
AN033601-0811
Abstract

This application note describes how Zilog’s ZAURA RF Wireless modules and software
libraries can be used to quickly add RF control to an embedded application. This docu-
ment offers three methods for sending control information using these ZAURA RF librar-
ies.

These three methods differ in the amount of new software that must be written for the
ZAURA RF Wireless modules. The first two methods are only applicable if the embedded
application includes the ZAURA RF Wireless Shell Library (which is included in the
ZAURA RF Wireless software package); however, they require the least amount of cus-
tom software and understanding of these libraries. The third method does not require the
use of the Shell, yet requires more custom software and a better understanding of the
ZAURA RF libraries.

While it is also possible to use the ZAURA RF Wireless modules without using any code
from the ZAURA RF libraries, this approach requires a very intimate knowledge of the
underlying RF controller, and is beyond the scope of this document.

The source code file associated with this application note, AN0336-SC01.zip, is available
for download on zilog.com. This source code has been tested with version 5.0.0 of ZDS II
for Z8 Encore! XP-powered MCUs. Subsequent releases of ZDS II may require you to
modify the code supplied with this application note.

Hardware Overview: ZAURA RF Wireless Module and Validation
Board

This application requires the use of the ZAURA RF Wireless Module and ZAURA Vali-
dation Board. The Module is a cost-effective, high-performance radio system for the wire-
less transmission of digital information. The module’s small form factor allows easy
integration into any number of monitoring and control applications. Either of the 868 MHz
or 915 MHz ZAURA RF Wireless modules can be used with this application note.

For illustrative purposes, the Module is mounted to the ZAURA Validation Board to allow
easy access to the GPIO port pins and peripheral devices on the Module’s Z8F2480 MCU.
This application note and its accompanying software utilizes the SW1 and SW2 pushbut-
tons, LED1 (Port E5) and UART0 on the Validation Board.

Note:
AN033601-0811
Application Note
Getting Started with ZAURA RF
Control
 Page 1 of 20

http://www.zilog.com/docs/appnotes/an0336-sc01.zip

Getting Started with ZAURA RF Control
Application Note
Software Overview: ZAURA RF Libraries

This application note leverages the software in the ZAURA RF and Shell libraries to dem-
onstrate techniques to add basic wireless communications to an embedded application.
The RF Library (ZAURA_RF_866p5_MHz.lib or ZAURA_RF_915_MHz.lib, depending
on which Module is used) contains routines to configure the local Module’s radio and
communicate with remote modules. The RF library also implements a Reliable Data
Transfer and Flow Control protocol (RDTFC) that can be used to reduce (but not elimi-
nate) data loss inherent in RF systems.

The ZAURA RF Shell Library implements a command line interpreter that can be used to
control and communicate with local and remote ZAURA RF Wireless modules through an
RS-232 (UART) interface. The ZAURA Validation Board provides access to UART0 on
the Z8F2480 MCU through a dedicated USB to RS-232 controller. This access allows a
terminal program running on a PC to be used to control the ZAURA RF Wireless mod-
ules. In an actual embedded application, RS-232 communication could be established
between the ZAURA RF Wireless Module and a special-purpose embedded processor
requiring RF communication with remote nodes.

Although it is not mandatory to use the ZAURA RF Shell Library to enable wireless com-
munications with remote modules, two of the three sample programs described in this
application note use the Shell Library. All of the sample programs described in this appli-
cation note use the ZAURA RF Wireless Library.

Theory of Operation

The ZAURA RF Wireless Library uses an ad-hoc wireless topology. Nodes with compati-
ble configurations within radio range of each other communicate directly using either
point-to-point (unicast) or point-to-multipoint (broadcast) data transfer methods. There is
no central coordinating unit through which nodes must communicate and the RF Library
does not provide routing of any kind between nodes that are not within radio range of each
other.

