

Application Note

Using Software Techniques
to Maximize Z8 MCU
System Noise Immunity
AN003701-Z8X0400
ZILOG WORLDWIDE HEADQUARTERS ¥ 910 E. HAMILTON AVENUE ¥ CAMPBELL, CA 95008
TELEPHONE: 408.558.8500 ¥ FAX: 408.558.8300 ¥ WWW.ZILOG.COM

Application Note

Using Software Techniques to Maximize Z8 MCU System Noise Immunity

This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
910 E. Hamilton Avenue
Campbell, CA 95008
Telephone: 408.558.8500
Fax: 408.558.8300
www.ZiLOG.com

Windows is a registered trademark of Microsoft Corporation.

Information Integrity

The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated in the
document was either written by an authorized ZiLOG employee or licensed consultant. Permission
to use these codes in any form, besides the intended application, must be approved through a
license agreement between both parties. ZiLOG will not be responsible for any code(s) used
beyond the intended application. Contact the local ZiLOG Sales Office to obtain necessary license
agreements.

Document Disclaimer

© 2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be
superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY
DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR
INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except
with the express written approval ZiLOG, use of information, devices, or technology as critical
components of life support systems is not authorized. No licenses or other rights are conveyed,
implicitly or otherwise, by this document under any intellectual property rights.
AN003701-Z8X0400

Application Note

Using Software Techniques to Maximize Z8 MCU System Noise Immunity

AN003701-Z8X0400

iii

Table of Contents

General Overview . 1

Discussion . 1
Fault-Avoidance and Fault-Tolerant Design . 1
Implementing Fault Tolerance with the Z8 . 2

Summary . 11

Technical Support . 12
Source Code . 12
Flowcharts . 18

Test Procedure . 22
Equipment Used . 22
General Test Setup and Execution . 22
Test Results . 22

References . 23

Acknowledgements

Project Lead Engineer

Jon Veres

Application and Support Engineers

Denny Hopp, Oscar Miramontes, and J.R. Wang

System and Code Development

Jon Veres

Application Note

Using Software Techniques to Maximize Z8 MCU System Noise Immunity

1

Using Software Techniques to Maximize Z8
MCU System Noise Immunity

General Overview
Many articles are written about the hardware aspects of MCU-based system
design. These articles cover topics such as PCB layout, component selection, and
circuit protection devices. Unfortunately, the role software design can play to max-
imize noise immunity is often neglected. Good software design helps a system
survive problems caused by noise that circumvents hardware protection
schemes. This Application Note provides an introduction to a variety of software
techniques that can provide a Z8 MCU-based system with improved noise immu-
nity and reliability of operation.

Discussion

Fault-Avoidance and Fault-Tolerant Design

Hardware Design Methodologies

Many product designers think of fault avoidance and fault tolerance in terms of
hardware system redundancies. The rationale is to prevent improper system
actions when external and internal influences are encountered. External influ-
ences include supply, voltage, and frequency variations as well as EMI events
(voltage surges, fast transients, electromagnetic radiation, and electrostatic dis-
charge) and climatic conditions (short- and long-term temperature and humidity
effects). Internal influences include systematic and random errors. Systematic or
design errors, as they are more commonly called, occur because of complex
product design. The errors are solved only through redesign efforts. Despite dili-
gence in component selection and product construction, random errors and fail-
ures cannot be totally prevented. The system designer typically uses Failure
Mode Effect Analysis (FMEA) or Fault Tree Analysis (FTA) techniques to identify
deficiencies in end-product performance when various components randomly fail.
These operational deficiencies are then addressed and corrected.

Extending Hardware Design Methodologies to Software

Typical hardware design methodologies can be extended to software. Elimination
of systematic errors is a primary goal because of the MCU system software's nec-
essarily unique nature. After a thorough analysis of the end-product performance
AN003701-Z8X0400

Application Note

Using Software Techniques to Maximize Z8 MCU System Noise Immunity

2

requirements, there are several methods to use in the software design and test
phases. These methods include:

¥ Writing structured code. Structured code includes dividing all system tasks
into software blocks that can be tested individually. Each block must have a
single entry point, a normal exit point, a fault exit point (if required), and a clear
specification of data on which the block executes.

¥ Full-time system control. All software-controlled hardware functions must be in
a known inactive state during program self-test, initialization, and fault-
detected lock-out modes.

¥ Full documentation. Well-structured, thorough documentation greatly
improves the prospects of eliminating systematic errors through individual and
peer reviews, as well as ensuring the implemented functions fulfill the original
design goals.

¥ Testing methodologies. To detect systematic errors, input and path testing
techniques are used to exercise many module input conditions and program
loops.

MCU system software can be designed for improved fault tolerance by use of on-
line fault detection safeguards. These safeguards provide an interlock between
system hardware and software operations. When faults are detected, the program
determines the severity of the fault and takes the defined course of action. This
action includes recording the error, prompting the end user, shutting down and
locking out the system, as well as noting the speed at which corrective action is
implemented.

The concept of fault tolerant software is promulgated by several standards agen-
cies (for example, UL 1998 Table 7 parameters) for products that control poten-
tially dangerous operations, such as a gas burner control. These standards
address critical areas of operations that dictate the requirement for primary and
secondary safeguard systems (hardware and software). The software methods
discussed in this Application Note focus on the three MCU areas where errors
occur or are most often induced: MCU memory, I/O, and program flow. Graceful
recovery from a controlled system lock-out from any externally induced fault or
random component failure is the goal of system design.

