjmp function returns the value zero. If the
return is from a call to the longjmp function, the setjmp function returns a nonzero
value.

Example
int i;
jmp_buf env;
i=setjmp(env);
longjmp(env, i);

sin, sinf

Computes the sine of x (measured in radians). A large magnitude argument can yield a
result with little or no significance.

Synopsis
#include <math.h>
double sin(double x);
float sinf(float x);

Returns

The sine value.

Example
double x=1.24;
double y;
y=sin(x);
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

441
sinh, sinhf

Computes the hyperbolic sine of x. A range error occurs if the magnitude of x is too large.

Synopsis
#include <math.h>
double sinh(double x);
float sinhf(float x);

Returns

The hyperbolic sine value.

Example
double x=1.24;
double y;
y=sinh(x);

sprintf

The sprintf function is equivalent to printf, except that the argument s specifies an
array into which the generated output is to be written, rather than to a stream. A null char-
acter is written at the end of the characters written; it is not counted as part of the returned
sum.

Synopsis
#include <stdio.h>
int sprintf(char *s, const char *format, ...);

Returns

The number of characters written in the array, not counting the terminating null character.

Example
int d=51;
char buf [40];
sprintf(buf,"COMPASS/%d",d);

sqrt, sqrtf

Computes the non-negative square root of x. A domain error occurs if the argument is
negative.
UM017105-0511 Standard Functions

442

Zilog Developer Studio II – ZNEO™
User Manual
Synopsis
#include <math.h>
double sqrt(double x);
float sqrtf(float x);

Returns

The value of the square root.

Example
double x=25.0;
double y;
y=sqrt(x);

srand

Uses the argument as a seed for a new sequence of pseudorandom numbers to be returned
by subsequent calls to rand. If srand is then called with the same seed value, the
sequence of pseudorandom numbers is repeated. If rand is called before any calls to
srand have been made, the same sequence is generated as when srand is first called with
a seed value of 1.

Synopsis
#include <stdlib.h>
void srand(unsigned int seed);

Example
int i;
srand(1001);
i=rand();

sscanf

Reads formatted data from a string.

Synopsis
#include <stdio.h>
int sscanf(const char *s, const char *format, ...);
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

443
Returns

The value of the macro EOF if an input failure occurs before any conversion. Otherwise,
the sscanf function returns the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of an early conflict between an input character and
the format.

Example
char buf [80];
int i;
sscanf(buf,"%d",&i);

strcat

Appends a copy of the string pointed to by s2 (including the terminating null character) to
the end of the string pointed to by s1. The initial character of s2 overwrites the null charac-
ter at the end of s1.

Synopsis
#include <string.h>
char *strcat(char *s1, const char *s2);

Returns

The value of s1.

Example
char *ptr;
char s1[80]="Production";
char s2[]="Languages";
ptr=strcat(s1,s2);

strchr

Locates the first occurrence of c (converted to a char) in the string pointed to by s. The
terminating null character is considered to be part of the string.

Synopsis
#include <string.h>
char *strchr(const char *s, int c);
UM017105-0511 Standard Functions

444

Zilog Developer Studio II – ZNEO™
User Manual
Returns

A pointer to the located character or a null pointer if the character does not occur in the
string.

Example
char *ptr;
char str[]="COMPASS";
ptr=strchr(str,'p');

strcmp

Compares the string pointed to by s1 to the string pointed to by s2.

Synopsis
#include <string.h>
int strcmp(const char *s1, const char *s2);

Returns

An integer greater than, equal to, or less than zero, according as the string pointed to by s1
is greater than, equal to, or less than the string pointed to by s2.

Example
char s1[]="Production";
char s2[]="Programming";
int res;
res=strcmp(s1,s2);

strcpy

Copies the string pointed to by s2 (including the terminating null character) into the array
pointed to by s1. If copying takes place between objects that overlap, the behavior is unde-
fined.

Synopsis
#include <string.h>
char *strcpy(char *s1, const char *s2);

Returns

The value of s1.
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

445
Example
char s1[80], *s2;
s2=strcpy(s1,"Production");

strcspn

Computes the length of the initial segment of the string pointed to by s1 that consists
entirely of characters not from the string pointed to by s2. The terminating null character is
not considered part of s2.

Synopsis
#include <string.h>
size_t strcspn(const char *s1, const char *s2);

Returns

The length of the segment.

Example
size_t pos;
char s1[]="xyzabc";
char s2[]="abc";
pos=strcspn(s1,s2);

strlen

Computes the length of the string pointed to by s.

Synopsis
#include <string.h>
size_t strlen(const char *s);

Returns

The number of characters that precede the terminating null character.

Example
char s1[]="COMPASS";
size_t i;
i=strlen(s1);
UM017105-0511 Standard Functions

446

Zilog Developer Studio II – ZNEO™
User Manual
strncat

Appends no more than n characters of the string pointed to by s2 (not including the termi-
nating null character) to the end of the string pointed to by s1. The initial character of s2
overwrites the null character at the end of s1. A terminating null character is always
appended to the result.

Synopsis
#include <string.h>
char *strncat(char *s1, const char *s2, size_t n);

Returns

The value of s1.

Example
char *ptr;
char strl[80]="Production";
char str2[]="Languages";
ptr=strncat(str1,str2,4);

strncmp

Compares no more than n characters from the string pointed to by s1 to the string pointed
to by s2.

Synopsis
#include <string.h>
int strncmp(const char *s1, const char *s2, size_t n);

Returns

An integer greater than, equal to, or less than zero, according as the string pointed to by s1
is greater than, equal to, or less than the string pointed to by s2.

Example
char s1[]="Production";
char s2[]="Programming";
int res;
res=strncmp(s1,s2,3);
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

447
strncpy

Copies not more than n characters from the string pointed to by s2 to the array pointed to
by s1. If copying takes place between objects that overlap, the behavior is undefined.

If the string pointed to by s2 is shorter than n characters, null characters are appended to
the copy in the array pointed to by s1, until n characters in all have been written.

Synopsis
#include <string.h>
char *strncpy(char *s1, const char *s2, size_t n);

Returns

The value of s1.

Example
char *ptr;
char s1[40]="Production";
char s2[]="Languages";
ptr=strncpy(s1,s2,4);

strpbrk

Locates the first occurrence in the string pointed to by s1 of any character from the string
pointed to by s2.

Synopsis
#include <string.h>
char *strpbrk(const char *s1, const char *s2);

Returns

A pointer to the character, or a null pointer if no character from s2 occurs in s1.

Example
char *ptr;
char s1[]="COMPASS";
char s2[]="PASS";
ptr=strpbrk(s1,s2);
UM017105-0511 Standard Functions

448

Zilog Developer Studio II – ZNEO™
User Manual
strrchr

Locates the last occurrence of c (converted to a char) in the string pointed to by s. The
terminating null character is considered to be part of the string.

Synopsis
#include <string.h>
char *strrchr(const char *s, int c);

Returns

A pointer to the character, or a null pointer if c does not occur in the string.

Example
char *ptr;
char s1[]="COMPASS";
ptr=strrchr(s1,'p');

strspn

Finds the first substring from a given character set in a string.

Synopsis
#include <string.h>
size_t strspn(const char *s1, const char *s2);

Returns

The length of the segment.

Example
char s1[]="cabbage";
char s2[]="abc";
size_t res,
res=strspn(s1,s2);

strstr

Locates the first occurrence of the string pointed to by s2 in the string pointed to by s1.
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

449
Synopsis
#include <string.h>
char *strstr(const char *s1, const char *s2);

Returns

A pointer to the located string or a null pointer if the string is not found.

Example
char *ptr;
char s1[]="Production Languages";
char s2[]="Lang";
ptr=strstr(s1,s2);

strtod, strtof

Converts the string pointed to by nptr to double (strtod) or float (strtof) represen-
tation. The function recognizes an optional leading sequence of white-space characters (as
specified by the isspace function), then an optional plus or minus sign, then a sequence
of digits optionally containing a decimal point, then an optional letter e or E followed by
an optionally signed integer, then an optional floating suffix. If an inappropriate character
occurs before the first digit following the e or E, the exponent is taken to be zero.

The first inappropriate character ends the conversion. If endptr is not a null pointer, a
pointer to that character is stored in the object endptr points to; if an inappropriate charac-
ter occurs before any digit, the value of nptr is stored.

The sequence of characters from the first digit or the decimal point (whichever occurs
first) to the character before the first inappropriate character is interpreted as a floating
constant according to the rules of this section, except that if neither an exponent part or a
decimal point appears, a decimal point is assumed to follow the last digit in the string. If a
minus sign appears immediately before the first digit, the value resulting from the conver-
sion is negated.

Synopsis
#include <stdlib.h>
double strtod(const char *nptr, char **endptr);
float strtof(const char *nptr, char **endptr);

Returns

The converted value, or zero if an inappropriate character occurs before any digit. If the
correct value would cause overflow, plus or minus HUGE_VAL is returned (according to
the sign of the value), and the macro errno acquires the value ERANGE. If the correct
UM017105-0511 Standard Functions

450

Zilog Developer Studio II – ZNEO™
User Manual
value causes underflow, zero is returned and the macro errno acquires the value
ERANGE.

Example
char *ptr;
char s[]="0.1456";
double res;
res=strtod(s,&ptr);

strtok

A sequence of calls to the strtok function breaks the string pointed to by s1 into a
sequence of tokens, each of which is delimited by a character from the string pointed to by
s2. The first call in the sequence has s1 as its first argument, and is followed by calls with
a null pointer as their first argument. The separator string pointed to by s2 can be different
from call to call.

The first call in the sequence searches s1 for the first character that is not contained in the
current separator string s2. If no such character is found, there are no tokens in s1, and the
strtok function returns a null pointer. If such a character is found, it is the start of the
first token.

The strtok function then searches from there for a character that is contained in the cur-
rent separator string. If no such character is found, the current token extends to the end of
the string pointed to by s1, and subsequent searches for a token fail. If such a character is
found, it is overwritten by a null character, which terminates the current token. The
strtok function saves a pointer to the following character, from which the next search for
a token starts.

Each subsequent call, with a null pointer as the value of the first argument, starts searching
from the saved pointer and behaves as described in the preceding paragraphs.

Synopsis
#include <string.h>
char *strtok(char *s1, const char *s2);

Returns

A pointer to the first character of a token or a null pointer if there is no token.

