
ZiLOG Worldwide Headquarters • 532 Race Street • San Jose, CA 95126
Telephone: 408.558.8500 • Fax: 408.558.8300 • www.zilog.com

White Paper

ZiLOG Z8 Encore!®
Compiler Compliance
With ANSI STANDARD C

WP000801-0904

http://www.zilog.com

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

2

Abstract
The purpose of this document is to explain differences between the ZiLOG XTools
C compiler for the Z8 Encore!® processor family and the ANSI C Standard. These
differences consist of both extensions to the ANSI standard, and deviations from
the behavior described by the standard.

The particular version of the XTools Z8 Encore! compiler described in this docu-
ment is the version released in ZDS II release 4.9.0. For the most part, the issues
discussed in this document are not expected to change greatly from one compiler
release to the next. The final section of the document describes any recent
changes.

The ANSI Standard
The ZiLOG XTools Z8 Encore! compiler is a freestanding ANSI C compiler, comply-
ing (except as described below) with the 1989 ISO standard which is also known
as ANSI Standard X3.159-1989.

Freestanding Implementation
A "freestanding" implementation of the C language is a concept defined in the
ANSI standard itself, to accommodate the needs of embedded applications which
cannot be expected to provide all the services of the typical desktop execution
environment (which is called a hosted environment in the terms of the standard).
In particular, there is presumed to be no file system and no operating system.

The use of the standard term "freestanding implementation" means that the
compiler must contain, at least, a specific subset of the full ANSI C features. This
subset consists of those basic language features appropriate to embedded
applications. Specifically, complex numbers are not required for a freestanding
implementation, and the list of required header files and associated library
functions is minimal, namely: <float.h>, <limits.h>, <stdarg.h>, and
<stddef.h>. A freestanding implementation is allowed to additionally support all
or parts of other standard headers, but is not required to. The XTools compiler, for
example, supports a number of additional headers from the standard library, as
specified in section “Library Files Not Required for Freestanding Implementation”
on page 13.

One minor deviation from the standard which is due to the XTools compiler being
a freestanding implementation is the prototype for main(). This is discussed below
in section “Prototype of Main” on page 10.
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

3

Extensions Allowed
A "conforming implementation" (i.e. compiler) is allowed to provide extensions, as
long as they do not alter the behavior of any program that uses only the standard
features of the language. The ZiLOG XTools Z8 Encore! compiler uses this con-
cept to provide language extensions that are useful for developing embedded
applications and for making efficient use of the resources of the Encore! proces-
sor. These extensions are described in section “The 1999 Standard” below.

The 1999 Standard
The 1989 standard with which the XTools compiler is meant to be compliant is the
older and better known of the two existing ANSI/ISO C standards. The later 1999
standard, also known as ISO/IEC 9899:1999, adds many features to the C lan-
guage, but most of these are little known; in fact, most of these features are not
yet supported in one of the most popular desktop C/C++ compilers. Most of these
features are also not supported by the XTools Z8 Encore! compiler.

Supported New Features from the 1999 Standard
C++-Style Comments. Comments preceded by a // and terminated by the end of a
line, as in C++, are supported.
Trailing Comma in Enum. A trailing comma in enum declarations is allowed. This
essentially codifies a common syntactic error that does no harm. Thus, a declara-
tion such as

enum color {red, green, blue,} col;

is allowed (note the extra comma after "blue").
Empty Macro Arguments. Preprocessor macros that take arguments are allowed
to be invoked with one or more arguments empty, as in this example:

#define cat3(a,b,c) a b c
printf("%s\n", cat3("Hello ", ,:World"));
// ^ Empty arg

Long Long int Type. The type long long int is allowed. (In the XTools Z8 Encore!
compiler, this type is treated as the same as long, which is allowed by the stan-
dard.)
Removed Implicit Function Declaration. That is, calling a function with no prototype
is no longer allowed in the new standard.

By default, the XTools Z8 Encore! compiler enforces this standard. This enforce-
ment can be turned off by deselecting the "Strict ANSI conformance" option.