Implementing Fault Tolerance with the Z8

MCU Memory

The Z8 features internal program memory (ROM or One Time Programmable
(OTP)) and register file RAM memory. A variety of program memory and RAM-
checking methods are used to validate memory data and check for stuck bits as
well as single- and double-bit errors. The techniques used include checksums,
parity bits, CRC, and comparison of redundant memory segments. These memory
AN003701-Z8X0400

Application Note

Using Software Techniques to Maximize Z8 MCU System Noise Immunity

3

tests are usually conducted and completed at power-up, but they also can be run
continuously as part of the normal program scan. In the latter case, partial mem-
ory tests usually are conducted during each scan so that minimum MCU process-
ing time is lost.

The sample Z8 program in the Technical Support section contains a program
memory test routine. This routine computes and verifies a 16-bit ROM/OTP
checksum. It provides an entire program memory check at power-up as well as a
continuous background check (256 bytes/program scan). As seen from the sam-
ple code, the architecture of the Z8 MCU uses the Load Constant (LDC) instruc-
tion to make program memory testing easy. This instruction allows the user
program direct access to memory and allows the memory to be operated on
accordingly (also making the ROM/OTP look-up tables easy to use). Program
memory tests can be conducted in Z8 MCUs even when the ROM/OTP Protect
option is enabled. A detected and verified program memory fault is a hard or fatal
system failure that terminates module operation.

The Technical Support Section also contains a sample Z8 register file RAM check
routine. To test the register file, the RAM check routine writes and then verifies
alternating byte patterns to all general purpose register locations. Thus, all
address and data bit and byte combinations are exercised. When finished, the
RAM check routine writes and verifies that all locations are cleared to zero. The
RAM check is designed as a one-time test called during the system power-up ini-
tialization. The routine can be modified to perform partial register file checks con-
tinuously per program scan (as in the previous program memory test example).
An on-going checksum test also can be computed on the entire register file with
continuous updates for every data write. A simpler approach is to store all critical
register file data in redundant locations. Then, as part of the system test proce-
dures called each program scan, these memory locations are compared.

For example, assume there are 32 critical data parameters present in a user pro-
gram. The data is stored in Z8 register file banks 1 and 2 (locations 10h through
2Fh). Fault-tolerant design techniques can be implemented by storing the comple-
ment of this data in another pair of register banks (mirror image data at register
file banks 4 and 5 at locations 40h through 5Fh). After each program scan, the
register file banks are compared for matching values. The Z8 instruction set sup-
ports this type of data storage and comparison through these instructions:

¥ Complement (COM)

¥ Exclusive-Or (XOR)

¥ Loop Count (Decrement and Jump if Not Zero, or DJNZ)
AN003701-Z8X0400

Application Note

Using Software Techniques to Maximize Z8 MCU System Noise Immunity

4

A sample bank checking code sequence for this example follows:

error rou =srp #00h ;work in register bank 0
;define r5, r6, r7, r8 as local
;variables for program data integrity
;checking

ld r5, #10h ;set-up primary data bank register pointer
ld r6, #40h ;set-up complimentary data bank register

;pointer
ld r7, #20h ;initialize the byte compare counter (32)

;set-up complete – now compare the primary
;and complimentary redundant register
;banks

loop: ld r8, @r6 ;load the compliment register data
xor r8, @r5 ;compare the compliment with the primary

;data value
cp r8, #0FFh ;compare XOR result with FF
jp nz, ram_fault ;if nz, no data match--go to ram error

;routine
djnz r7, loop ;repeat register data test loop for all 32

;bytes

A detected and verified RAM error is usually a soft error. The recovery procedure
validates that the RAM location in question is operating correctly (by performing
RAM pattern testing) and then restores the data to the parameter's default or cur-
rent state value.

MCU I/O

Despite hardware protection, MCU I/O is often subject to external influences. Soft-
ware techniques such as input debouncing and I/O validity- and range-checking
are available to ensure system I/O integrity. Fault-tolerance is improved by creat-
ing and maintaining a redundant and complementary I/O image table within the
Z8 register file.

Software input debouncing is analogous to hardware input debouncing and keeps
out noise-induced transients from being seen by the user program as actual input-
state changes. There are different ways to implement input debouncing. The sim-
plest technique is to count like-kind consecutive input states and, when the speci-
fied number is reached, interpret that input state as a valid. The problem with this
method is that valid-state changes can be delayed adversely by repetitive noise
conditions. An improved debounce method is to take a continuous signal-level-
weighted average to determine the valid input state. This method assigns a
debounce counter for each input port bit to be debounced. A low- and high-level
threshold count is set for the user application, and the difference between the lev-
els is the degree of hysteresis. An example of this type of input debounce method
follows:
AN003701-Z8X0400

Application Note

Using Software Techniques to Maximize Z8 MCU System Noise Immunity

5

;deb: subroutine called to debounce Z8
;input port pin p25, report debounced pin
;state to the port 2 I/O image register
;
;general purpose registers used:
;TEMP: temp storage register
;P25_CNT: debounce count register