Example
#include <string.h>
static char str[] = "?a???b, , ,#c";
char *t;
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

451
t = strtok(str,"?"); /* t points to the token "a" */
t = strtok(NULL,","); /* t points to the token "??b " */
t = strtok(NULL,"#,"); /* t points to the token "c" */
t = strtok(NULL,"?"); /* t is a null pointer */

strtol

Converts the string pointed to by nptr to long int representation. The function recognizes
an optional leading sequence of white-space characters (as specified by the isspace func-
tion), then an optional plus or minus sign, then a sequence of digits and letters, then an
optional integer suffix.

The first inappropriate character ends the conversion. If endptr is not a null pointer, a
pointer to that character is stored in the object endptr points to; if an inappropriate charac-
ter occurs before the first digit or recognized letter, the value of nptr is stored.

If the value of base is 0, the sequence of characters from the first digit to the character
before the first inappropriate character is interpreted as an integer constant according to
the rules of this section. If a minus sign appears immediately before the first digit, the
value resulting from the conversion is negated.

If the value of base is between 2 and 36, it is used as the base for conversion. Letters from
a (or A) through z (or Z) are ascribed the values 10 to 35; a letter whose value is greater
than or equal to the value of base ends the conversion. Leading zeros after the optional
sign are ignored, and leading 0x or 0X is ignored if the value of base is 16. If a minus sign
appears immediately before the first digit or letter, the value resulting from the conversion
is negated.

Synopsis
#include <stdlib.h>
long strtol(const char *nptr, char **endptr, int base);

Returns

The converted value, or zero if an inappropriate character occurs before the first digit or
recognized letter. If the correct value would cause overflow, LONG_MAX or
LONG_MIN is returned (according to the sign of the value), and the macro errno
acquires the value ERANGE.

Example
char *ptr;
char s[]="12345";
long res;
res=strtol(s,&ptr,10);
UM017105-0511 Standard Functions

452

Zilog Developer Studio II – ZNEO™
User Manual
tan, tanf

The tangent of x (measured in radians). A large magnitude argument can yield a result
with little or no significance.

Synopsis
#include <math.h>
double tan(double x);
float tanf(float x);

Returns

The tangent value.

Example
double x=2.22;
double y;
y=tan(x);

tanh, tanhf

Computes the hyperbolic tangent of x.

Synopsis
#include <math.h>
double tanh(double x);
float tanhf(float x);

Returns

The hyperbolic tangent of x.

Example
double x=2.22;
double y;
y=tanh(x);

tolower

Converts an uppercase letter to the corresponding lowercase letter.
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

453
Synopsis
#include <ctype.h>
int tolower(int c);

Returns

If the argument is an uppercase letter, the tolower function returns the corresponding
lowercase letter, if any; otherwise, the argument is returned unchanged.

Example
char c='A';
int i;
i=tolower(c);

toupper

Converts a lowercase letter to the corresponding uppercase letter.

Synopsis
#include <ctype.h>
int toupper(int c);

Returns

If the argument is a lowercase letter, the toupper function returns the corresponding
uppercase letter, if any; otherwise, the argument is returned unchanged.

Example
char c='a';
int i;
i=toupper(c);

va_arg

Expands to an expression that has the type and value of the next argument in the call. The
parameter ap is the same as the va_list ap initialized by va_start. Each invocation of
va_arg modifies ap so that successive arguments are returned in turn. The parameter type
is a type name such that the type of a pointer to an object that has the specified type can be
obtained simply by fixing a * to type. If type disagrees with the type of the actual next
argument (as promoted, according to the default argument conversions, into int, unsigned
int, or double), the behavior is undefined.
UM017105-0511 Standard Functions

454

Zilog Developer Studio II – ZNEO™
User Manual
Synopsis

#include <stdarg.h>
type va_arg(va_list ap, type);

Returns

The first invocation of the va_arg macro after that of the va_start macro returns the
value of the argument after that specified by parmN. Successive invocations return the val-
ues of the remaining arguments in succession.

Example

The function f1 gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function
f2. The number of pointers is specified by the first argument to f1.

#include <stdarg.h>
extern void f2(int n, char *array[]);
#define MAXARGS 31
void f1(int n_ptrs,...) {
 va_list ap;
 char *array[MAXARGS];
 int ptr_no = 0;

 if (n_ptrs > MAXARGS)
 n_ptrs = MAXARGS;
 va_start(ap, n_ptrs);
 while (ptr_no < n_ptrs)
 array[ptr_no++] = va_arg(ap, char *);
 va_end(ap);
 f2(n_ptrs, array);
}

Each call to f1 has in scope the definition of the function of a declaration such as void
f1(int, ...);

va_end

Facilitates a normal return from the function whose variable argument list was referenced
by the expansion of va_start that initialized the va_list ap. The va_end function
can modify ap so that it is no longer usable (without an intervening invocation of
va_start). If the va_end function is not invoked before the return, the behavior is unde-
fined.
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

455
Synopsis
#include <stdarg.h>
void va_end(va_list ap);

Example

The function f1 gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function
f2. The number of pointers is specified by the first argument to f1.

#include <stdarg.h>
extern void f2(int n, char *array[]);
#define MAXARGS 31
void f1(int n_ptrs,...) {
 va_list ap;
 char *array[MAXARGS];
 int ptr_no = 0;

 if (n_ptrs > MAXARGS)
 n_ptrs = MAXARGS;
 va_start(ap, n_ptrs);
 while (ptr_no < n_ptrs)
 array[ptr_no++] = va_arg(ap, char *);
 va_end(ap);
 f2(n_ptrs, array);
}

Each call to f1 has in scope the definition of the function of a declaration such as void
f1(int, ...);

va_start

Is executed before any access to the unnamed arguments.

The parameter ap points to an object that has type va_list. The parameter parmN is the
identifier of the rightmost parameter in the variable parameter list in the function defini-
tion (the one just before the , ...). The va_start macro initializes ap for subsequent use
by va_arg and va_end.

Synopsis
#include <stdarg.h>
void va_start(va_list ap, parmN);
UM017105-0511 Standard Functions

456

Zilog Developer Studio II – ZNEO™
User Manual
Example

The function f1 gathers into an array a list of arguments that are pointers to strings (but not
more than MAXARGS arguments), then passes the array as a single argument to function
f2. The number of pointers is specified by the first argument to f1.

#include <stdarg.h>
extern void f2(int n, char *array[]);
#define MAXARGS 31
void f1(int n_ptrs,...) {
 va_list ap;
 char *array[MAXARGS];
 int ptr_no = 0;

 if (n_ptrs > MAXARGS)
 n_ptrs = MAXARGS;
 va_start(ap, n_ptrs);
 while (ptr_no < n_ptrs)
 array[ptr_no++] = va_arg(ap, char *);
 va_end(ap);
 f2(n_ptrs, array);
}

Each call to f1 has in scope the definition of the function of a declaration such as void
f1(int, ...);

vprintf

Equivalent to printf, with the variable argument list replaced by arg, which has been ini-
tialized by the va_start macro (and possibly subsequent va_arg calls). The vprintf
function does not invoke the va_end function.

Synopsis
#include <stdarg.h>
#include <stdio.h>
int vprintf(const char *format, va_list arg);

Returns

The number of characters transmitted or a negative value if an output error occurred.

Example
va_list va;
/* initialize the variable argument va here */
vprintf("%d %d %d",va);
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

457
vsprintf

Equivalent to sprintf, with the variable argument list replaced by arg, which has been
initialized by the va_start macro (and possibly subsequent va_arg calls). The
vsprintf function does not invoke the va_end function.

Synopsis
#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *s, const char *format, va_list arg);

Returns

The number of characters written in the array, not counting the terminating null character.

Example
va_list va;
char buf[80];
/*initialize the variable argument va here*/
vsprint(buf, "%d %d %d",va);
UM017105-0511 Standard Functions

458

Zilog Developer Studio II – ZNEO™
User Manual
Standard Functions UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

459
Glossary

A
ABS. Absolute Value.

A/D. Analog-to-Digital—the conversion of an analog signal, such as a waveform, to a digital signal, repre-
sented by binary data. See ADC.

ADC. Analog-to-Digital Converter—a circuit that converts an analog signal to a digital bit stream. See A/
D.

address space. The physical or logical area of the target system’s memory map. The memory map could
be physically partitioned into ROM to store code, and RAM for data. The memory can also be divided log-
ically to form separate areas for code and data storage.

ALU. See Arithmetic Logical Unit.

American National Standards Institute (ANSI). The U.S. standards organization that establishes proce-
dures for the development and coordination of voluntary American National Standards.

analog. From the word analogous, meaning similar to. The signal being transmitted can be represented in
a way similar to the original signal. For example, a telephone signal can be seen on an oscilloscope as a
sine wave similar to the voice signal being carried through the phone line.

analog signal. A signal that exhibits a continuous nature rather than a pulsed or discrete nature.

AND. A bitwise AND instruction.

ANSI. American National Standards Institute.

application program interface (API). A formalized set of software calls and routines that can be refer-
enced by an application program to access supporting network services.

architecture. Of a computer, the physical configuration, logical structure, formats, protocols, and opera-
tional sequences for processing data, controlling the configuration, and controlling the operations. Com-
puter architecture may also include word lengths, instruction codes, and the interrelationships among the
main parts of a computer or group of computers.

Arithmetic Logical Unit (ALU). the element that can perform the basic data manipulations in the central
processor. Usually, the ALU can add, subtract, complement, negate, rotate, AND, and OR.

array. 1. An arrangement of elements in one or more dimensions. 2. In a programming language, an aggre-
gate that consists of data objects with identical attributes, each of which may be uniquely referenced by
subscription.

ASCII. Acronym for American Standard Code for Information Interchange. The standard code used for
information interchange among data processing systems, data communications systems, and associated
equipment in the United States.

ASM. Assembler File.

assembly. 1. The manufacturing process that converts circuits in wafer form into finished packaged parts.
2. A short term for assembly language.
UM017105-0511 Glossary

460

Zilog Developer Studio II – ZNEO™
User Manual
B
baud. A unit of measure of transmission capacity. The speed at which a modem can transmit data. The
number of events or signal changes that occur in one second. Because one event can encode more than one
bit in high-speed digital communications, baud rate and bits per second are not always synonymous, espe-
cially at speeds above 2400 bps.

baud rate. A unit of measure of the number of state changes (from 0 to 1 or 1 to 0) per second on an asyn-
chronous communications channel.

binary (b). A number system based on 2. A binary digit is a bit.

bit. binary digit—a digit of a binary system. It contains only two possible values: 0 or 1.

block diagram. A diagram of a system, a computer, or a device in which the principal parts are repre-
sented by suitably annotated geometrical figures to show both the basic functions of the parts and their
functional relationships.

buffer. 1. In hardware, a device that restores logic drive signal levels to drive a bus or a large number of
inputs. In software, any memory structure allocated to the temporary storage of data. 2. A routine or stor-
age medium used to compensate for a difference in rate of flow of data, or time of occurrence of events,
when transferring data from one device to another.

bus. In electronics, a parallel interconnection of the internal units of a system that enables data transfer and
control information. One or more conductors or optical fibers that serve as a common connection for a
group of related devices.

byte (B). A sequence of adjacent bits (usually 8) considered as a unit. A collection of four sequential bits
of memory. Two sequential bytes (8 bits) comprise one word.