Two nodes have compatible configurations if they use the same RF channel, network ID
and frame format. The RF channel specifies the centre frequency the ZAURA RF Wire-
less radio uses to send or receive data. The network ID allows ZAURA RF Wireless nodes
that use the same RF channel to be subdivided into logical groups or cells such that if two
nodes are configured to use the same RF channel but have different network IDs, they will
be unable to communicate with each other. The ZAURA RF Wireless Library supports
three different frame formats that allow for increasingly more complex data transfer.
Nodes that must communicate with one another should be configured to use the same
frame format.

All frame formats use an 8-bit destination address that identifies the intended recipient(s)
of the frame. Accordingly, each node in the RF cell can be assigned a unique 8-bit address
in the range of 1 to 254 (0x01 to 0xFE). Node address 255 (0xFF) is the broadcast
address. Frames transmitted to the broadcast address can be received by any node within
the same cell (common RF channel and network ID) within radio range of the transmitter.
AN033601-0811 Page 2 of 20

Getting Started with ZAURA RF Control
Application Note
The ZAURA RF Wireless Library implements both reliable and unreliable data transfer
mechanisms (based on the configured frame format). Data that is transmitted unreliably is
sent on a best-effort basis. The data may reach the intended recipient(s) or may get lost
(e.g. out of range) or corrupted (RF interference) during transmission. When data is sent
reliably, the RF Library will attempt to determine if the intended target actually received
the transmission and will automatically retransmit the data a configurable number of times
until the target indicates that the data was successfully received, or until reaching the retry
limit. In general, it will take longer to send the same amount of data reliably versus unreli-
ably due to the extra overhead incurred.

In this application note, one Module acts as a control unit that senses an external event
(e.g., the push of a button) and commands multiple remote slave units to initiate an action
(e.g., setting GPIO port pins to a certain state). The implementations described in this
application note typically use unreliable data transfer (broadcast target address) and will
automatically switch to using reliable data transfer with directed addressing based on the
value of the global variable ZAURA_RF_Dest.

For additional information about the ZAURA RF Wireless Library, please refer to the
ZAURA RF Wireless Library Reference Manual (RM0060).

Software Implementation

The following sections describe three different implementations that can be used to trans-
mit commands from a control unit to multiple remote slave units using the ZAURA RF
Wireless Library. Each section begins with a description of the implementation, and is fol-
lowed by a description of the relevant project files, source code and configuration of the
Library. Each section concludes with a suggested procedure for running the project.

Implementation #1: Using the Remote Port Shell Commands
In this approach, the ZAURA RF Wireless Library is used to manipulate GPIO port pins
on remote slave units in response to events on a control unit. This approach is most useful
if there is a secondary processor in the control unit that runs application code indepen-
dently of the ZAURA RF Wireless Module. In this scenario, the secondary processor com-
municates with the RF Module using an RS-232 interface. Because the ZAURA RF Shell
Library already includes commands that can be used to manipulate GPIO pins on remote
nodes, this approach requires less code to be written for the ZAURA RF Wireless Module
than the other approaches. In fact, this approach can be demonstrated using the ZAURA
RF Wireless Demo project without writing a single line of code.

Because it is beyond the scope of this document to create software for a secondary proces-
sor, use of the Shell for RF control is demonstrated using a PC running a terminal emula-
tion program such as Tera Term or HyperTerminal. This terminal emulator allows a user
to type shell commands in the terminal program which the PC (secondary processor) will
send over a USB interface to the RF Module’s UART interface.

Observe the following procedure to demonstrate how the shell can be used to control
GPIO pins on remote nodes:

1. Slide switch SW3 on the ZAURA Validation Board to the USB PWR ON position.
AN033601-0811 Page 3 of 20

http://www.zilog.com/docs/rm0060.pdf

Getting Started with ZAURA RF Control
Application Note
2. Insert two AA batteries into the holders on the bottom of the ZAURA Validation
Board. Next, slide switch SW3 to the BAT PWR ON.

3. Launch ZDS II and navigate to the ..\ZAURA_RF_Wireless_vX.YZa\Demo folder
(in which X.YZa is the version of the ZAURA RF Wireless software installed; for
example: v1.01a).