;
;constants required:
;P25_HI: user defined number of high
;sample counts for a valid high
;threshold
;BIT5: 40h → binary 0010 0000

;
deb: ld TEMP, p2 ;read current state of p2 (do not

;use boolean instruction on I/O
;port)

tm TEMP, #BITS5 ;test p25 for a low level
jr nz, deb_2 ;jp if p25 is high
cp P25_CNT, #00h ;test for min debounce cnt value

;(set to 0)
jr eq, deb_1
dec P25_CNT ;dec hi level debounce counter
ret

;
deb_1: and P2_IMAGE, #~BIT5 ;reset the p25 image bit/flag

ret
;
deb_2: cp P25_CNT, #P25_HI ;test for max hi level debounce cnt

jr eq, deb_3
inc P25_CNT ;inc switch hi level debounce

;counter
ret

;
deb_3: or P2_IMAGE, #BIT5 ;set the p25 image bit/flag

ret
;

In the Z8, I/O port registers are mapped into locations 00h–03h of the register file.
Z8 fault tolerance is enhanced by constructing a redundant store of these regis-
ters. I/O image tables allow for redundancy checking on the debounced input
states. The user program makes logical decisions based on this activity The input
debounce counters (see the previous input debounce example) can be compared
to the corresponding input port image table bit for logic state consensus. If a dis-
crepancy is found, recovery options include changing the input to its reset default
state.
AN003701-Z8X0400

Application Note

Using Software Techniques to Maximize Z8 MCU System Noise Immunity

6

Recovery options also provide for output state checking. Each Z8 bidirectional I/O
port features an input register and buffer, an output register and buffer, and asso-
ciated control logic. Writing to the I/O port register stores data in the port's output
register. This feature allows output port data to be initialized prior to the I/O pins
being configured as outputs. Reading a port register causes the data on the exter-
nal I/O port pins to be read whether defined as inputs or outputs. The output data
read in is compared to the output data of the I/O image table. If the output data
matches, the outputs are properly represented on the external interface and there
are no shorts or stuck pins. This type of output validation checking is performed
only on outputs configured for push/pull active drive.

Finally, I/O image tables allow the safe use of Z8 Boolean instructions (TM, TCM,
AND, OR, XOR, COM). Z8 Boolean instructions operate on a ReadÐModifyÐWrite
basis. If the user program directly operates on an I/O port with a Boolean instruc-
tion, there is the potential danger of a noise pulse corrupting a bidirectional I/O bit.
Therefore, it is safer to perform all user program I/O modifications on the I/O port
image table registers while always using the Load (LD) instruction to act on the
actual I/O ports.

MCU Program Flow

Normal MCU program flow also may be interrupted by external influences despite
hardware protection. Typical fault modes here are the altering of the MCU pro-
gram counter (causing the software to jump to random locations) and a noisy
reset line (which locks-up MCU operation). There are several hardware and soft-
ware techniques embedded in the design that can help a system recover from
these faults.

Hardware Methods

The Z8 CCP MCU family provides on-chip hardware resources to aid in EMI upset
recovery. A primary feature is the elimination of the external reset line in favor of
internal hardware low voltage/brown-out detection and reset control. This feature
eliminates the possibility of improper MCU operation or lock up because of noisy
or glitching reset input which would violate MCU reset input timing specifications.
On-chip low-voltage detection guarantees the Z8 is in a known operating state
(RUN, HALT, STOP, or RESET) during VCC transients. This feature eliminates the
requirement for a reset input and its associated external support and conditioning
circuitry on the Z8. When in reset mode, all Z8 bidirectional I/O are configured as
high-impedance inputs so no output loads can be driven (autolatches disabled).
This condition is the same I/O condition that is present after reset release during
power-up initialization. Z8 outputs are enabled only after the I/O direction bits are
configured in the I/O port mode control registers.

The Z8's on-chip timer/counters are used to validate MCU system timing. A Z8
timer is used to periodically measure the time duration of a known applied exter-
nal signal such as a fixed-input clock frequency, 60-Hz AC line (zero cross detect),
AN003701-Z8X0400

Application Note

Using Software Techniques to Maximize Z8 MCU System Noise Immunity

7

and so on. When the external signal is in a valid range, the user program knows
the MCU program time base (clock source) is within design specification. Like-
wise, a system dependent on a 60-Hz zero cross input can use the internal MCU
time base to validate the external timing signal. For example, assume a timer/dis-
play module based on an external 60-Hz signal. The MCU monitors the timing of
zero cross input. If present, normal module operation is continued. If missing, the
module could enter a diagnostic low-power mode. Low-power mode consists of
turning off all power-consuming displays and waiting for the proper zero cross
resumption. In this case, module operation might sustain multiple second brown-
outs without affecting continued operation (transparent continuous operation to
the end user).

Also available on the Z8 CCP MCU is an on-chip watch-dog timer (WDT) circuit. A
WDT is a hardware circuit that counts input pulses. If it counts to a predetermined
maximum number of counts, the WDT generates a hardware timeout signal that
can be used as a fault lock-out signal or master system reset. When operating
normally, the user program retriggers, or resets, the WDT count to its initial value
before the count expires and generates the system reset. Thus, there is a hard-
ware safeguard on system software operation.