C
CALL. This command invokes a subroutine.

CCF. Clear Carry Flag.

character set. A finite set of different characters that is complete for a given purpose. A character set
might include punctuation marks or other symbols.

CIEF. Clear IE Flag.

clock. A specific cycle designed to time events, used to synchronize events in a system.

CLR. Clear.

CMOS. Complementary Metal Oxide Semiconductor. A type of integrated circuit used in processors and
for memory.

compile. 1. To translate a computer program expressed in a high-level language into a program expressed
in a lower level language, such as an intermediate language, assembly language, or a machine language.
2. To prepare a machine language program from a computer program written in another programming lan-
guage by making use of the overall logic structure of the program or by generating more than one computer
instruction for each symbolic statement as well as performing the function of an assembler.

compiler. A computer program for compiling.

COPF. Clear Overflow Protection Flag.
Glossary UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

461
CPU. Abbreviation for Central Processing Unit. 1. The portion of a computer that includes circuits control-
ling the interpretation and execution of instructions. 2. The portion of a computer that executes pro-
grammed instructions, performs arithmetic and logical operations on data, and controls input/output
functions.

D
debug. To detect, trace, and eliminate mistakes.

DI. Disable interrupt.

E
EI. Enable interrupt.

emulation. The process of duplicating the characteristics of one product or part using another medium. For
example, an In-Circuit Emulator (ICE) module duplicates the behavior of the chip it emulates, in the circuit
being tested.

emulator. An emulation device.

EOF. End of file—when all records in a file are processed, the computer encounters an end-of-file condi-
tion.

EPROM. Erasable Programmable Read-Only Memory. An EPROM can be erased by exposure to ultravio-
let light.

EQ. A Boolean operator meaning Equal to.

escape sequence. A special escape command is entered as three plus symbols (+++). placing the modem
in command mode, and interrupting user data transmission. However, the escape sequence does not termi-
nate the data connection. Command mode allows the entering of commands while the connection is main-
tained.

F
F. Falling Edge.

Fast Fourier Transform. An algorithm for computing the Fourier transform of a set of discrete data val-
ues. Given a finite set of data points—for example, a periodic sampling taken from a real-world signal—
the FFT expresses the data in terms of its component frequencies. It also solves the essentially identical
inverse problem of reconstructing a signal from the frequency data.

FFT. See Fast Fourier Transform.

filter. A process for removing information content, such as high or low frequencies.

flag. In data transmission or processing, an indicator, such as a signal, symbol, character, or digit, used for
identification. A flag may be a byte, word, mark, group mark, or letter that signals the occurrence of some
condition or event, such as the end of a word, block, or message.

frequency. For a periodic function, the number of cycles or events per unit time.
UM017105-0511 Glossary

462

Zilog Developer Studio II – ZNEO™
User Manual
G
graphical user interface (GUI). 1. A graphics-based user interface that enables users to select files, pro-
grams or commands by pointing to pictorial representations (icons) on the screen, rather than by typing
long, complex commands from a command prompt. 2. The windows and incorporated text displayed on a
computer screen.

groups. Collections of logical address spaces typically used for convenience of locating a set of address
spaces.

GUI. See graphical user interface.

H
h. See hexadecimal.

hardware. The boards, wires, and devices that comprise the physical components of a system.

Hertz. Abbreviated Hz. A measurement of frequency in cycles per second. A hertz is one cycle per second.
A kilohertz (KHz) is one thousand cycles per second. A megahertz (MHz) is one million cycles per second.
A gigahertz (GHz) is a billion cycles per second.

hexadecimal. A base-16 number system. Hex values are often substituted for harder-to-read binary num-
bers.

I
ICE. In-Circuit Emulator. A Zilog product that supports the application design process.

icon. A small screen image representing a specific element such as a document, embedded and linked
objects, or a collection of programs gathered together in a group.

ID. Identifier.

IE. Interrupt Enable.

initialize. To establish start-up parameters, typically involving clearing all of some part of the device’s
memory space.

instruction. Command.

interface (I/F). 1. In a system, a shared boundary, i.e., the boundary between two subsystems or two
devices. 2. A shared boundary between two functional units, defined by specific attributes, such as func-
tional characteristics, common physical interconnection characteristics, and signal characteristics. 3. A
point of communication between two or more processes, persons, or other physical entities.

interleaving. The transmission of pulses from two or more digital sources in time-division sequence over a
single path.

interrupt. A suspension of a process, such as the execution of a computer program, caused by an event
external to that process, and performed in such a way that the process can be resumed. The three types of
interrupts include: internal hardware, external hardware, and software.

I/O. Input/Output. In computers, the part of the system that deals with interfacing to external devices for
input or output, such as keyboards or printers.
Glossary UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

463
IPR. Interrupt Priority Register.

J
JP. Jump.

K
K. Thousands. May indicate 1000 or 1024 to differentiate between decimal and binary values. Abbrevia-
tion for the Latin root kilo.

kHz. See kilohertz.

kilohertz (kHz). A unit of frequency denoting one thousand (103) Hz.

L
LD. Load.

library. A file that contains a collection of object modules that were created by an assembler or directly by
a C compiler.

LSB. Least significant bit.

M
MAC. An acronym for Media Access Control, the method a computer uses to transmit or receive data
across a LAN.

Megahertz (MHz). A unit of frequency denoting one million (106) Hz.

memory. 1. All of the addressable storage space in a processing unit and other internal memory that is
used to execute instructions. 2. The volatile, main storage in computers.

MHz. See Megahertz; also Hertz.

MI. Minus.

MLD. Multiply and Load.

MPYA. Multiply and Add.

MPYS. Multiply and Subtract.

MSB. Most significant bit.

N
n. Number. This letter is used as place holder notation.

NC. No Connection.

NE. Not Equal.
UM017105-0511 Glossary

464

Zilog Developer Studio II – ZNEO™
User Manual
NEG. Negate.

NMI. Nonmaskable interrupt.

NOP. An acronym for No Operation, an instruction whose sole function is to increment the program coun-
ter, but that does not affect any changes to registers or memory.

O
Op Code. Operation Code, a quantity that is altered by a microprocessor’s instruction. Also abbreviated
OPC.

OR. Bitwise OR.

OV. Overflow.

P
PC. Program counter.

pipeline. The act of initiating a bus cycle while another bus cycle is in progress. Thus, the bus can have
multiple bus cycles pending at a time.

POP. Retrieve a value from the stack.

port. The point at which a communications circuit terminates at a network, serial, or parallel interface
card.

power. The rate of transfer or absorption of energy per unit time in a system.

push. To store a value in the stack.

R
RAM. Random-access memory. A memory that can be written to or read at random. The device is usually
volatile, which means the data is lost without power.

random-access memory (RAM). A read/write, nonsequential-access memory used for the storage of
instructions and data.

read-only memory (ROM). A type of memory in which data, under normal conditions, can only be read.
Nonvolatile computer memory that contains instructions that do not require change, such as permanent
parts of an operating system. A computer can read instructions from ROM, but cannot store new data in
ROM. Also called nonerasable storage.

register. A device, accessible to one or more input circuits, that accepts and stores data. A register is most
often used only as a device for temporary storage of data.

ROM. See read-only memory.

RR. Rotate Right.
Glossary UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

465
S
SCF. Set C Flag.

SL. Shift Left.

SLL. Shift Left Logical.

SP. Stack Pointer.

SR. Shift Right.

SRA. Shift Right Arithmetic.

Static. Characteristic of random-access memory that enables it to operate without clocking signals.

SUB. Subtract.

T
tristate. A form of transistor-to-transistor logic in which output stages, or input and output stages, can
assume three states. Two are normal low-impedance 1 and 0 states; the third is a high-impedance state that
allows many tristate devices to time-share bus lines. This industry term is not trademarked, and is available
for Zilog use. Do not use 3-state or three-state.

U
ULT. Unsigned Less Than.

W
wait state. A clock cycle during which no instructions are executed because the processor is waiting for
data from memory.

word. Amount of data a processor can hold in its registers and process at one time.

write. To make a permanent or transient recording of data in a storage device or on a data medium.

X
X. 1. Indexed Address. 2. An undefined or indeterminate variable.

XOR. Bitwise exclusive OR.

Z
Z. 1. Zero. 2. Zero Flag.

ZDS. Zilog Developer Studio. Zilog’s program development environment for Microsoft Windows.
UM017105-0511 Glossary

466

Zilog Developer Studio II – ZNEO™
User Manual
Glossary UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

467
Index

Symbols
^ (bitwise exclusive or) 280
_ (underscore)

for assembly routine names 174
for external identifiers 178
for macro names 178

__CONST_IN_ROM__ 171
__DATE__ 170
__FILE__ 170
__LINE__ 170
__MODEL__ 171
__STDC__ 170
__TIME__ 170
__UNSIGNED_CHARS__ 171
__VECTORS segment 213
__ZDATE__ 171
__ZILOG__ 171
__ZNEO__ 171
_Align keyword 165
_At keyword

placement of a variable 164
placement of consecutive variables 165

_Erom 159
_Far 159
_far_heapbot 192
_far_heaptop 192
_far_stack 192
_len_farbss 191
_len_fardata 191
_len_nearbss 191
_len_neardata 191
_low_far_romdata 191
_low_farbss 191
_low_fardata 191
_low_near_romdata 191
_low_nearbss 191
_low_neardata 191
_Near 158
_near_heapbot 192
_near_heaptop 192