4. Connect a Zilog debug tool, such as Zilog’s USB Smart Cable, to the PC. Connect the
ribbon cable between the debug tool and the ZAURA Validation Board, noting the ori-
entation of pin 1.

5. Open the ZAURA_RF_Demo.zdsproj project file and select the build configuration
appropriate for the RF modules being used; this configuration will be either the
866p5_MHz or 915_MHz build option.

6. Next, select the Build → Rebuild All menu option.

7. Download the project using the Tools → Flash Loader option. After the firmware
has been flashed, disconnect the debug tool ribbon cable and slide switch SW3 to the
USB PWR ON position, then slide it back to the BAT PWR ON position to reboot the
unit and ensure that it will start running the new firmware.

8. Return to Step 4 for each ZAURA RF Wireless Module that must be reprogrammed
before continuing.

By default, the ZAURA_RF_Demo firmware is programmed into the ZAURA RF Wireless
modules at the time of manufacture. Therefore, unless the firmware has been modified,
these steps may not be necessary.

9. Select one of the ZAURA RF Wireless modules to act as the control unit and remove
the two AA batteries from this unit. Connect a USB Mini-B to A cable between the
control unit and a PC running a terminal program such as HyperTerminal.

When the USB cable is first connected to the PC, the PC may need to download software
from the Internet to enable the USB-to-serial interface connection on the ZAURA Valida-
tion Board.

10. Configure the terminal program for 57600bps, 8 data bits, no parity, one stop bit and
optionally enable hardware flow control.

By default, the ZAURA RF Shell does not echo typed characters onto the console. Conse-
quently, to see typed characters, it will be necessary to either configure the PC terminal
program to enable local echo or issue the uecho on console command (or set the

Note:

Note:

Note:
AN033601-0811 Page 4 of 20

Getting Started with ZAURA RF Control
Application Note
ZAURA configuration variable, ZAURA_RF_UartEcho, to TRUE in
..\Conf\ZAURA_RF_Conf.c).

11. On the control unit’s console, enter the command remote port e & df. This com-
mand should cause LED D1 (PE5) to illuminate on all slave nodes within radio range
of the control unit.

12. On the control unit’s console, enter the command remote port e | 20. This com-
mand should cause LED D1 (PE5) to extinguish on all slave nodes within radio range
of the control unit.

13. On the control unit’s console, enter the command remote port e ^ 20. This com-
mand should toggle the state of LED D1 (PE5) on all slave nodes within radio range
of the control unit.

How It Works

This implementation uses two ZAURA RF Shell Library commands to manipulate GPIO
ports on remote slave units; these Shell commands are port and remote. The port com-
mand, which is described in the ZAURA RF Module Shell User Manual (UM0235), can
be used to manipulate the Z8F2480 MCU’s PxOUT Register, which allows control of
individual GPIO pins. The following port pins are available for general-purpose use with
the ZAURA Validation Board:

On the ZAURA Validation Board, PE5 controls LED D1. When PE5 is set to 0, LED D1
illuminates, and when PE5 is 1, LED D1 extinguishes. Because pin 5 corresponds to the
hexadecimal value 0x20, the commands m the test procedure perform bit-wise operations
on the PEOUT Register and the value 0x20. For example, port e | 20 is equivalent to
the C statement PEOUT |= 0x20;.

The second Shell command used is the remote command. This command sends the text
following the remote keyword to the node address of the ZAURA RF Wireless Mod-
ule(s) targeted by the value of the global variable ZAURA_RF_Dest. The dst shell com-
mand can be used to query or modify the value of the ZAURA_RF_Dest global variable.
By default, this value will be FF, the broadcast address. As a result, when the remote key-
word prefixes one of the shell commands, it will be broadcast to all ZAURA RF Wireless
modules within radio range of the control unit.

Table 1.