The most reliable on-chip MCU WDT contains a number of operational properties.
The WDT clock source must be reliable and independent of MCU system hard-
ware. The WDT should offer timing flexibility to match the user application by hav-
ing a time-out period consistent with the process being controlled (not too fast or
too slow). Because the WDT is a hardware safeguard on controlled software
action, the WDT must remain as independent of the software as possible. Thus,
the WDT should be initiated by application of system power and armed indepen-
dently of software that may not run properly at start-up. Similarly, software should
not be allowed to disable an operating WDT. Kicking or retriggering the WDT
(resetting the timer count to its initial value) should be through a unique software
command. Finally, the WDT time-out should generate a safe system reset condi-
tion.

Some applications require the use of an external WDT to force safety critical hard-
ware to an off state. A well-designed on-chip WDT suffices for many applications.
The Z8 CCP MCU's internal WDT features provide maximum user flexibility and
system protection. Those features include:

¥ Internal clock sourceÑWDT operation and reset are independent of the MCU
clock source.

¥ Automatic WDT start-up at power-on-reset (feature enabled via a ROM mask
or an OTP programming option bit).

¥ When enabled, the WDT cannot be disabled by software.

¥ Unique WDT refresh Op Code.
AN003701-Z8X0400

Application Note

Using Software Techniques to Maximize Z8 MCU System Noise Immunity

8

¥ Software programmable modes of operation via the access protected
WDTMR register:

Ð WDT enabled in any/all MCU operating modes: RUN, HALT, STOP

Ð Programmable WDT time-out periods (5msecs to 100msecs)

In the Z8 CCP MCU, WDT operation options are controlled by the Watch-Dog
Timer Mode Register (WDTMR). This register is written only by the user program
during the first 64 system clock cycles after a POR, WDT RESET, or STOP-mode
recovery. This access protection prevents rogue writes that can occur with pro-
gram counter corruption. This access protection also controls time-out period
selection and watch-dog timer activity in the various MCU operating modes.

Although well designed, the Z8's on-chip WDT provides maximum protection only
if properly used. The WDT is retriggered by software execution of the WDT
instruction (5Fh Op Code). For maximum effectiveness, the user program should
retrigger the WDT at only one point in the main program. The retrigger operation
is usually performed after all software system checks are validated. This concept
is discussed in the Software Methods section that follows.

Finally, all Z8 CCP MCU I/O pins feature internal input protection diodes to the
high- and low-side rails. This feature provides effective device protection against
voltage transients with the addition of current limiting resistors.

Software Methods:

In addition to the hardware safeguards on program flow, user software can
actively detect signs of a system fault/upset. Software for detection of MCU mem-
ory and I/O faults has been reviewed. Similar software techniques prevent and
detect illegal program flow. The simplest prevention method is to fill any unused
ROM program memory with the Z8's NOP Op Code (FFh) up to the most recent
three program bytes where a jump to START instruction is located.

Example:

... ;last user program byte

... ;unused space filled with NOPs

...
nop
nop
jp start ;periodic jp to start instruction
... ;unused space filled with nop’s
...
...
nop
nop
jp start ;end of Z8 program memory space
AN003701-Z8X0400

Application Note

Using Software Techniques to Maximize Z8 MCU System Noise Immunity

9

In this example, START is the label for program address 000Ch (starting program
address location for all Z8 MCUs). If the program counter (PC) is corrupted and
execution is redirected to the unused memory area, the Z8's PC would eventually
resynchronize on the NOP instructions and jump to the start location (or any other
fault-handling code address selected by the programmer).

Similarly, all unused Z8 interrupt sources must have their jump vectors pointed to
a bad interrupt system-recovery routine. This routine flushes the interrupt condi-
tion by restoring the flag register and stack pointer, and directing the program
counter to continue at the userÕs desired location.

Another prevention measure examines the user program hex file and eliminates
all Z8 MCU operating mode Op Codes that appear as part of the normal program.
The critical Op Codes are for the HALT (7Fh), STOP (6Fh), and WDT (5Fh)
instructions. For example, the instruction LD (R5 6Fh) loads the immediate value
of 6Fh into working register 5. This operation provides a machine code sequence
of 5C 6F. If a program counter disruption occurs, the potential exists for the PC to
start execution with the 6F Op Code, and thus execute a STOP instruction. For
this reason, these critical Op Codes exist only in one place: the actual routine
where a power-down mode is entered or the watch-dog timer is kicked. These
power-down routines incorporate software checks to validate their execution and
guardband the Z8's WDT.

There are several software methods to detect program flow disruption. Consider
the simplified user program flow in Figure 1.

Figure 1. Simplified Z8 User Program Flow

MAIN:

- call task A
- call task B
- call task C
- call task D

system check

system refresh

fault processing

system shutdown

system fault

intra-task fault

soft
fault

hard
fault

start

initialization:
cold or warm
AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

10
Proper program flow executes tasks in an A, B, C, D order. By using unique, pre-
assigned sequence numbers for each subroutine, system software validates
proper program flow. In this example, the main program sets the initial sequence
number, then calls Task A. Task A, when starting, running, and/or concluding exe-
cution, matches the sequence number to the supervisory sequence number. If the
sequence numbers do not match, Task A directs program execution to the fault
handler. This process continues as the main program sets the predetermined
sequence numbers for each succeeding task called.