_near_stack 192
_Rom 158
_SYS_CLK_FREQ 192
_SYS_CLK_SRC 192
_VECTOR segment 188
?, script file command

for expressions 370
for variables 371

.COMMENT directive 227

.ENDSTRUCT directive 240

.ENDWITH directive 243

.hex file extension 74

.map file extension 267, 295, 296

.SHORT_STACK_FRAME directive 236

.STRUCT directive 240

.TAG directive 241

.UNION directive 242

.WITH directive 243
* (multiply) 278
/ (divide) 276
& (and) 274
Bytes drop-down list box 90
#include 54, 56, 392
#pragma asm 167
#pragma interrupt 162
+ (add) 274
<< (shift left) 279
<assert.h> header 394
<ctype.h> header 394
<errno.h> header 393
<float.h> header 396
<limits.h> header 395
<math.h> header 398
<outputfile>=<module list> command 262
<setjmp.h> header 401
<sio.h> header 179
<stdarg.h> header 401
<stddef.h> header 393
<stdio.h> header 402
<stdlib.h> header 403
UM017105-0511 Index

468

Zilog Developer Studio II – ZNEO™
User Manual
<string.h> header 405
<zneo.h> header 178
>> (shift right) 279
| (or) 279
~ (not) 280
$$ 249

Numerics
16 Bit Data Width check box 77

A
abs function 405, 407
Absolute segments 214, 231

definition 212, 260
locating 266

Absolute value, computing 407, 416, 423
Access breakpoints

clearing all 366
clearing at specified address 366
setting 365

acos function 398, 408
acosf function 399, 408
Activate Breakpoints check box 103
Add button 78
add file, script file command 364
Add Files to Project dialog box 7, 46
Add Project Configuration dialog box 85
Adding breakpoints 344
Adding files to a project 6, 46
Additional Directives check box 62
Additional Linker Directives dialog box 62
Additional Object/Library Modules field 65
Address button 74
Address Hex field 90
Address range, syntax 70
Address spaces 212

allocation order 270
definition 212, 259
grouping 266
linking sequence 269
locating 266
moving 262

renaming 262
setting maximum size 268
setting ranges 70, 269
ZNEO 212

Addresses
finding 333
viewing 333

Advanced Editor Options dialog box
Editor tab 101

ALIGN clause 231
ALIGN directive 227
Allocating space 426
Always Generate from Settings button 61
Always Rebuild After Configuration Activated

check box 96
Anonymous labels 251
Another Location button 80
Another Location field 80
ANSI C-Compiler

command line options 354
comments 169
data type sizes 169
error messages 197
running from the command line 350
run-time library 177, 391
warning messages 197
writing C programs 155

arc cosine, computing 408
arc sine, computing 408
arc tangent, computing 409, 410
Argument

location 175
variable 401

Arithmetic operators in assembly 220
Array function 413
ASCII values, viewing 339
ASCIZ values, viewing 339
asctime function 170
asin function 398, 408
asinf function 399, 408
asm statement 167
Assembler 211

adding null characters 220
arithmetic operators 220
Index UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

469
binary numbers 222
Boolean operators 221
case sensitivity 49
character constants 223
character strings 220
command line options 352
decimal numbers 222
directives 226
error messages 255
expressions 220
generating listing file (.lst) 214
generating object file 215
hexadecimal numbers 222
numeric representation 220
octal numbers 222
operator precedence 223
options 376
relational operators 221
reserved words 218
running from the command line 351
setup 49
syntax 252
warning messages 255

Assembler page 10, 49
Assembly language

adding null characters 220
argument location 175
arithmetic operators 220
backslash 216
binary numbers 222
blank lines 216
Boolean operators 221
calling C functions from 176
calling from C 174
character constants 223
character strings 220
comments 217
conditional 244
decimal numbers 222
directives 217, 226
expressions 220
function names 174
hexadecimal numbers 222
instructions 217

labels 250
line continuation 216
line definition 216
line length 216
macro expansion 51
numeric representation 220
octal numbers 222
operator precedence 223
preserving registers 176
relational operators 221
reserved words 218
return values 175
source line 216
structure 216
structures 239
syntax 252
unions 239

assert function 409
assert macro 394
<assert.h> header 394
atan function 398, 409
atan2 function 398, 410
atan2f function 399, 410
atanf function 399, 409
atof function 403, 410
atoff function 404, 410
atoi function 403, 411
atol function 403, 411
Auto Indent check box 98
Automatically Reload Externally Modified Files

check box 97

B
Backslash, used in assembly 216
BASE OF 264, 275
batch, script file command 359, 365
Beginning a project 2
Binary numbers in assembly 222
BLKB directive 228
BLKL directive 228
BLKW directive 229
Blue dots 19, 21, 328, 344
Bookmarks
UM017105-0511 Index

470

Zilog Developer Studio II – ZNEO™
User Manual
adding 27
deleting 28
example 27
finding 28, 29
inserting 27
jumping to 28, 29
moving to 28, 29
next bookmark 28
previous bookmark 29
removing 28
setting 27
using 26

Boolean operators in assembly 221
bp when, script file command 365
bp, script file command 365
Break button 21
Breakpoints 344

activating 345
adding 344
deactivating 346
deleting 346
disabling 346
enabling 345
finding 345
inserting 344
jumping to 345
making active 345
making inactive 346
moving to 345
placing 344
removing 346
setting 344
viewing 344

Breakpoints dialog box 43, 344, 345
Broadcast Address field 81
bsearch function 404, 412
Build button 18
Build menu 83

Build 83
Clean 83
Compile 83
Manage Configurations 84
Rebuild All 83
Set Active Configuration 83

shortcuts 107
Stop Build 83
Update All Dependencies 83

Build Output window 14, 29, 30
Build toolbar 18
Build Type list box 3, 34
build, script file command 366
Building a project 13

from the command line 349
Burn Serial button 90

C
C

calling assembly from 174
calling from assembly 176
escape sequences 167
preserving routines 176
return values 175
run-time library 177, 391
writing programs 155

C run-time initialization file 187
C Startup Module area 66
Calculate Checksum dialog box 92, 93
Call Stack window 340
Call Stack Window button 22
Calling assembly from C 174
calloc function 404, 413
cancel all, script file command 366
cancel bp when, script file command 366
cancel bp, script file command 366
Cascade the files 104
Case sensitivity

in assembler 49
in linker 49

C-Compiler
command line options 354
comments 169
data type sizes 169
error messages 197
running from the command line 350
run-time library 177, 391
warning messages 197
writing C programs 155
Index UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

471
cd, script file command 367
ceil function 400, 413
ceilf function 401, 413
CHANGE command 262, 295
Changing object size 435
char enumerations 167
CHAR_BIT 395
CHAR_MAX 395
CHAR_MIN 395
Character case mapping functions 395
Character constants in assembly 223
Character strings in assembly 220
Character testing functions 395
Character-handling functions 394
checksum, script file command 367
Chip Select Registers drop-down list box 76
Clear button 97
Clock Frequency (MHz) area 77
Clock window 331
Clock Window button 22
Close Dialog When Complete check box 90
Code line indicators 328
CODE segment 188, 213
Command field 20
Command line

building a project from 349
examples 376
running the assembler from 351, 352
running the compiler from 350, 354
running the librarian from 356
running the linker from 351, 357
running ZDS II from 349

Command Output window 31
Command Processor

running the Flash Loader from 387
sample command script file 363
script file commands 364

Command Processor toolbar 19
Command script file

commands 364
example 363
writing 363

Commands
linker command file 260

running 359
Commands tab 95
Commands to Keep field 97
.COMMENT directive 227
Comments 169

in assembly language 217
Comparing characters 427, 446
Comparing strings 444, 445
Comparison functions 406
Compile/Assemble File button 18
Compiler

command line options 354
comments 169
data type sizes 169
error messages 197
options 377
running from the command line 350
run-time library 177, 391
warning messages 197
writing C programs 155

Computing string length 445
Concatenating strings 443, 446
Concatenation character 248
Concatenation functions 406
Conditional assembly 244
Conditional assembly directives 244

IF 245
IFDEF 246
IFMA 247, 249
IFSAME 246

Configuration Name field 85
Configurations

adding new 84
Debug 84
Release 84
setting 83

Configure Target dialog box 76
Connect to Target button 18
__CONST_IN_ROM__ 171
Constant data 69, 304
Context menus

Call Stack window 340
Disassembly window 342
in Edit window 25, 28
UM017105-0511 Index

472

Zilog Developer Studio II – ZNEO™
User Manual
in Project Workspace window 24
Locals window 339
Simulated UART Output window 343
Watch window 337, 338, 339

Converting letter case 452, 453
Converting strings 449, 451
COPY BASE OF command 264
COPY BASE operator 276
Copy button 79
COPY command 263, 295
Copy Settings From list box 85
COPY TOP OF command 264
COPY TOP operator 276
Copying characters 428, 447
Copying functions 405
Copying strings 444
Copying values 428
cos function 398, 414
cosf function 399, 414
cosh function 399, 414
coshf function 399, 414
cosine, calculating 414
CPU directive 227
CPU drop-down list box 48
CPU Family drop-down list box 48
CPU Family list box 3, 34
CPU list box 3, 34
CPU selection 48
CpuflashDevice.xml file 78, 89
CRC 91
CRC, script file command 367
Create New Target Wizard dialog box 79
Creating a project 2
<ctype.h> header 394
Current drop-down list box 80
Customer service vii
Customer Support 491
Customer support vii
Customize dialog box 93

Commands tab 95, 96
Toolbars tab 93, 94

Cyclic redundancy check 91

D
Data directives in assembly 228
Data type sizes 169
__DATE__ 170
DB directive 229
DBL_DIG 396
DBL_MANT_DIG 396
DBL_MAX 396
DBL_MAX_10_EXP 396
DBL_MAX_EXP 396
DBL_MIN 396
DBL_MIN_10_EXP 396
DBL_MIN_EXP 396
Deallocating space 417
DEBUG command 265
Debug configuration 83, 84
Debug information, generating 265, 268, 295
Debug menu 86

Break 86
Connect to Target 86
Download Code 86
Go 86
Reset 86
Run to Cursor 86
Set Next Instruction 87
shortcuts 107
Step Into 87
Step Out 87
Step Over 87
Stop Debugging 86
Verify Download 86

Debug mode
RUN 328
STEP 328
STOP 328
switching to 327

Debug Output window 30
Debug Tool area 80
Debug toolbar 20
Debug windows 45
Debug Windows toolbar 22
Debugger

description 75, 327
status bar 328
Index UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