Except for coping with massive poorly written legacy code, it should never be nec-
essary to deselect this check box. Requiring function prototypes is highly desir-
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

4

able as it detects errors at compile time, which is much quicker than detecting
them by debugging.

New Features from the 1999 Standard Not Supported
As mentioned above, there are many new features of the 1999 standard that are
not supported by the XTools Z8 Encore! compiler, most of which are little known
and little used. We mention just a few of these features explicitly here because
they are widely used.
Inline Functions. The inline keyword for function declarations is well known since it
is standard in C++, and is now also added to the newer 1999 C Standard. We do
not support this addition to the language in the XTools Z8 Encore! compiler. Inline
functions give greater execution speed at the cost of a significant increase in code
size. This cost greatly outweighs the benefit for a processor like the Z8 Encore!
with its limited code memory.
Mixed Declarations and Code. The new standard allows variables to be declared
anywhere inside a function, rather than just at the start of a block; again, this is
familiar coding practice because it has always been standard in C++. Likewise,
the C++ style statement

for (int i = 0; i < 10; i++) ...

is permitted by the new standard. Currently the XTools Z8 Encore! compiler does
not support either of these types of declarations.
_Bool type. The new _Bool type is not supported in the XTools Z8 Encore! com-
piler. However, we note that the desired effect can be obtained simply by adding a
line such as

typedef unsigned char _Bool;

ZiLOG Extensions to the Standard

Address Space Specifiers
The keywords near, far, and rom are used to specify memory spaces in which data
may reside. The near and far keywords are therefore useful for controlling which
data goes into the "near" area which can typically be accessed with shorter
machine instructions, contributing to the efficiency which is a prime concern of
many embedded applications. Similarly, the rom keyword allows the user to parti-
tion his data storage between RAM and ROM in the way that best fits the needs of
his application. In short, these keywords act like the storage class specifiers pro-
vided in the Standard. All the other features of their behavior follow from this fact.
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

5

Near Keyword
near - specifies that data is to be placed at a RAM address less than or equal to
0xFF.

Far Keyword
far – specifies that data is to be placed at a RAM address in the range 0x100 to
0xFFF.

Note: It is not recommended practice to mix near and far
pointers in operations. It is preferable to consider the near and
far address spaces as separate and independent. The
fundamental reason for this is that if one declares a near and
far pointer and assigns them the same value:

near char* np = 0xff;
far char* fp = 0xff;

one still cannot be certain that np and fp point to the same
address. This is true because in the Z8 Encore! architecture,
the full, 12-bit address of the near pointer depends on which
working register page is in use -- in other words, on the value of
the RP (register pointer) register. The RP is typically initialized
in a way that would make np and fp in this example point to the
same address, but this cannot be guaranteed by the compiler.

Rom Keyword
rom – specifies that data is to be placed in ROM, or program space, addresses
less than or equal to 0xFFFF.

Usage
These keywords are used exactly as the ANSI keywords const and volatile; for
example:

rom char* p; // A pointer in ordinary memory to a character in
rom

char rom* p; // Same as above
char * rom p; // A pointer in ROM memory to a character in

ordinary memory
char rom* rom p; // A pointer in ROM memory to a character in

ROM memory

The near and far keywords are used in the same way as the rom keyword in
these examples.

Note:
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

6

String Placement Syntax
As described in section “Address Space Specifiers” on page 4, the extension key-
words near, far, and rom provide the useful service of giving the embedded sys-
tem developer control over what type of memory space is used to store program
variables. However, in many embedded applications there is another type of pro-
gram data which is often a primary consumer of data space, namely string con-
stants (literals) such as "mystring". The storage location of these constants cannot
be controlled using the near, far, and rom keywords because they are not vari-
ables.

To allow the user the same control over where to allocate storage for such strings,
a special syntax for declaring them is provided. If the following language exten-
sions are not used, they are stored in initialized memory as specified by the mem-
ory model (in near memory for the small model, in far memory for the large
model).

Near String Constants
N”mystring” : Near string constant. Stores the string in RDATA (near memory).
The address of the string is a near pointer.