Additional fault checking is carried out at the task level. Each task monitors its
passed input parameters for validity. Time-slot monitoring is a technique that uses
the Z8 MCU timer resource to measure the duration of each task's execution.
Execution time outside the acceptable minimum/maximum timing window is sig-
naled as an operating fault. Another method monitors intra-task logical flow (pro-
gram sequencing, discussed previously, is an inter-task logical flow monitoring
technique). Checkpoint flags are set up inside each task block to ensure that all
critical functions inside a task are executed. At task end, the checkpoint flags, a
unique one for each task function, are checked to see that each critical function
ran one time, and only one time. A simplified and less precise implementation
makes use of a flow-check counter. When each critical task function is completed,
the flow-check counter is incremented. At the end of the task, the flow-check
counter is tested for the proper count. If checkpoint flags are not set correctly or
flow-check counts do not match, the nonmatch indicates a program flow in the
task was upset and critical functions were either not executed or were executed
repeatedly. Program action is then directed to the fault-handler software.

Note: These same methods are used in interrupt service routines to ensure that the
routines are not being called too frequently (or too infrequently), relative to main
program operation.

To continue with this example, when the main loop completes execution, the sys-
tem check and refresh routine runs. This subroutine performs global system
checks such as the background program memory check, critical redundant RAM
checks, system time base check, and final sequence code check. If all global
checks pass, the system is in control and system refresh begins. Refresh includes
updating and rewriting the I/O ports from the I/O image table, the I/O port mode
control registers, system control registers (interrupt and stack facilities), and timer
control registers. The purpose of the refresh is to ensure that any noise-corrupted
system control registers are reinitialized to the required state. Finally, the WDT
instruction is executed, the only time the WDT instruction is executed.

When any of these software procedures detects a fault, the user program jumps
to the fault-handling routine. This routine determines the fault root cause and
takes the user-defined action. The action taken depends on whether the error is
considered fatal (results in system lock-out) or recoverable (try a system restart).
The system designer decides what a fatal and recoverable error is for each end-
AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

11
product. The fault handler makes use of the sequence code and checkpoint flags
determine the actual root cause failure mode. Thus, sequence numbers and
checkpoint flags serve a secondary role as fault tracing codes that indicate when
proper system operation terminated.

When the user program vectors back to the program start location (whether by
WDT, bad interrupt vector, or by action of the fault handler), the user's initialization
sequence must account for this type of restart. The restart is accomplished by
having the system initialization code determine if a warm or cold start condition
exists. A cold start is defined as an initial power-up sequence. For this case, the
complete system check and initialization to system default state must be per-
formed. A warm start is defined as a system that was running, but for some rea-
son (system upset/fault detection/WDT time-out), is attempting a restart. Instead
of defaulting to the cold start reset sequence, the system checks to see if it can
carry on program activity from the point of the upset (or as close as possible to it).
Recovery can be as simple as checking the RAM signature bytes (fixed register
file locations programmed to unique data values on a cold start), or to more
sophisticated RAM checks. If critical system RAM is intact, program execution
continues at the main program without reinitializing to the cold start I/O default
conditions.

In the example in Figure 1, the redundant register banks holding all critical pro-
gram and I/O data are tested to determine a warm or cold start recovery. If RAM
data checks out as valid, system operation proceeds as a warm start. In this case,
there is no glitching of I/O as the ports remain in the most recent state condition.
To the product's end user, the system glitch goes unnoticed, as system operation
is on-going.

Summary
This Application Note focuses on available software methods to enhance a Z8
MCU-based system's immunity to EMI upset. Topics discussed range from
improved documentation and testing practices to specific techniques for prevent-
ing and detecting faults in MCU memory, I/O, and program flow. These methods
were developed to meet the standards required for safety-critical products. These
same techniques can be used, as MCU resources allow, in any embedded control
design to enhance the end product's reliability.
AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

12
Technical Support

Source Code
**
* Module Name: FT_SFWR.ASM
* Version: V1.0
* Copyright: ZiLOG (c)1999
* Date: August 23, 1999
* Created by: Jon Veres - ZiLOG Ohio
* Compiler: ZDS V2.11
* Description: Demonstration program to outline fault tolerant
* software techniques including program/RAM memory
* checking and task flow control. Target Z8 device
* for this example is the Z86x04.
**
;

globals on
;
; tab size = 6
;
; User application definitions
;
ROM_LO equ 0FFh ; stored ROM checksum Low byte value
ROM_HI equ 65h ; stored ROM checksum High byte value
ROM_SIZE equ 4 ; 256 byte pages in selected Z8 MCU
SIG1 equ 00h ; RAM cold/warm start signature bytes
SIG2 equ 55h
;
;
RAM_VAL equ 0FFh ; RAM test pattern byte (GPR)
RAM_PTR equ 0FEh ; RAM test pointer (SPL)
;
RAM_MAX equ 7Fh ; top of GP reg file for Z8 used
RAM_MIN equ 3 ; bottom of GP reg file for Z8 used
PATTERN equ 55h ; selected RAM test pattern byte
;
; section definitions
;
; Bank 1 working register definitions (ROM test control registers)
;
rom_ptr equ rr0 ; wr0 pr - 16-bit ROM address ptr
rom_ptr_hi equ r0 ; wr0 - ROM addr ptr high
rom_ptr_lo equ r1 ; wr1 - ROM addr ptr low
byte_cnt equ r2 ; wr2 - ROM check byte counter
rom_pass equ r3 ; wr3 - on-line ROM check counter
rom_char equ r4 ; wr4 - ROM check summing reg
chksum_lo equ r5 ; wr5 - computed ROM chksum low
chksum_hi equ r6 ; wr6 - computed ROM chksum high
;

define bank2_data, space=rfile, org=20h ; mapped to 20-2F
;

segment bank2_data
;
RAM_SIG ds 1 ; generic reg file definitions
RAM_SIG1 ds 1
RAM_SIG2 ds 1
AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