473
Debugger page 74
Debugger script file

commands 364
example 363
writing 363

Debugger tab 102
debugtool copy, script file command 367
debugtool create, script file command 368
debugtool get, script file command 368
debugtool help, script file command 368
debugtool list, script file command 368
debugtool save, script file command 369
debugtool set, script file command 369
debugtool setup, script file command 369
Dec button 90
Decimal numbers in assembly 222
Decimal numeric values 278
Decimal values, viewing 339
Default Type of Char drop-down list box 60
DEFINE 213, 231, 265
Defines field 50
defines, script file command 370
Delete button 80
delete config, script file command 370
Delete Source Target After Copy check box 80
Developer’s environment

menus 31
software installation 1
system requirements v
toolbars 16
tutorial 1

DI 180
Diagnostics function 409
Directives

.COMMENT 227

.ENDSTRUCT 240

.ENDWITH 243

.SHORT_STACK_FRAME 236

.STRUCT 240

.TAG 241

.UNION 242

.WITH 243
ALIGN 227
BLKB 228

BLKL 228
BLKW 229
conditional assembly directives 244
CPU 227
data 228
DB 229
DEFINE 213, 231
definition 226
DL 229
DS 232
DW 230
END 232
ENDMACRO 247
EQU 233
EXTERN 251, 252
IF 245
IFDEF 246
IFMA 247
IFSAME 246
in assembly 217, 226
INCLUDE 233
LIST 234
MACEXIT 250
MACRO 247
MAXBRANCH 352
NOLIST 234
ORG 235
SCOPE 251
SEGMENT 213, 235
TITLE 236
VAR 237
VECTOR 237
XDEF 238
XREF 238, 251, 252

Disable All Breakpoints button 21
Disable All button 44, 346
Disable Breakpoint command 346
Disable Warning on Flash Optionbits Programming

check box 103
Disassembly window 341
Disassembly Window button 22
Distinct Code Segment for Each Module check box

59
div function 405, 414
UM017105-0511 Index

474

Zilog Developer Studio II – ZNEO™
User Manual
div_t 403
DL directive 229
Down button 41, 42
Download Code button 18, 20
DS directive 232
DW directive 230

E
Edit Breakpoints command 344
Edit button 62
Edit menu

Copy 40
Cut 40
Delete 40
Find 40
Find Again 41
Find in Files 41
Go to Line 43
Manage Breakpoints 43
Paste 40
Redo 40
Replace 42
Select All 40
shortcuts 106
Show Whitespaces 40
Undo 40

Edit window 24, 25
code line indicators 328

Editor tab, Options dialog box 97, 100
EDOM 393, 403
EI 181
Enable All button 43, 345
Enable Breakpoint command 346
Enable check box 90
Enable/Disable Breakpoint button 19, 21
END directive 232
ENDMACRO directive 247
.ENDSTRUCT directive 240
.ENDWITH directive 243
enum declarations with trailing commas 169
enumeration data type 167
EOF macro 402
EQU directive 233

ERAM address space 70, 212, 305
ERANGE 393, 403
Erase Before Flashing check box 90
ERASE button 90
erom 178
EROM address space 70, 212, 304
EROM_DATA segment 188, 213
EROM_TEXT segment 188, 213
errno macro 393
<errno.h> header 393
Error conditions 393, 398
Error messages

ANSI C-Compiler 197
assembler 255
linker/locator 297

Ethernet Smart Cable
requirements vii

Executable Formats area 74
Executable formats, for Linker 74
EXIT_FAILURE macro 403
EXIT_SUCCESS macro 403
exit, script file command 372
exp function 399, 415
Expand Macros check box 51
expf function 400, 415
Exponential functions 399, 415
Exporting project as make file 82

from the command line 349
Expressions

arithmetic operators 220
binary numbers 222
Boolean operators 221
character constants 223
decimal numbers 222
hexadecimal numbers 222
in assembly 220
linker 273
LOW operator 221
LOW16 operator 221
octal numbers 222
operator precedence 223
relational operators 221

Extended RAM 70, 305
EXTERN directive 251, 252
Index UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

475
External Flash Base field 78
External Flash check box 78, 89
External references, resolving 265

F
fabs function 400, 416
fabsf function 401, 416
False macro 394
FAQ.html, location of viii
far 178
FAR_BSS segment 188, 213
FAR_DATA segment 188, 213
FAR_TEXT segment 188, 213
__FILE__ 170
File

adding 6, 46
opening 8
reading 8
viewing 8

File extensions
.hex 74
.lod 74
.lst 214, 215
.map 267, 295, 296
.obj 215, 216
.wsp 37
.zdsproj 3

File menu 32
Close File 32
Close Project 38
Exit 39
New File 32
New Project 32
Open File 32
Open Project 36
Print 38
Print Preview 38
Print Setup 39
Recent Files 39
Recent Projects 39
Save 38
Save All 38
Save As 38

Save Project 37
shortcuts 105

File Name field
Open dialog box 38
Save As dialog box 83
Select Project Name dialog box 33

File Offset field 90
File toolbar 17
File Type drop-down list box 98
Fill Memory dialog box 334
Fill Unused Hex File Bytes with 0xFF check box 74
FILLMEM, script file command 372
Find button 42
Find dialog box 40
Find field 19, 41
Find in Files 2 Output window 30, 31
Find in Files button 19
Find in Files dialog box 41
Find in Files Output window 30
Find list box 41
Find Next button 41, 43
Find toolbar 19
Find What field 40, 42
Find What list box 40, 42
Finding characters 443, 447, 448
Finding strings 448
Flash Base field 89
Flash Configuration area 89
Flash Loader

running from the Command Processor 387
using the GUI 87

Flash Loader Processor dialog box 88
Flash memory, setting Flash option bytes in C 168
Flash option bytes 168, 179
Flash Options area 88
FLASH_OPTION1 168
FLASH_OPTION2 168
FLASH_OPTIONBITS 330
FlashDevice.xml file 78, 89
<float.h> header 396
Floating Point Library drop-down list box 67
floor function 400, 416
floorf function 401, 416
FLT_DIG 396
UM017105-0511 Index

476

Zilog Developer Studio II – ZNEO™
User Manual
FLT_MANT_DIG 396
FLT_MAX 396
FLT_MAX_10_EXP 397
FLT_MAX_EXP 397
FLT_MIN 397
FLT_MIN_10_EXP 397
FLT_MIN_EXP 397
FLT_RADIX 397
FLT_ROUND 397
fmod function 400, 416
fmodf function 401, 416
Font dialog box 100
FORMAT command 265
free function 404, 417
FREEMEM operator 276
frexp function 399, 417
frexpf function 400, 417
Function names in assembly 174
Functions

abs 407
acos 408
acosf 408
asctime 170
asin 408
asinf 408
assert 409
atan 409
atan2 410
atan2f 410
atanf 409
atof 410
atoff 410
atoi 411
atol 411
bsearch 412
calloc 413
ceil 413
ceilf 413
character case mapping 395
character handling 394
character input 402
character output 402
character testing 395
comparison 406

concatenation 406
copying 405
cos 414
cosf 414
cosh 414
coshf 414
detailed descriptions of 407
DI 180
div 414
EI 181
error conditions 398
exp 415
expf 415
exponential 399
fabs 416
fabsf 416
floor 416
floorf 416
fmod 416
fmodf 416
formatted input 402
formatted output 402
free 417
frexp 417
frexpf 417
getch 181
getchar 418
gets 419
hyperbolic 399
init_uart 182
integer arithmetic 405
isalnum 419
isalpha 420
iscntrl 420
isdigit 420
isgraph 421
islower 421
isprint 421
ispunct 422
isspace 422
isupper 422
isxdigit 423
kbhit 182
labs 423
Index UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

477
ldexp 423
ldexpf 423
ldiv 424
library 392
linker 259
log 424
log10 425
log10f 425
logarithmic 400
logf 424
longjmp 425
malloc 426
mathematical 398
memchr 427
memcmp 427
memcpy 428
memmove 428
memory management 404
memset 428
modf 429
modff 429
multiplication 423
nearest integer 400
nonlocal jumps 401
nonstandard input 180
nonstandard output 180
pow 429
power 400
powf 429
printf 430
pseudorandom sequence generation 404
putch 183
putchar 433
puts 434
qsort 434
rand 435
realloc 435
RI 183
scanf 436
search 404, 406
select_port 184
SET_VECTOR 184
setjmp 440
sin 440

sinf 440
sinh 441
sinhf 441
sorting 404
sprintf 441
sqrt 441
sqrtf 441
srand 442
sscanf 442
strcat 443
strchr 443
strcmp 444
strcpy 444
strcspn 445
string conversion 403
strlen 445
strncat 446
strncmp 446
strncpy 447
strpbrk 447
strrchr 448
strspn 448
strstr 448
strtod 449
strtok 450
strtol 451
tan 452
tanf 452
tanh 452
tanhf 452
TDI 185
testing characters 419, 420, 421, 422, 423
tolower 452
toupper 453
trigonometric 398
va_arg 453
va_end 454
va_start 455
vprintf 456
vsprintf 457

G
General page 9, 47, 48
UM017105-0511 Index

478

Zilog Developer Studio II – ZNEO™
User Manual
General tab 96
Generate Assembly Listing Files (.lst) check box

51, 55
Generate Assembly Source Code check box 54
Generate C Listing Files (.lis) check box 54
Generate Map File check box 73
Generate Printfs Inline check box 58
getch function 181
getchar function 402, 418
gets function 402, 419
Go button 18, 21
Go To button 43
Go to Code button 43, 345
Go to Line Number dialog box 43
go, script file command 372
GPIO Port drop-down list box 77
GROUP command 266
Groups 259

allocation order 270
linking sequence 269
locating 266
renaming 262
setting maximum size 268
setting ranges 269

H
Headers 392

architecture-specific functions 178
character handling 394
diagnostics 394
error reporting 393
floating point 396
general utilities 403
input 402
limits 395
location 178, 392
mathematics 398
nonlocal jumps 401
nonstandard 178
nonstandard input functions 179
nonstandard output functions 179
output 402
reserved words 178

standard 391
standard definitions 393
string handling 405
variable arguments 401

HEADING command 266
Help menu 105

About 105
Help Topics 105
Technical Support 105

Hex button 90
Hex code, size of 296
Hex file

creating 295
size of 296

.hex file extension 74
Hexadecimal Display check box 103
Hexadecimal numbers

in assembly 222
in linker expressions 278
viewing 338

HIGHADDR operator 277
HUGE_VAL macro 398, 403
Hyperbolic cosine, computing 414
Hyperbolic functions 399
Hyperbolic sine, computing 441
Hyperbolic tangent, calculating 452