Far String Constants
F”mystring” : Far string constant. Stores the string in EDATA (far memory). The
address of the string is a far pointer.

Rom string constants
R”mystring” : ROM string constant. Stores the string in ROM. The address of the
string is a rom pointer.

Usage
The following code snippet illustrates the use of this syntax.

#include <sio.h>

void funcn(near char *str)
{

 while (*str)
 putch(*str++);
 putch('\n');

}

void funcf(far char *str)
{

 while (*str)
 putch(*str++);
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

7

 putch('\n');
}

void funcr(rom char *str)
{

 while (*str)
 putch(*str++);
 putch('\n');

}

void main(void)
{

 funcn(N"nstr");
 funcf(F"fstr");
 funcr(R"rstr");

}

Static Frames
The Z8 Encore! compiler supports both static and dynamic call frames.

In the more familiar dynamic frames, local variables are stored in memory which is
allocated dynamically on the processor stack. Dynamic frames are fully ANSI
compliant, and are required to support certain C features -- specifically: recursive
functions, functions with a variable number of parameters, and functions called
through a pointer.

In static frames, local data are stored in a statically allocated location reserved for
each particular function. The linker, however, attempts to reduce the total storage
requirements for these frames by overlaying the areas for separate functions that
cannot be simultaneously active. This generally results in significantly more effi-
cient code on the Z8 Encore! processor than dynamic frames, for several reasons.
Primarily, since the compiler knows the absolute addresses of local variables it
can generate more compact code for accessing them than if they must be
accessed by offsetting from a frame pointer (as required when using dynamic
frames). However, the user must either avoid using the features listed above that
require dynamic frames, or must use the reentrant keyword to force the compiler
to use dynamic frames for specific functions (see section 2.4).

Unlike other features described here, static frames are selected by setting a com-
piler option (typically through an IDE control) when compiling the program, rather
than by a keyword in the language itself.
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

8

The Reentrant Keyword
When using static frames, functions that require dynamic frames should be
declared using the reentrant keyword:

reentrant void foo(int a, ...);

Such functions will be compiled and called using dynamic frames. Functions that
require dynamic frames include:

• Any recursive function, including indirect recursion.

• Any function called through a pointer.

• Any function with a variable number of parameters.

• Any function that might be called by an interrupt handler, unless it takes no
parameters and has no local non-static data.

When using dynamic frames, the reentrant keyword may be used, but it has no
effect.

The Interrupt Keyword
Functions to be used as interrupt handlers are declared with the interrupt key-
word, as follows:

void interrupt handler (void);

The compiler will ensure that functions declared with this keyword meet several
criteria for safety of interrupt handling. Specifically: they will save and restore nec-
essary processor state upon entry and exit; they will do so in an atomic manner
which is guaranteed to proceed safely in the event of further interrupts occurring;
and they will use an alternate return mechanism which returns control to the inter-
rupted function and re-enables interrupts.

Since they are designed to be entered through the process of the interrupt occur-
ring rather than being explicitly called, interrupt handlers must take no arguments
and return no value, as shown above.

Note that in the Z8 Encore! interrupt controller, interrupts are disabled in the pro-
cessor hardware when the interrupt is recognized. Further interrupts therefore
cannot be recognized during the execution of an interrupt handler, unless the pro-
grammer explicitly does so by including the EI instruction in the handler.

If static frames are in use, functions declared as interrupt handlers are not by
default made reentrant.
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

9

Char-Sized Enums
By default, enumeration types have the size of ints. Often the enumeration will fit
into a character, and treating it as a character will generate more efficient code. To
do this, use the syntax

enum {RED,GREEN,BLUE} char pcolor;

Embedded Assembly
The ZiLOG Z8 Encore! compiler supports embedding of assembly code inside C.
This technique should be used only with great caution as the compiler cannot
detect and warn of any potentially dangerous constructs in the assembly code,
such as register assignments or usages that would interfere with those made by
the compiler. As the XTools Z8 Encore! compiler has become more aggressively
optimizing over the last several releases, use of embedded assembly has become
both more hazardous and less necessary.