13
RAM_SIG3 ds 1
FLOW_CNT ds 1
;
;
**
* Interrupt Vectors
**

vector reset = begin
vector irq0 = IRQ0
vector irq1 = IRQ1
vector irq2 = IRQ2
vector irq3 = IRQ3
vector irq4 = IRQ4
vector irq5 = IRQ5

;
;

segment code
;
; start of program
;
begin: di ; start at 000Ch, disable int
;
; Configure ports and port control registers
;

srp #00h ; enable working reg bank 0

; Test for POR (cold) start or EMC/static reset (warm) start by looking
; for the proper RAM signature.
;

cp RAM_SIG, #SIG1 ; proper RAM signature pattern?
 jr ne, cold
 cp RAM_SIG1, #SIG2
 jr ne, cold
 cp RAM_SIG2, #~SIG1
 jr ne, cold
 cp RAM_SIG3, #~SIG2

jr eq, warm ; RAM signature pattern test
; passed, jp to warm start
; location

;
; POR detected -- perform cold start
;
cold: ld p01m, #4Dh ; 4D = int stack only, all

; I/O as inputs
;
; Perform a RAM check on the entire general purpose (GP)Z8 register file.
; The test consists of writing all GP registers with an alternating byte
; test pattern, verifying the pattern, then repeating the entire procedure
; writing and reading the complemented pattern.
;
; SFR R254 - SPL: defined as RAM_VAL - holds the test pattern byte
; SFR R255 - GPR: defined as RAM_PTR - reg file address pointer
;
; User defines the following constants for the application:
;
; RAM_MAX: highest GP reg file address available for the Z8 selected
; RAM_MIN: lowest GP reg file address available for the z8 selected
AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

14
; PATTERN: value of the user defined test pattern byte
;

ld RAM_VAL, #PATTERN ; init RAM check pattern value
ram_wr: ld RAM_PTR, #RAM_MAX ; init RAM ptr to top
ram_wr_1: ld @RAM_PTR, RAM_VAL ; write out RAM pattern

dec RAM_PTR
 cp RAM_PTR, #RAM_MIN ; all GP reg bytes written?

jr eq, ram_rd
 com RAM_VAL ; complement RAM pattern value

jr ram_wr_1
;
; General purpose reg file write with alternating test/compliment test
; bytes completed, read back and verify each byte value is correct.
;
ram_rd: ld RAM_PTR, #RAM_MAX ; set RAM ptr to the top
ram_rd_1: com RAM_VAL ; init RAM test byte value

cp RAM_VAL, @RAM_PTR ; compare RAM patterns
 jp ne, ram_err

dec RAM_PTR ; point to next reg file byte
 cp RAM_PTR, #RAM_MIN ; all GP bytes checked?

jr ne, ram_rd_1
;
pass_2: cp RAM_VAL, #~PATTERN ; 1st or 2nd RAM test pass
 jr ne, ram_clr ; if 2nd, go to clear ram
 jr ram_wr ; if 1st, start 2nd test pass
;
; General purpose register file testing been successfully completed,
; clear/verify clear all general purpose bytes.
;
ram_clr: ld RAM_PTR, #RAM_MAX ; set ptr to top of reg file
clr_it: clr @RAM_PTR ; zero out all gp reg file
 cp @RAM_PTR, #00h ; verify RAM byte cleared
 jp nz, ram_err
 dec RAM_PTR ; point to next reg file byte
 cp RAM_PTR, #RAM_MIN ; all GP bytes cleared?
 jr ne, clr_it
;
; Register file testing is complete, proceed to check the program memory.
;

ld spl, #RAM_MAX+1 ; init stack pointer
call test_rom ; validate program memory

;
; Program and register file memory test OK, now initialize the outputs and
; RAM.
;

ld p0, #07h ; write the output buffers
ld p2, #01h
ld RAM_SIG, #SIG1 ; set-up RAM signature test

 ld RAM_SIG1, #SIG2
 ld RAM_SIG2, #~SIG1
 ld RAM_SIG3, #~SIG2

;
warm: push rp

srp #10h ; reinit the on-line ROM test
call init_rom ; regs after a warm start reset

pop rp
;
AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

15
; Ready for main program - first refresh the system control registers.
;
main: ld p01m, #04h ; 04 = int stack, p0 = outputs

ld p3m, #03h ; p3.1-3.3= an in, p2= push/pull
ld p2m, #0feh ; p20 = out, p21-27 = in
ld spl, #RAM_MAX+1 ; init stack pointer
clr imr ; mask off all interrupt sources
srp #00h ; enable wr bank 0
clr FLOW_CNT ; init program flow counter