I
IDE, definition 16
IEEE 695 format 74, 265
IF directive 245
IFDEF directive 246
IFMA directive 247, 249
IFSAME directive 246
In File Types list box 41
In Folder list box 42
INCLUDE directive 233
#include directive 54, 392
Include Serial in Programming check box 90
Included in Project button 66
Includes field 50
Increment Dec (+/-) field 90
init_uart function 182
Index UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

479
Input/output macro 402
Insert Breakpoint command 344
Insert Spaces button 98
Insert/Remove Breakpoint button 19, 21, 344
Inserting breakpoints 344
Installation 1
Installing ZDS II 1
Instructions, in assembly 217
INT_MAX 395
Integer arithmetic functions 405
Intel Hex32 - Records format 74
Intel Hex32 format 74
Intermediate Files Directory field 49
Internal Flash check box 78, 89
Internal RAM 70, 305
interrupt handlers 162
interrupt keyword 162
IODATA address space 70, 212, 305
IOSEG segment 213
IP Address field 81
ISA Mode Enabled check box 77
isalnum function 395, 419
isalpha function 395, 420
iscntrl function 395, 420
isdigit function 395, 420
isgraph function 395, 421
islower function 395, 421
isprint function 395, 421
ispunct function 395, 422
isspace function 395, 422
isupper function 395, 422
isxdigit function 395, 423

J
jmp_buf 401

K
kbhit function 182
Keep Tabs button 98

L
Labels

$$ 251
$B 251
$F 251
anonymous 251
assigning to a space 251
exporting 251
importing 251
in assembly language 250
local (?) 251
local ($) 251

labs function 405, 423
Large memory model 161, 162
Largest integer, computing 416
LDBL_DIG 397
LDBL_MANT_DIG 397
LDBL_MAX 397
LDBL_MAX_10_EXP 397
LDBL_MAX_EXP 397
LDBL_MIN 397
LDBL_MIN_10_EXP 397
LDBL_MIN_EXP 397
ldexp function 399, 423
ldexpf function 400, 423
ldiv function 405, 424
ldiv_t 403
LENGTH operator 277
Librarian

command line options 356
options 378

Librarian page 60
Libraries

defining 262
functions 407
object 259

Library functions 392, 407
Limit Optimizations for Easier Debugging check

box 52, 53
<limits.h> header 395
__LINE__ 170
Line continuation in assembly 216
Link map file

contents 267
UM017105-0511 Index

480

Zilog Developer Studio II – ZNEO™
User Manual
creating 267, 268
Linker

case sensitivity 49
command line options 357
commands 260
creating link map file 267, 268
creating linking sequence 269
defining holes in memory 70
detailed description 259
error messages 297
expressions 273
file format 265
functions 259
generating debug information 265, 268, 295
generating warnings 272
invoking 260
map file 280
memory used 295
objects manipulated during linking 259
opening 260
options 379
reducing execution times 295
running 260
running from the command line 351
search order 270
speeding up 295
starting 260
suppressing warnings 268
symbols 191
troubleshooting 295
warning messages 297

Linker command file 260
commands 260
for C programs 188
linker symbols 191
referenced files 190
sample 192

Linker commands
<outputfile>=<module list> 262
BASE OF 264
CHANGE 262
COPY 263
COPY BASE OF 264
COPY TOP OF 264

DEBUG 265
DEFINE 265
FORMAT 265
GROUP 266
HEADING 266
LOCATE 266
MAP 267
MAXHEXLEN 267
MAXLENGTH 268
NODEBUG 268
NOMAP 267, 268
NOWARN 268
ORDER 269
RANGE 269
SEARCHPATH 270
SEQUENCE 270
SORT 271
SPLITTABLE 271
TOP OF 264
UNRESOLVED IS FATAL 272
WARN 272
WARNING IS FATAL 272
WARNOVERLAP 273

Linker expressions
- (subtract) 279
^ (bitwise exclusive or) 280
* (multiply) 278
/ (divide) 276
& (and) 274
+ (add) 274
<< (shift left) 279
>> (shift right) 279
| (or) 279
~ (not) 280
BASE OF 275
COPY BASE 276
COPY TOP 276
decimal numeric values 278
FREEMEM 276
hexadecimal numeric values 278
HIGHADDR 277
LENGTH 277
LOWADDR 277
TOP OF 280
Index UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

481
Linker map file, sample 280
Linker/locator error messages 297
Linker/locator warning messages 297
Linking sequence, creating 269
list bp, script file command 373
LIST directive 234
Listing file, assembly 215
Load Debug Information (Current Project) check

box 103
Load from File dialog box 336
Load Last Project on Startup check box 97
LOADMEM, script file command 373
Local labels in assembly 251
Local macro label 249
Locals window 339, 340
Locals Window button 22
LOCATE command 266
Locator

detailed description 259
error messages 297
warning messages 297

.lod file extension 74
log function 400, 424
log, script file command 373
log10 function 400, 425
log10f function 400, 425
Logarithm, computing 424, 425
Logarithmic functions 400
logf function 400, 424
long long int type 169
LONG_MAX 395
LONG_MIN 395
longjmp function 401, 425
Look In drop-down list box

Add Files to Project dialog box 46
Open dialog box 37
Select Linker Command File dialog box 63

Look in Subfolders check box 42
LOW operator 221
LOW16 operator 221
LOWADDR operator 277
.lst file extension 214, 215

M
MACEXIT directive 250
Macro Assembler 211

adding null characters 220
arithmetic operators 220
binary numbers 222
Boolean operators 221
case sensitivity 49
character constants 223
character strings 220
command line options 352
decimal numbers 222
directives 226
error messages 255
expressions 220
generating listing file (.lst) 214
generating object file 215
hexadecimal numbers 222
numeric representation 220
octal numbers 222
operator precedence 223
relational operators 221
reserved words 218
running from the command line 351
setup 49
syntax 252
warning messages 255

MACRO directive 247
Macros 247

__CONST_IN_ROM__ 171
__DATE__ 170
__FILE__ 170
__LINE__ 170
__MODEL__ 171
__STDC__ 170
__TIME__ 170
__UNSIGNED_CHARS__ 171
__ZDATE__ 171
__ZILOG__ 171
__ZNEO__ 171
character handling 394
concatenation character 248
diagnostics 394
empty arguments 169
UM017105-0511 Index

482

Zilog Developer Studio II – ZNEO™
User Manual
error reporting 393
exiting 250
expanding 51
floating point 396
general utility 403
input/output 402
invocation 249
labels 249
limits 395
mathematical 398
optional arguments 249
predefined 170
standard definitions 393
string handling 405

Make file, exporting 82
makefile, script file command 374
makfile, script file command 374
malloc function 404, 426
Manage Configurations dialog box 84, 85
MAP command 267
.map file extension 267, 295, 296
Mark All button 41
Match Case check box 41, 42
Match Whole Word Only check box 40, 42
<math.h> header 398
Mathematical functions 398
Mathematical macro 398
MAXBRANCH directive 352
MAXHEXLEN command 267
Maximum Bytes per Hex File Line drop-down list

box 74
MAXLENGTH command 268
MB_LEN_MAX 396
memchr function 406, 427
memcmp function 406, 427
memcpy function 405, 428
memmove function 405, 428
Memory

amount used by program 295
configuring 301
copy to ERAM program configuration 318
copy to RAM program configuration 322
default program configuration 308
defining holes 70

defining locations 212
download to ERAM program configuration 312
download to RAM program configuration 315
filling 334
layout 301
loading to file 335
physical memory layout 302
programmer’s model 303
saving to file 335

Memory management functions 404
Memory Model drop-down list box 53
Memory models

defining 53
large 161, 162
small 161

Memory range, syntax 70
Memory window 331, 332

changing memory spaces 333
changing values 332
cyclic redundancy check 336
filling memory 334
finding addresses 333
loading to file 335
saving to file 335
viewing addresses 333

Memory Window button 22
memset function 407, 428
Menu bar 31
Menus

Build 83
Debug 86
File 32
Help 105
Project 45
shortcuts 105
Tools 87
View 44
Windows 104

Messages Output window 31
minus sign, used as an operator 279
__MODEL__ 171
modf function 400, 429
modff function 400, 429
Modules
Index UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

483
defining 262
definition 259

Moving characters 428

N
Name button 74
Name for New Target field 80
NDEBUG macro 394
near 178
NEAR_BSS segment 188, 213
NEAR_DATA segment 188, 213
NEAR_TEXT segment 188, 213
Nearest integer functions 400
New project

adding files 6, 46
building 13
configuring 8
creating 2, 32
setting up 8

New Project dialog box 2, 3, 33
New Project Wizard dialog box 4, 6, 34, 35, 36
new project, script file command 374
New toolbar 94
New Toolbar dialog box 94
NODEBUG command 268
NOLIST directive 234
NOMAP command 267, 268
NOWARN command 268
ntext 343
NULL macro 393, 403, 405
NULL, using 262, 264
NULL-terminated ASCII, viewing 339
Numbers

binary 222
decimal 222
hexadecimal 222
octal 222

O
.obj file extension 215, 216
Object code file 216
Object formats 74

for Linker 74
IEEE 695 74
OMF695 215, 216

Object libraries 259
Octal numbers in assembly 222
offsetof macro 393
OMF695 format 215, 216
Open dialog box 32
Open Project dialog box 37
open project, script file command 375
Operator precedence in assembly 223
Operators

- (subtract) 279
^ (bitwise exclusive or) 280
* (multiply) 278
/ (divide) 276
& (and) 274
+ (add) 274
<< (shift left) 279
>> (shift right) 279
| (or) 279
~ (not) 280
arithmetic 220
BASE OF 275
Boolean 221
COPY BASE 276
COPY TOP 276
FREEMEM 276
HIGHADDR 277
LENGTH 277
LOW 221
LOW16 221
LOWADDR 277
precedence 223
relational 221
TOP OF 280

option, script file command 375
Options 375

assembler 376
compiler 377
general 378
librarian 378
linker 379

Options dialog box 96
UM017105-0511 Index

484

Zilog Developer Studio II – ZNEO™
User Manual
Debugger tab 102, 104
Editor tab 97, 98, 100
General tab 96, 97

Opto-isolated USB Smart Cable
requirements vii

ORDER command 269, 274
ORG clause 231
ORG directive 235
Output File Name field 73
Output to Pane 2 check box 42