There are two methods of inserting assembly language within C code. The first
uses the #pragma feature of ANSI C with the following syntax:

#pragma asm “<assembly line>”

This #pragma can be inserted anywhere within the C source file. The contents of
<assembly line> must be legal assembly language syntax, and the programmer is
responsible for verifying this correctness. The usual C escape sequences (such
as \n, \t, and \r) are properly translated. Otherwise the compiler does not process
the <assembly line>; except for these escape sequences, it is passed through the
compiler verbatim.

The second method of inserting assembly language is using the asm statement.
An asm statement is allowed only within the body of a function and takes the fol-
lowing form:

asm(“<assembly line>”);

The asm statement cannot be within an expression.

The Strict ANSI Compiler Option
We mention this Xtools Z8 Encore! compiler option here because its name sug-
gests that selecting it would enforce complete adherence to the ANSI standard
and therefore disable all the features we have discussed in this section. However,
it does not do so and perhaps should be renamed.

In reality, the action of this option is to enforce adherence to a variety of provisions
of the standard, related to function prototypes, pointer comparisons, and other
areas. When this option is selected, the following restrictions are then enforced:
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

10
The compiler requires prototypes or previous declarations of all called functions,
as mentioned in “The 1999 Standard” on page 3. The compiler issues a warning if
old-style function declarations ("K & R-style" rather than ANSI) are used. The
compiler issues a warning if the code redefines a previously defined macro,
including the standard macros defined in the standard header files. Pointers to dif-
ferent types may not be compared. Pointers that do not match as to storage class
and qualification (const, volatile, rom, etc.) may not be compared, subtracted, or
substituted as function parameters for non-matching pointer types. Pointers may
not be compared to integers without an explicit cast. Signed and unsigned inte-
gers of the same size are not treated as equivalent in type comparisons.

Deviations from the Standard
There are a small number of areas in which the XTools Z8 Encore! compiler does
not behave as specified by the Standard. For the most part, these are areas in
which the behavior called for by the standard is not appropriate for embedded
applications, but for which exceptions are not allowed in the definition of a free-
standing implementation. We describe those areas in this section.

Prototype of Main
For compatibility with hosted applications, the XTools Z8 Encore! compiler uses
main() as the function called at program startup. Since the Z8 Encore! provides a
freestanding execution environment, there are a few differences in the syntax for
main(). The most important of these is that in a typical small embedded applica-
tion, main() never executes a return as there is no operating system for a value to
be returned to, and is also not intended to terminate. If main() does terminate and
the standard ZiLOG Z8 Encore! C startup module is in use, control simply goes to
the statement:

_exit:
JR _exit

For this reason, in the XTools Z8 Encore! compiler main() should be of type void;
any returned value is ignored. Also, main() is not passed any arguments, specifi-
cally including the standard parameters argc and argv which are allowed in one of
the two forms of main() defined by the standard.

In short, the prototype for main() is
void main (void);

unlike the standard in which the closest allowed form for main is
int main (void);
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

11
ANSI Promotions Disabled
The ANSI standard requires that integer variables smaller than ints always be pro-
moted to ints prior to any computation. So a function such as:

char makeUpper(char c)
{

if (c >= 'a' && c <= 'z')
c = c - ('a'-'A');
return c;

}

is to be compiled as though it had been written:
char makeUpper(char c)

{
if ((int)c >= (int)'a' && (int)c <= (int)'z')

 c = (char)((int)c - (int)('a'-'A'));
return c;

}

On an eight bit processor such as the ZiLOG Z8 Encore!, such promotions are
quite inefficient and rarely change the result of a computation. These promotions
are disabled by default, but may be enabled by the ANSI promotion compiler
option.