;
; Refresh section of main is complete -- now run the main user program.
;

call task_A ; typical user program here
cp FLOW_CNT, #01h ; proper flow check count?
jp ne, prgm_err ; if flow cnt wrong - go to prgm

; fault routine
call task_B
cp FLOW_CNT, #02h ; proper flow check count?
jp ne, prgm_err
call task_C
cp FLOW_CNT, #03h ; proper flow check count?
jp ne, prgm_err

;
; The user program has run correctly, now run the on-line system
; diagnostics routines before starting the next program scan.
;
 cp RAM_SIG, #SIG1 ; proper RAM signature pattern?

 jp ne, ram_err
 cp RAM_SIG1, #SIG2
 jp ne, ram_err
 cp RAM_SIG2, #~SIG1
 jp ne, ram_err
 cp RAM_SIG3, #~SIG2

jp ne, ram_err ; RAM sig pattern test passed,
 call tst_rom ; on-line ROM test (256 bytes/
 ; prgm scan)
;
 nop ; all other system diagnostics/
 nop ; refresh routines are called
 nop ; before jumping to start the
 nop ; next user program scan
;
 jr main
;
;
**
* test_rom: Performs the cold start complete ROM check and verifies
* the computed 16-bit checksum with the stored checksum.
* If checksums do not match, program execution is directed
* to the ROM error routine. Otherwise the on-line ROM
* check registers are initialized and normal program
* execution continues. All ROM tests use the predefined
* registers of wr bank 1.
**
;
test_rom: push rp ; save current system rp
 srp #10h ; select ROM check wr bank
 call init_rom ; init reg bank 1 for ROM check
AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

16
test_1: call rom_chk ; computes chksum for 256 bytes
 djnz rom_pass, test_1 ; all ROM blocks in Z8 checked?
 call chk_sum ; if yes, perform chksum test
 pop rp ; ROM ok - restore rp
 ret
;
;
**
* tst_rom: Performs the on-line running ROM check. This ROM check
* uses the predefined registers of wr bank 1 and checks
* 256 byte ROM blocks per call/program scan. When all
* blocks have been summed, the stored 16-bit checksum is
* compared to the computed value. If checksums do not
* match, program execution is directed to the ROM error
* routine. Otherwise the on-line ROM check registers are
* initialized and normal program execution continues.
**
;
tst_rom: push rp ; save current system rp
 srp #10h ; select ROM check wr bank
 call rom_chk ; compute chksum for 256 bytes
 djnz rom_pass, tst_1 ; all ROM blocks in Z8 checked?
 call chk_sum ; if yes, perform chksum test
tst_1: pop rp ; ROM ok - restore rp
 ret
;
**
* init_rom: Initialize the reserved wr in bank 1 for the cold start
* and run time on-line ROM checks.
**
;
init_rom: ld rom_pass, #ROM_SIZE ; counts number of 256 byte ROM

; checks 1K ROM = 4 ROM PASSES
 clr chksum_lo ; init running ROM check regs
 clr chksum_hi
 clr rom_ptr_lo
 clr rom_ptr_hi
 clr byte_cnt
 ret
;
**
* rom_chk: Computes the running checksum in 256 byte blocks -
* computed value stored in chksum_lo and chksum_hi.
**
;
rom_chk: ldc rom_char, @rom_ptr ; load ROM byte to the reg file
 add chksum_lo, rom_char ; compute the running checksum

 adc chksum_hi, #00h ; fix add carry - 16-bit result
rom_1: incw rom_ptr ; do next ROM byte
 djnz byte_cnt, rom_chk ; end of 256 byte ROM block?
 ret
;
**
* chk_sum: Compares the computed ROM checksum to the stored value.
* A failed checksum match causes program execution to jump
* to the ROM fault handler.
**
;

AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

17
chk_sum: cp chksum_lo, #ROM_LO ; all ROM tested, test checksum
 jp ne, rom_err ; bad chksum is fatal error
 cp chksum_hi, #ROM_HI
 jp ne, rom_err ; bad checksum is a fatal error
 call init_rom ; chksum good, set-up for run
 ret ; time continuous chksum
;
;
**
* task X: Typical user program tasks.
**

task_A: nop ; user task A here
inc FLOW_CNT ; task A complete, inc flow cnt
ret

;
task_B: nop ; user task B here

inc FLOW_CNT ; task B complete, inc flow cnt
ret

;
task_C: nop ; user task C here

inc FLOW_CNT ; task C complete, inc flow cnt
ret

;
;
**
* rom_err: User defined action for software detected ROM fault.
**
;
rom_err: jr rom_err ; user defined ROM fault handler
;
;
**
* ram_err: User defined action for software detected RAM fault.
**
;
ram_err: jr ram_err ; user defined RAM fault handler
;
;
**
* prgm_err: User defined action for software detected program flow
* error.
**
;
prgm_err: jr prgm_err ; user defined prgm flow error
;
;
**
* Interrupt Service
**
;

IRQ0:
IRQ1:
IRQ2:
IRQ3:
IRQ4:
IRQ5:
AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

