
Technical Note

Multiply Routines

TN000701-0603
General Overview

Many microcontroller applications require arithmetic functions beyond the instructions
directly supported by the device. The most common among these applications are simple
multiply and divide routines for scaling and filtering purposes. The Z8 register file architec-
ture provides a significant advantage for implementing efficient routines for these functions.
This Technical Note shows efficient implementations of 8-bit by 8-bit and 16-bit by 16-bit
unsigned multiply routines. A companion Technical Note, Divide Routines (TN0006),
describes an 8-bit by 16-bit and 16-bit by 16-bit divide routine.

Discussion

The first software module, multiply_8_8 (see �Multiply_8_8� on page 2), illustrates an effi-
cient algorithm for the division of two unsigned 8-bit values, resulting in a 16-bit unsigned
product. The second software module, multiply_16_16 (�Multiply_16_16� on page 3), multi-
plies an unsigned 16-bit multiplier by an unsigned 16-bit multiplicand resulting in an
unsigned 32-bit product. Both routines use a similar algorithm.

In the multiply_8_8 routine, the multiplicand is repetitively shifted right (via the Rotate Right
through Carry instruction), with the low-order bits being shifted out into the carry flag. If the
low-order bit shifted out is a 1, the multiplier is added to the high-order byte of the partial
product. As the high-order bits of the multiplicand are vacated by the Shift Right instruction,
the resulting partial product bits are shifted in. This routine takes 22 bytes of code and 4 reg-
isters.

In the multiply_16_16 routine, the same basic algorithm is used as in the multiply_8_8
routine above, except that four shifts are required to result in the 32-bit product, and a 16-bit
Add is performed to make up the partial product. A final test is performed before exiting the
routine to determine whether the result fits in 16 bits or requires 32 bits. If the final result fits
into a 16-bit register, the zero flag is set; otherwise the zero flag is cleared to indicate that
the result occupies 32 bits. The routine is implemented in 34 bytes of code and uses 7 reg-
isters.

The routines are implemented in a modular fashion such that they may be easily integrated
into a target application. The registers used in the routines can be located in any working
register group by defining the value for the math_group equate. The .r(symbol_name) des-
ignation causes the assembler to use a working register for the variable as opposed to an
absolute address location. The variable name could be used directly, but this method uses
less code space.
Technical Note 1

http://www.zilog.com/docs/z8/appnotes/tn0005.pdf

Multiply Routines
The execution time of these multiply routines depends on the values being used in the mul-
tiplier, the multiplicand, and the operating frequency of the MCU. In the following 8-bit by 8-
bit multiply example, a Z8Plus device operating at a frequency of 10MHz takes 47µs to
complete the multiply function (including entry and exit overhead).

In the following 16-bit by 16-bit divide example, a Z8Plus device operating at a frequency of
10MHz takes 128µs to complete the multiply function.

Sample Code

Multiply_8_8
The following code illustrates the multiply_8_8 software module.

* Multiplies two 8-bit values resulting in a 16-bit product.
* Result is returned in product_hi,product_lo.

math_group equ 00h ;Defines the WRG for this routine

segment data
align 16

mult_len ds 1
multiplier ds 1
product_hi ds 1
product_lo ds 1

;---
segment code

multiply_8_8:
push rp ;Save the current register pointer
srp #math_group ;and use our own working register group
ld .r(mult_len),#9 ;multiplier is 8 bits (+1)

clr .r(product_hi) ;Initialize MSB of result
rcf

$loop_8:
rrc .r(product_hi)
rrc .r(product_lo)
jr nc,$next_8
add .r(product_hi),.r(multiplier)

$next_8:

0x55h x 0xAAh = 0x3872h

0x5555h x 0xAAAAh = 0x38E31C72
Technical Note TN000701-0603 2

Multiply Routines
djnz .r(mult_len),$loop_8

pop rp ;Restore register pointer
ret

Multiply_16_16
The following code illustrates the multiply_16_16 software module.

* Multiplies two unsigned 16-bit values resulting in a 32-bit product.
* Input: multiplier_hi, multiplier_lo
* multiplicand_hi, multiplicand_lo
* Output: Result returned in:
* product_hi, product_lo, multiplicand_hi, multiplicand_lo (MSB...LSB).

math_group equ 00h ;Defines the WRG for this routine

segment data
align 16

mult_len ds 1
multiplier_hi ds 1
multiplier_lo ds 1
product_hi ds 1
product_lo ds 1
multiplicand_hi ds 1
multiplicand_lo ds 1
;---

segment code

multiply_16_16:
push rp ;Save the current register pointer
srp #math_group ;and use our own working register group
ld .r(mult_len),#17 ;multiplier is 16 bits (+1)

clr .r(product_hi) ;Initialize most significant
clr .r(product_lo) ;word of 32 bit result
rcf

$loop_16:
rrc .r(product_hi)
rrc .r(product_lo)
rrc .r(multiplicand_hi)
rrc .r(multiplicand_lo)
jr nc,$next_16
add .r(product_lo),.r(multiplier_lo)
adc .r(product_hi),.r(multiplier_hi)

$next_16:
djnz .r(mult_len),$loop_16

ld .r(mult_len),.r(product_hi);Z flag = 0 if result is > 16 bits
or .r(mult_len),.r(product_lo);Z flag = 1 if result fits in 16 bits
pop rp ;Restore register pointer
ret
Technical Note TN000701-0603 3

Multiply Routines
This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
532 Race Street
San Jose, CA 95126
Telephone: 408.558.8500
Fax: 408.558.8300
www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries.
All other products and/or service names mentioned herein may be trademarks of the
companies with which they are associated.

Information Integrity
The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated
in the document was either written by an authorized ZiLOG employee or licensed
consultant. Permission to use these codes in any form, besides the intended application,
must be approved through a license agreement between both parties. ZiLOG will not be
responsible for any code(s) used beyond the intended application. Contact the local
ZiLOG Sales Office to obtain necessary license agreements.

Document Disclaimer
©2003 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the
devices, applications, or technology described is intended to suggest possible uses and
may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME
LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY
MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. Except with the express written approval ZiLOG, use of
information, devices, or technology as critical components of life support systems is not
authorized. No licenses or other rights are conveyed, implicitly or otherwise, by this
document under any intellectual property rights.
Technical Note TN000701-0603 4

	Multiply Routines Technical Note
	General Overview
	Discussion
	Sample Code