P
Page Length field 51
Page Width field 51
PC, definition 328
Place Target File In area 80
Place Target File in Project Directory check box 79
Placing breakpoints 344
Polarity Active High check box 77
Post Read Wait States drop-down list box 77
pow function 400, 429
Power functions 400
powf function 400, 429
#pragma asm 167
Predefined macros 170
Predefined segments 213
Preprocessing, predefined macros 170
Preprocessor Definitions field 56
Print Preview window 39
Print Setup dialog box 39
print, script file command 380
printf function 402, 430

conversion characters 432
flag characters 431

Program and Verify button 90, 91
Program button 90, 91
Program space 70, 304
Project

adding files 6, 46
building 13
configuring 8, 83
creating 1, 2, 32
customized configuration 84

exporting as make file 82
setting up 8

Project Directory button 80
Project file, creating 3
Project menu 45

Add Files 46
Export Makefile 82
Remove Selected File(s) 46
Settings 46
shortcuts 106

Project Settings dialog box 46
Address Spaces page 68, 69
Advanced page 12, 56, 57
Assembler page 10, 49, 50
Code Generation page 11, 51, 52
Commands page 60, 61
Debugger page 74, 75
General page 9, 47, 48
Librarian page 60
Listing Files page 53, 54
Objects and Libraries page 64, 65
Output page 72, 73
Preprocessor page 55
Warnings page 70, 71

Project Type field 3, 34
Project Workspace window 23, 24
Pseudorandom sequence generation 404, 435, 442
ptrdiff_t 393
Public symbols, creating 265
putch function 183
putchar function 402, 433
puts function 402, 434
pwd, script file command 380

Q
qsort function 404, 434
quit, script file command 381
Quotient, computing 414, 424

R
RAM address space 70, 212, 305
RAM, extended 70, 305
Index UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

485
rand function 404, 435
RAND_MAX macro 403
RANGE command 269
Range error, generating 70
Read Serial button 91
Reading input 436
readme.txt, location of viii
realloc function 404, 435
Rebuild All button 18
rebuild, script file command 381
Red octagon 328, 344
Refresh button 81
Registers

changing values 329
preserving 176

Registers window 329
Registers Window button 22
Regular Expression check box 41, 42
Relational operators in assembly 221
Release configuration 83, 84
Relocatable segments 212, 214, 260
Remainder, computing 416
Remove All Breakpoints button 19, 21
Remove All button 44, 346
Remove Breakpoint command 347
Remove button 44, 346
Replace All button 43
Replace button 43
Replace dialog box 42
Replace With field 42
Replace With list box 42
Reserved words

in assembly 218
in headers 178

Reset button 18, 20
Reset to Symbol ’main’ (Where Applicable) check

box 102
reset, script file command 381
Return values 175
Revision history iii
RI function 183
rom 178
ROM address space 69, 212, 304
ROM_DATA segment 188, 213

ROM_TEXT segment 188, 213
Run Command button 20
Run to Cursor button 21
Run-time library 177, 391

formatting 177, 391
functions 407
nonstandard headers 178
standard headers 391
using functions 392
using headers 392

S
Sample program 2
Save As dialog box 38, 82
Save as Type drop-down list box 38
Save Files Before Build check box 96
Save In drop-down list box 38, 83
Save Project Before Start of Debug Session check

box 102
Save to File dialog box 335
Save/Restore Project Workspace check box 97
SAVEMEM, script file command 381
scanf function 402, 436

conversion characters 438
SCHAR_MAX 395
SCHAR_MIN 395
SCOPE directive 251
Script file

commands 364
definition 363
example 363
writing 363

Search functions 404, 406, 412
SEARCHPATH command 270
SEGMENT directive 213, 235
Segments 188, 213, 260

absolute 212, 214, 231, 260
address space 232
alignment 214, 231
allocation order 270
attaching code 214
attaching data 214
copying 263, 264
UM017105-0511 Index

486

Zilog Developer Studio II – ZNEO™
User Manual
creating 213
defining 231
definition 212
linking sequence 269
locating 231, 266
moving 262
origin 214
predefined 213
relocatable 212, 214, 260
renaming 262
setting maximum size 268
setting ranges 269
splitting 271
types 212
user defined 213

Select Build Configuration list box 18
Select Configuration dialog box 83
Select Linker Command File dialog box 63
Select Project Name dialog box 2, 33
select_port function 184
SEQUENCE command 270, 274
Serial Number list box 82
Serial number, choosing 82
Serial Smart Cable

requirements vi
Serial Value field 90
set config, script file command 382
Set Next Instruction button 21
SET_VECTOR 184
setjmp function 401, 440
<setjmp.h> header 401
Setting breakpoints 344
Setup button, Target area 76
Setup Ethernet Smart Cable Communication dialog

box 81
Setup USB Communication dialog box 82
SFR, definition 330
short enumerations 167
.SHORT_STACK_FRAME directive 236
Shortcut keys 105
Show Absolute Addresses in Assembly Listings

check box 74
Show CRC dialog box 91, 92, 336
Show DataTips Pop-Up Information check box 103

Show the Full Path in the Document Window’s
Title Bar check box 97

SHRT_MAX 396
SHRT_MIN 396
Simulated UART Output window 342, 343
Simulated UART Output Window button 22
sin function 399, 440
Sine, computing 440
sinf function 399, 440
sinh function 399, 441
sinhf function 399, 441
<sio.h> header 179
size_t 393, 403, 405
Small memory model 161
Smallest integer, computing 413
Smart Cables Available area 81
Software installation 1
SORT command 271
Sort Symbols By area 74
Sorting arrays 434
Sorting functions 404
Source area 77
Source line

contents 216
definition 216
labels 250

SPACE clause 232
Special function registers

changing values 330
location 330

Special Function Registers window 330
Special Function Registers Window button 22
SPECIAL_CASE 330
SPLITTABLE command 271
SPOV register 186
sprintf function 402, 441
sqrt function 400, 441
sqrtf function 400, 441
Square root, calculating 441
srand function 404, 442
sscanf function 402, 442
Stack pointer overflow 186
Standard button 66
Standard Include Path field 56
Index UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

487
Starting a project 2
Startup files 187
STARTUP segment 188
Status bar 328
<stdarg.h> header 401
__STDC__ 170
<stddef.h> header 393
<stdio.h> header 402
<stdlib.h> header 403
Step Into button 21
Step Out button 21
Step Over button 21
step, script file command 382
stepin, script file command 382
stepout, script file command 383
Stop Build button 18
Stop Command button 20
Stop Debugging button 21
stop, script file command 383
strcat function 406, 443
strchr function 406, 443
strcmp function 406, 444
strcpy function 405, 444
strcspn function 406, 445
String comparison 444, 445
String conversion functions 403, 410, 411, 449, 451
String placement 165
<string.h> header 405
String-handling functions 405
strlen function 407, 445
strncat function 406, 446
strncmp function 406, 446
strncpy function 405, 447
strpbrk function 406, 447
strrchr function 406, 448
strspn function 406, 448
strstr function 406, 448
strtod function 404, 449
strtof function 404
strtok function 406, 450
strtol function 404, 451
.STRUCT directive 240
Structures in assembly 239
Symbols window 340, 341

Symbols Window button 22
Symbols, public 265
Syntax Coloring dialog box 99
System requirements v

T
Tab Size field 98
.TAG directive 241
tan function 399, 452
tanf function 399, 452
Tangent, calculating 452
tanh function 399, 452
tanhf function 399, 452
Target area 76
Target Copy or Move dialog box 80
target copy, script file command 383
target create, script file command 383
Target File button 80
Target Flash Settings dialog box 78
target get, script file command 383
target help, script file command 384
Target list box 35
target list, script file command 384
target options, script file command 384
target save, script file command 385
target set, script file command 385
Target, selecting 75
TCP Port field 81
TDI function 185
Technical service vii
Technical support vii
Tile the files 105
__TIME__ 170
TITLE directive 236
tof 404
tolower function 395, 452
Toolbars 16

Build 18
Command Processor 19
creating 94
Debug 20
Debug Windows 22, 329
File 17
UM017105-0511 Index

488

Zilog Developer Studio II – ZNEO™
User Manual
Find 19
Toolbars tab 93
Tools menu 87

Calculate File Checksum 92
Customize 93
Firmware Upgrade 91
Flash Loader 87
Options 96
Show CRC 91

TOP OF 264, 280
toupper function 395, 453
Treat All Warnings as Fatal check box 71
Treat Undefined Symbols as Fatal check box 71
Trigonometric functions 398
Troubleshooting the linker 295
True macro 394
Tutorials, developer’s environment 1
Type sizes 169

U
UCHAR_MAX 396
UINT_MAX 396
ULONG_MAX 396
Underscore 178
.UNION directive 242
Unions in assembly 239
Units drop-down list box 78, 89
UNRESOLVED IS FATAL command 272
__UNSIGNED_CHARS__ 171
Up button 41, 42
USB Smart Cable

requirements vii
Use C Runtime Library check box 67
Use Default Libraries area 67
Use Existing button 63
Use Page Erase Before Flashing check box 35, 75
Use Register Variables check box 57
Use Selected Target button 80
Use Standard Startup Linker Commands check box

66
User Include Path field 56
User-defined segments 213
USHRT_MAX 396

V
va_arg function 402, 453
va_end function 402, 454
va_list 401
va_start function 402, 455
Values, return 175
VAR directive 237
Variable arguments 401
VECTOR directive 237
Verify button 91
Verify Download button 20
Verify File Downloads--Read After Write check

box 103
Verify File Downloads--Upon Completion check

box 103
View menu 44

Debug Windows 45
Output 45
Status Bar 45
Workspace 45

vprintf function 402, 456
vsprintf function 402, 457

W
wait bp, script file command 386
Wait States drop-down list box 77
wait, script file command 386
WARN command 272
Warn on Segment Overlap check box 72
WARNING IS FATAL command 272
Warning messages

ANSI C-Compiler 197
assembler 255
generating 272
linker/locator 297
suppressing 268

WARNOVERLAP command 273
Watch window 337

adding new variables 338
changing values 338
removing expressions 338
viewing ASCII values 339
viewing ASCIZ values 339
Index UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

489
viewing decimal values 339
viewing hexadecimal values 338
viewing NULL-terminated ASCII 339

Watch Window button 22
wchar_t 393, 403
White octagon 328
Windows menu 104

Arrange Icons 105
Cascade 104
Close 104
Close All 104
New Window 104
Tile 105

.WITH directive 243
With Include Files check box 54
Wrap Around Search check box 42
Writing characters 433
Writing output 430, 441
Writing strings 434
.wsp file extension 37