18
jp begin
;
;
**
* Checksum Add Byte value declaration for checksum computation.
*
* ROM_HI and ROM_LO are the stored 16-bit program checksum. The
* "Checksum Add Byte" is used to make the ROM_LO byte equal to FFh.
* To compute the stored checksum, the Checksum Add Byte should be
* initialized = 00h. ROM_LO and ROM_HI should be initialized to 0FFh.
*
* Run this ROM check program and compute the initial checksum test
* result (set a breakpoint at the CHK_SUM routine label and read
* the value of chksum_hi). The value computed for chksum_hi is then
* inserted as the value of ROM_HI. The checksum test is then repeated
* and the checksum add byte's final value is the difference needed to
* make the chksum_lo byte value equal to FFh once the ROM_HI byte is
* set (FF - final computed chksum_lo = checksum add byte).
*
* Note: User must insure unused memory is set to the proper state prior
* to running the checksum tests above. For the Z8, set unused program
* memory space to FFh (NOP instruction).
**
;
 db 4Eh ; add byte to make ROM_LO = FFh
;

.END

Flowcharts

The flowcharts on the next three pages illustrate the program flow of the
FT_SWR.asm module.
AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

19
Figure 2. FT_SWR.ASM Module FlowÑChart 1 of 3

begin

enable int sp, initialize RAM
test parameters/registers

 all RAM locations
 written ?

compare all stored RAM data
 with original written pattern

all RAM
 locations valid ?

 second pattern
 test complete ?

clear out all RAM locations

write alternating test pattern
to consecutive RAM locations

disable ints and initialize rp

 all RAM locations
 verified clear ?

invert data pattern
for second pass

ram_error

 warm
 start ?

Y

Y

Y

Y

N

N

N

N

Y

N

init sp anc call TEST_ROM

page 2

init on-line ROM
check parameters

main
AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

20
Figure 3. FT_SWR.ASM Module FlowÑChart 2 of 3

call task x

 task x flow
 cnt correct ?

all tasks
 complete ?

all RAM signature
tests passed ?

program flow error
Y

Y

N

N

RAM error

N

page ROM
test passed ?

ROM error

main

refresh the port configuration,
sp, imr, rp, prgm control regs

perform run-time RAM signature tests

Y

Y

N

run partial ROM test (call TST_ROM)

init the port regs and RAM test bytes

page 2
AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

21
Figure 4. FT_SWR.ASM Module FlowÑChart 3 of 3

call ROM_CHK

all ROM
pages tested ?

call CHK_SUM

restore rp

return

Initialize system for ROM check:

- load ROM page pass counter
- clear 16-bit checksum regs
- clear 16-bit ROM address ptr
- clear 256 ROM byte loop cntr

save rp, load ROM check rp

TEST_ROM TST_ROM

save rp, load ROM check rp

rom_error

CHK_SUM

does computed
checksum = stored

checksum ?

Initialize system for ROM check:

- load ROM page pass counter
- clear 16-bit checksum regs
- clear 16-bit ROM address ptr
- clear 256 ROM byte loop cntr

return

return

all bytes in 256
byte page read and

summed ?

read byte from ROM, add
to running checksum word

ROM_CHK

Y

N

N

Y

Y

N

call ROM_CHK

one ROM page complete

 all ROM pages
 tested ?

call CHK_SUM

return

restore rp

Y

N

AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

22
Test Procedure

Equipment Used

Testing the sample Z8 program requires the following equipment:

¥ PC with Windows 95/98/NT and ZDS 2.11 installed

¥ Z86CCP01ZEM

¥ Z86CCP00ZAC (PC and power cables only)

¥ 8V power supply

General Test Setup and Execution

Four files are included in the FT_SFWR.zip file.

¥ FT_SFWR.doc (this Application Note)

¥ FT_SFWR.zws (ZDS 2.11 project file)

¥ FT_SFWR.asm (sample FT software program source file)

¥ FT_SFWR_TEST.soc (reviewer test document)

The testing was performed with ZDS 2.11 and the Z86C04 as the target chip. No
target cable or target board is required.

ZDS 2.11 is used to assemble the source program (FT_SFWR.asm) and monitor
the Z86C04 target program and register file memory windows. Program memory
sizes (and target chips) from 512 to 16KB were checked for proper checksum test
results. The ZCONVERT utility verified checksum computations over the program
memory sizes tested. The RAM tests were verified on a maximum RAM size of
32, 64, 128, and 256 bytes.

Test Results

All program memory and RAM memory tests functioned correctly over the sizes
tested. The program runs at all speed ranges (no frequency dependencies).
AN003701-Z8X0400

Application Note
Using Software Techniques to Maximize Z8 MCU System Noise Immunity

23
References
¥ Handbook of EU EMC Compliance, Compliance Design, Inc., 1995 edition

¥ UL 1998 Standard for Safety Related Software, Underwriters Laboratories

¥ Embedded Systems Programming, Watch-Dog Timer Techniques, April, 1995
AN003701-Z8X0400

	Using Software Techniques to Maximize Z8 MCU System Noise Immunity
	General Overview
	Discussion
	Fault-Avoidance and Fault-Tolerant Design
	Implementing Fault Tolerance with the Z8

	Summary
	Technical Support
	Source Code
	Flowcharts

	Test Procedure
	Equipment Used
	General Test Setup and Execution
	Test Results

	References