The Const Keyword and ROM
The XTools Z8 Encore! compiler provides an option to place const values in ROM
memory, which is often used by programmers who desire this level of control over
the limited data storage available in the Z8 Encore! memory space. When this
option is selected, the treatment of the const keyword is emphatically non-ANSI.
Specifically, when this option is selected, the keyword "const" is treated as equiva-
lent to "rom". Then the function prototype

foo (const char* src);

would imply that the src string is in ROM memory, while under the ANSI standard
the src string is in ordinary memory but the function foo() is not allowed to modify
*src.

The problem arises when other code calls a function like foo() with an argument
string that was not declared const. Under the standard, this is common practice
and the programmer's expectation is simply that foo() would refrain from modify-
ing its argument. However, the Z8 Encore! uses different machine instructions for
accessing its different memory spaces. The instruction for accessing data in ROM
is LDC, which will be generated in the assembly code for foo() in this example. To
access data in ram, however, the LD or LDX instructions must be used. Therefore,
when a string that was not declared const is passed to foo(), the code for foo() is
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

12
unable to access its parameter. Fortunately, the compiler will report an "Incompat-
ible data types" error for code that makes calls of this type.

The effect of this deviation from the standard is primarily that in code which must
be portable for all options of the compiler and linker, such as the source code for
library functions provided by XTools, parameters may not be declared const.

On new applications, we discourage this use of the const keyword to place data in
ROM. Rather, we recommend declaring constant data such as tables using the
rom keyword instead. Where portability is a consideration, this can easily be done
by preprocessor macros. For example:

#ifdef __EZ8__
define ROM rom
#else
define ROM const
#endif

ROM struct TableElement[] table = { /* stuff */};

Const Correctness in the Standard Header Files
In general, our header files are not const correct due to the issue raised in section
“The Const Keyword and ROM” on page 11. For example, in our library strcpy is
(effectively) declared

char* strcpy(char* dst, char* src);

while the ANSI standard requires
char* strcpy(char* dst, const char* src);

As noted above, use of the const keyword here would cause compile-time errors if
the CONST=ROM compilation option were selected and then strcpy() was called
with an argument for src which had not been declared const.

Double Treated as Float
The XTools Z8 Encore! compiler does not support a double-precision floating-
point type. The type "double" is accepted, but is treated as if it were "float".

Areas Not Defined by the Standard.
Certain areas of the behavior of a compiler are left by the standard to the discre-
tion of the compiler implementer. This section describes the specific behavior of
the ZilOG XTools Z8 Encore! compiler in some of those areas.
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper
Sizes of Basic Types
The ANSI standard does not specify the sizes of the basic types, except that each
type should be at least as large as the next "smaller" type.

In the XTools Z8 Encore! compiler, an int is (by default) the same size as a short,
16 bits, and a char is an 8 bit value. Both long and long long integers are imple-
mented as 32 bit values.

This implementation treats chars as signed values. The standard allows chars to
be treated as either signed or unsigned when simply declared as "char"; the com-
piler implementation is just required to pick one or the other and adhere to that
choice. Also, in the XTools Z8 Encore! compiler a wide character, wchar_t, is the
same as a short.

Floats, doubles, and long doubles are all implemented as 32-bit IEEE floating-
point numbers, what would be a float in most hosted compilers. As noted above in
section “Double Treated as Float” on page 12, this is not in strict conformance with
the ANSI standard.

There are compiler options to use non-default sizes for some of the int types. If
any of those options are selected, the user must rebuild all the runtime libraries,
as the libraries supplied with the compiler are built with the default integer sizes.
Use of these options is discouraged in applications that call the standard libraries,
as it is difficult or impossible to test correct operation of the libraries with all the
possible combinations of integer sizes.

Library Files Not Required for Freestanding Implementation
As noted in section “Freestanding Implementation” on page 2, only four of the
standard library header files are required by the standard to be supported in a
freestanding compiler such as the XTools Z8 Encore! compiler. However, the
XTools Z8 Encore! compiler does support many of the other standard library head-
ers as well. The supported headers are listed here. The support offered in our
libraries is fully compliant with the Standard except as noted here, and except for
the issue of const correctness as described in section “Const Correctness in the
Standard Header Files” on page 12.