X
XDEF directive 238
XREF directive 238, 251, 252

Y
Yellow arrow 328
Yellow arrow on red octagon 328

Z
Z8 Encore! developer’s environment

system requirements v
__ZDATE__ 171
ZDS

definition vii
latest released version vii

ZDS Default Directory button 80
ZDS II

installing 1
running from the command line 349

.zdsproj file extension 3

__ZILOG__ 171
ZiLOG functions

DI 180
EI 181
getch 181
init_uart 182
kbhit 182
putch 183
RI 183
select_port 184
SET_VECTOR 184
TDI 185

ZiLOG header files
<sio.h> 179
<zneo.h> 178

ZiLOG web site URL vii
__ZNEO__ 171
ZNEO address spaces 212
ZNEO developer’s environment

IDE window 16
menus 31
software installation 1
toolbars 16
tutorial 1

ZNEO memory
ERAM 70, 305
EROM 70, 304
IODATA 70, 305
RAM 70, 305
ROM 69, 304

<zneo.h> header 178
UM017105-0511 Index

Zilog Developer Studio II – ZNEO™
User Manual
Zilog Developer Studio II – ZNEO™
User Manual

490
Index UM017105-0511

Zilog Developer Studio II – ZNEO™
User Manual

491
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.
UM017105-0511 Customer Support

http://support.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum
http://www.zilog.com

492

Zilog Developer Studio II – ZNEO™
User Manual
Customer Support UM017105-0511

	Zilog Developer Studio II – ZNEO User Manual
	Revision History
	Preface
	ZDS II System Requirements
	Supported Operating Systems
	Recommended Host System Configuration
	Minimum Host System Configuration
	When Using the Serial Smart Cable
	When Using the USB Smart Cable
	When Using the Opto-Isolated USB Smart Cable
	When Using the Ethernet Smart Cable

	Zilog Technical Support
	Before Contacting Technical Support

	Table of Contents
	List of Figures
	List of Tables
	Chapter 1. Getting Started
	Installing ZDS II
	Developer’s Environment Tutorial
	Add a File to the Project
	Set Up the Project

	Chapter 2. Using the Integrated Development Environment
	Toolbars
	File Toolbar
	Build Toolbar
	Find Toolbar
	Command Processor Toolbar
	Debug Toolbar
	Debug Windows Toolbar

	Windows
	Project Workspace Window
	Edit Window
	Output Windows

	Menu Bar
	File Menu
	Edit Menu
	View Menu
	Project Menu
	Build Menu
	Debug Menu
	Tools Menu
	Window Menu
	Help Menu

	Shortcut Keys
	File Menu Shortcuts
	Edit Menu Shortcuts
	Project Menu Shortcuts
	Build Menu Shortcuts
	Debug Menu Shortcuts

	Chapter 3. Using the Editor
	Auto Completion
	Call Tips
	Auto Indentation
	Multiple Clipboards
	Line and Block Comments
	Abbreviations and Expansions
	Auto Insertion of Braces and Quotes
	Long Line Indicator
	UNICODE Support
	Auto Syntax Styler
	Code Folding Margin
	Line Number Margin
	Type Info Tips
	Highlighting and Finding Matched Braces
	Matching Preprocessor Conditional Macros
	Wrap Long Lines
	Indentation Guides
	Zoom In/Out
	Bookmarks
	Opening an Include File
	Highlighting a Program Counter Line
	Mismatched Brace Highlighting
	Auto Conversion of “.” to “→”

	Chapter 4. Using the ANSI C-Compiler
	Language Extensions
	Additional Keywords for Storage Specification
	Memory Models
	Interrupt Support
	Placement Directives
	String Placement
	Inline Assembly
	Char and Short Enumerations
	Setting Flash Option Bytes in C
	Supported New Features from the 1999 Standard

	Type Sizes
	Predefined Macros
	Examples

	Calling Conventions
	Function Call Mechanism
	Special Cases

	Calling Assembly Functions from C
	Function Naming Convention
	Argument Locations
	Return Values
	Preserving Registers

	Calling C Functions from Assembly
	Assembly File
	Referenced C Function Prototype

	Command Line Options
	Run-Time Library
	Zilog Header Files
	Zilog Functions

	Stack Pointer Overflow
	Startup Files
	Segment Naming
	Linker Command Files for C Programs
	Linker Referenced Files
	Linker Symbols
	Sample Linker Command File

	ANSI Standard Compliance
	Freestanding Implementation
	Deviations from ANSI C

	Warning and Error Messages
	Preprocessor Warning and Error Messages
	Front-End Warning and Error Messages
	Optimizer Warning and Error Messages
	Code Generator Warning and Error Messages

	Chapter 5. Using the Macro Assembler
	Address Spaces and Segments
	Allocating Processor Memory
	Address Spaces
	Segments
	Assigning Memory at Link Time

	Output Files
	Source Listing (.lst) Format
	Object Code (.obj) File

	Source Language Structure
	General Structure
	Assembler Rules

	Expressions
	Arithmetic Operators
	Relational Operators
	Boolean Operators
	LOW and LOW16 Operators
	Decimal Numbers
	Hexadecimal Numbers
	Binary Numbers
	Octal Numbers
	Character Constants
	Operator Precedence
	Address Spaces and Instruction Encoding

	Directives
	ALIGN
	.COMMENT
	CPU
	Data Directives
	DEFINE
	DS
	END
	EQU
	INCLUDE
	LIST
	NOLIST
	ORG
	SEGMENT
	.SHORT_STACK_FRAME
	TITLE
	VAR
	VECTOR
	XDEF
	XREF
	Structures and Unions in Assembly Code

	Conditional Assembly
	Conditional Assembly Directives

	Macros
	Macro Definition
	Concatenation
	Macro Invocation
	Local Macro Labels
	Optional Macro Arguments
	Exiting a Macro

	Labels
	Anonymous Labels
	Local Labels
	Importing and Exporting Labels
	Label Spaces

	Source Language Syntax
	Warning and Error Messages

	Chapter 6. Using the Linker/Locator
	Linker Functions
	Invoking the Linker
	Linker Commands
	<outputfile>=<module list>
	CHANGE
	COPY
	DEBUG
	DEFINE
	FORMAT
	GROUP
	HEADING
	LOCATE
	MAP
	MAXHEXLEN
	MAXLENGTH
	NODEBUG
	NOMAP
	NOWARN
	ORDER
	RANGE
	SEARCHPATH
	SEQUENCE
	SORT
	SPLITTABLE
	UNRESOLVED IS FATAL
	WARN
	WARNING IS FATAL
	WARNOVERLAP

	Linker Expressions
	Examples
	+ (Add)
	& (And)
	BASE OF
	COPY BASE
	COPY TOP
	/ (Divide)
	FREEMEM
	HIGHADDR
	LENGTH
	LOWADDR
	* (Multiply)
	Decimal Numeric Values
	Hexadecimal Numeric Values
	| (Or)
	<< (Shift Left)
	>> (Shift Right)
	- (Subtract)
	TOP OF
	^ (Bitwise Exclusive Or)
	~ (Not)

	Sample Linker Map File
	Troubleshooting the Linker
	How do I speed up the linker?
	How do I generate debug information without generating code?
	How much memory is my program using?
	How do I create a hex file?
	How do I determine the size of my actual hex code?

	Warning and Error Messages

	Chapter 7. Configuring Memory for Your Program
	ZNEO Memory Layout
	Programmer’s Model of ZNEO Memory
	Unconventional Memory Layouts

	Program Configurations
	Default Program Configuration
	Download to ERAM Program Configuration
	Download to RAM Program Configuration
	Copy to ERAM Program Configuration
	Copy to RAM Program Configuration

	Chapter 8. Using the Debugger
	Status Bar
	Code Line Indicators
	Debug Windows
	Registers Window
	Special Function Registers Window
	Clock Window
	Memory Window
	Watch Window
	Locals Window
	Call Stack Window
	Symbols Window
	Disassembly Window
	Simulated UART Output Window

	Using Breakpoints
	Inserting Breakpoints
	Viewing Breakpoints
	Moving to a Breakpoint
	Enabling Breakpoints
	Disabling Breakpoints
	Removing Breakpoints

	Building a Project from the Command Line
	Running the Compiler from the Command Line
	Running the Assembler from the Command Line
	Running the Linker from the Command Line
	Assembler Command Line Options
	Compiler Command Line Options
	Librarian Command Line Options
	Linker Command Line Options
	Sample Command Script File
	Supported Script File Commands
	add file
	batch
	bp
	build
	cancel all
	cancel bp
	cd
	checksum
	crc
	debugtool copy
	debugtool create
	debugtool get
	debugtool help
	debugtool list
	debugtool save
	debugtool set
	debugtool setup
	defines
	delete config
	examine (?) for Expressions
	examine (?) for Variables
	exit
	fillmem
	go
	list bp
	loadmem
	log
	makfile or makefile
	new project
	open project
	option
	print
	pwd
	quit
	rebuild
	reset
	savemem
	set config
	step
	stepin
	stepout
	stop
	target copy
	target create
	target get
	target help
	target list
	target options
	target save
	target set
	target setup
	wait
	wait bp

	Running the Flash Loader from the Command Processor
	Displaying Flash Help
	Setting Up Flash Options
	Executing Flash Commands
	Examples

	Standard Header Files
	Errors <errno.h>
	Standard Definitions <stddef.h>
	Diagnostics <assert.h>
	Character Handling <ctype.h>
	Limits <limits.h>
	Floating Point <float.h>
	Mathematics <math.h>
	Nonlocal Jumps <setjmp.h>
	Variable Arguments <stdarg.h>
	Input/Output <stdio.h>
	General Utilities <stdlib.h>
	String Handling <string.h>

	Standard Functions
	abs
	acos, acosf
	asin, asinf
	assert
	atan, atanf
	atan2, atan2f
	atof, atoff
	atoi
	atol
	bsearch
	calloc
	ceil, ceilf
	cos, cosf
	cosh, coshf
	div
	exp, expf
	fabs, fabsf
	floor, floorf
	fmod, fmodf
	free
	frexp, frexpf
	getchar
	gets
	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	labs
	ldexp, ldexpf
	ldiv
	log, logf
	log10, log10f
	longjmp
	malloc
	memchr
	memcmp
	memcpy
	memmove
	memset
	modf, modff
	pow, powf
	printf
	putchar
	puts
	qsort
	rand
	realloc
	scanf
	setjmp
	sin, sinf
	sinh, sinhf
	sprintf
	sqrt, sqrtf
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcpy
	strcspn
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod, strtof
	strtok
	strtol
	tan, tanf
	tanh, tanhf
	tolower
	toupper
	va_arg
	va_end
	va_start
	vprintf
	vsprintf

	Glossary
	Index
	Customer Support