<assert.h>

<ctype.h>

<errno.h>

<math.h>
Our implementation of this library is not fully ANSI compliant in the general limita-
tions of our handling of floating-point numbers: namely, we do not fully support
WP000801-0904

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

14
floating-point NAN's, INFINITY's, and related special values. These special values
are part of the full ANSI/IEEE 754-1985 floating-point standard which is refer-
enced in the ANSI C Standard.

<stddef.h>

<stdio.h>
We support only the portions of stdio.h that make sense in the embedded environ-
ment. Specifically, we define the ANSI required functions that do not depend on a
file system. For example, printf and sprintf are supplied but not fprintf.

<stdlib.h>
This header is ANSI compliant in our library except that the following functions of
limited or no use in an embedded environment are not supplied:

strtoul()
_Exit()
atexit()

Recent Changes
In this final section, we note for the convenience of our users significant changes
that have been made in the ANSI conformance of the ZiLOG XTools Z8 Encore!
compiler in recent releases.

String Placement Syntax
The string placement syntax described in “String Placement Syntax” on page 6 is
a new feature with the release of ZDS II version 4.9.0 for the Z8 Encore!.

Struct Returns
Prior to the release of ZDS II version 4.9.0, the XTools Z8 Encore! compiler did not
support functions that return a structure rather than a basic type or pointer. As one
consequence of this restriction, the div and ldiv standard library functions were not
supplied. This deviation from the standard has been removed with release 4.9.0.

Note that returning a struct, especially a large one, remains an expensive opera-
tion and is often regarded as a practice to be avoided in designing embedded
applications.
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

15
Char-Sized Enums
The ability to declare enumerations to have the size of char rather than int,
described in “Char-Sized Enums” on page 9, is not new in release 4.9.0 but is
newly documented.
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

ZiLOG Z8 Encore!® Compiler Compliance
White Paper

16
This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Customer Support Center
532 Race Street
San Jose, CA 95126
USA
Telephone: 408.558.8500
Fax: 408.558.8300
www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other
products and/or service names mentioned herein may be trademarks of the companies with which they are
associated.

Information Integrity
The information contained within this document has been verified according to the general principles of
electrical and mechanical engineering. Any applicable source code illustrated in the document was either
written by an authorized ZiLOG employee or licensed consultant. Permission to use these codes in any
form, besides the intended application, must be approved through a license agreement between both
parties. ZiLOG will not be responsible for any code(s) used beyond the intended application. Contact the
local ZiLOG Sales Office to obtain necessary license agreements.

Document Disclaimer
©2004 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded.
ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG
ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR
OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions
appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of
merchantability or fitness for any purpose Except with the express written approval of ZiLOG, use of
information, devices, or technology as critical components of life support systems is not authorized. No
licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.
WP000801-0904 ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

http://www.zilog.com

	Abstract
	The ANSI Standard
	Freestanding Implementation
	Extensions Allowed
	The 1999 Standard
	Supported New Features from the 1999 Standard
	New Features from the 1999 Standard Not Supported

	ZiLOG Extensions to the Standard
	Address Space Specifiers
	Near Keyword
	Far Keyword
	Rom Keyword
	Usage

	String Placement Syntax
	Near String Constants
	Far String Constants
	Rom string constants
	Usage

	Static Frames
	The Reentrant Keyword
	The Interrupt Keyword
	Char-Sized Enums
	Embedded Assembly
	The Strict ANSI Compiler Option

	Deviations from the Standard
	Prototype of Main
	ANSI Promotions Disabled
	The Const Keyword and ROM
	Const Correctness in the Standard Header Files
	Double Treated as Float

	Areas Not Defined by the Standard.
	Sizes of Basic Types
	Library Files Not Required for Freestanding Implementation
	<assert.h>
	<ctype.h>
	<errno.h>
	<math.h>
	<stddef.h>
	<stdio.h>
	<stdlib.h>

	Recent Changes
	String Placement Syntax
	Struct Returns
	Char-Sized Enums

	ZiLOG Z8 Encore!® Compiler Compliance With ANSI STANDARD C

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