Port Available Pins

A 0, 1, 6, 7

B 0–5

D 3–7

E 2
AN033601-0811 Page 5 of 20

http://www.zilog.com/docs/um0235.pdf

Getting Started with ZAURA RF Control
Application Note
Limitations

By sending a different port command, it is relatively easy for the secondary processor to
manipulate GPIO pins on remote RF modules. However, for control applications that
require more complex manipulation of the GPIO port pins, this approach is very limiting.
For example, if multiple pins on different GPIO ports must be manipulated, it would be
necessary to send multiple port commands. In addition, there is often a time delay
between subsequent port commands which may produce undesirable effects.

Another undesirable effect of using this approach is that the default implementation of the
port command sends status information back to the console of the control node; this sta-
tus information must consequently be processed by the secondary processor. If there are
only a few remote slave nodes, this situation may be acceptable. However, as the number
of remote slave nodes increases, the volume of response data returning to the control
unit’s console may become unwieldy. Furthermore, each of the slave nodes will attempt to
send their responses at approximately the same time, an issue which can cause collisions
and result in lost data. Therefore, this approach is most useful when there is no output
from the shell command executed on the remote slaves.

Yet another limitation of this approach is that all ZAURA RF Wireless modules are using
the same 8-bit address (default value 0x1B). As a result, it is not possible for the control
unit to query the status of individual slave units. Even worse, because all units share a
common RF address, it is not possible to send data reliably. For example, if the control
unit was to send an SDATA packet (reliable data transfer) directed to node 0x1B, multiple
slave nodes would attempt to ACK/NAK the packet, thereby rendering the RDTFC proto-
col useless.

Implementation #2: Custom Shell Command
The second implementation strategy attempts to overcome some of the limitations of the
first approach. The ZAURA RF Shell will still be used to issue commands to remote
nodes, but this time, custom shell commands will be created that allow for more complex
manipulation of the GPIO port pins, eliminate console output on the new commands and
allow for the unique addressing of RF modules for the purpose of polling status. In addi-
tion, the pushbuttons on the control unit’s Validation Board will be used as triggers for
issuing remote commands.

Before running the project, the significant code blocks from the source file
..\AN0336\p1_main.c are analyzed.

Custom Shell Commands

The P1 project adds three new shell commands to the ZAURA RF Shell: on, off and
query. The on command is used to illuminate LED D1 on the Validation Board(s) tar-
geted by the value of the ZAURA_RF_Dest configuration variable. Similarly, the off
command is used to extinguish LED D1 on the Validation Board(s) targeted by the value
of the ZAURA_RF_Dest configuration variable. The query command directs the node(s)
targeted by the ZAURA_RF_Dest configuration variable to report the state of LED D1.

The code that implements the on and off shell commands is trivial, as is shown in the
routine that follows. Even though the ZAURA RF Wireless Library port command can
AN033601-0811 Page 6 of 20

Getting Started with ZAURA RF Control
Application Note
be used to manipulate LED D1 (PE5), there are two advantages to using a custom shell
command. First, for more complicated GPIO port pin manipulations, using the port shell
command is inefficient at best and possibly ineffective. Second, the port command gen-
erates console output that must be processed by the secondary processor of the control
node. With the new on and off shell commands, there is no output from the remote slave
units that must be processed by the secondary processor on the control unit.

void
OnCmd
(
 void
)
{
 LED_D1_ON;
}

void
OffCmd
(
 void
)
{
 LED_D1_OFF;
}

void
QueryCmd
(
 void
)
{
 DEBUGPRINTF("Node %02x LED_D1 ", ZAURA_RF_Params.Addr);
 if(PEOUT & LED_D1_PIN)
 {

 DEBUGPRINTF("Off\r\n");
 }

else
{
 DEBUGPRINTF("On\r\n");
}

}

By design, the new query console command generates output that the secondary proces-
sor on the control unit must process. The response will be similar to the following console
output:

Node 02 LED D1 Off
AN033601-0811 Page 7 of 20

Getting Started with ZAURA RF Control
Application Note
Node 03 LED D1 On

The code fragment that adds these three new commands to the ZAURA RF Shell is in the
InitShell routine:

/*
 * Application-specific Shell commands
 */
 ZAURA_RF_ShellAddCmd("on", OnCmd);
 ZAURA_RF_ShellAddCmd("off", OffCmd);
 ZAURA_RF_ShellAddCmd("query", QueryCmd);

Pushbuttons Issue On/Off Commands

In the P1 project, the SW1 pushbutton is used to send the on shell command to the node(s)
targeted by ZAURA_RF_Dest and SW2 is used to send the off command. Therefore, the
new project has two methods of commanding remote nodes to turn on/off LED D1. The
secondary processor can use its RS-232 interface to transmit the ASCII strings remote
on or remote off to modify the state of LED D1 on ZAURA_RF_Dest; or the user can
press the corresponding button on the ZAURA Validation Board.

The implementation of the SW1 interrupt service routine (ISR) is shown below.

void interrupt
OnButtonIsr
(
 void
)
{
 if(SW1_DOWN)

{
 /*
 * Disable subsequent button interrupts until this
 * interrupt has been fully processed.
 */
 IRQ1ENL &= ~(SW1_PIN | SW2_PIN);

 /*
 * Since this implementation transmits from within the ISR
 * it is necessary to reenable interrupts to allow proper
 * operation of the ZAURA_RF_Transmit API.
 */
 asm("EI");

 /*
 * Issue the "on" command to the Shell on ZAURA_RF_Dest
 */
 ZAURA_RF_Transmit(ZAURA_RF_Dest, SDATA | SAP_CMD_INTRPTR, "on", 2);
 while(ZAURA_RF_GetState() == ZAURA_RF_TRANSMIT);
AN033601-0811 Page 8 of 20

Getting Started with ZAURA RF Control
Application Note
 OnCmd();

 /*
 * Reenable pushbutton interrupts
 */
 asm("DI");
 IRQ1ENL |= (SW1_PIN | SW2_PIN);
}

}

The first thing the ISR does is verify that button SW1 is in the pushed state; it next dis-
ables subsequent interrupts from either SW1 or SW2 to ensure that any bounce on the
switch inputs does not result in multiple commands being issued to ZAURA_RF_Dest.

Next, the ISR reenables interrupts on the Z8F2480 processor. This step is necessary
because the button ISR transmits from within the ISR and the ZAURA RF Wireless
Library requires RF and timer interrupts to process a transmit request.

The ZAURA_RF_Transmit API is used to send ASCII text of the command to be exe-
cuted (on) to the node(s) targeted by the ZAURA_RF_Dest global variable. The second
parameter on the transmit call specifies the target Service Access Point (SAP) on the
remote node(s). Because the on command must be processed by the ZAURA RF Shell
command interpreter on the remote node(s), a SAP address of SAP_CMD_INTRPTR is
specified. The second parameter also specifies whether unreliable or reliable data services
are being requested.

The ZAURA RF Wireless library will transmit DATA frames unreliably and will transmit
SDATA frames reliably using the ZAURA RDTFC protocol. However, the ZAURA
RDTFC protocol does not support reliable delivery of broadcast data. Therefore, if
ZAURA_RF_Dest equals ZAURA_RF_BC_ADDR (0xFF), then the RF library will auto-
matically use a DATA frame without the RDTFC protocol to send the requested data. By
coding the ZAURA_RF_Transmit call to request reliable data transfer (via the SDATA
parameter), this same code fragment can be used to transmit data reliably or unreliably
without having to explicitly check the value of ZAURA_RF_Dest.

It is beyond the scope of this application note to determine which value of ZAURA_RF_Dest
to use. By default, ZAURA_RF_Dest is assigned the value ZAURA_RF_BC_ADDR in
..\Conf\ZAURA_RF_Conf.c, but this value can be changed at compile time or run time.
At run time, the secondary processor can issue the dst xx shell command to set the value
of ZAURA_RF_Dest to xx. Code that runs natively on the Z8F2480 processor and links to
the ZAURA RF Wireless Library can simply modify the value of the ZAURA_RF_Dest
global variable.

The final function performed in the ISR is to reenable button interrupts and return to the
interrupted task. The code in OffButtonIsr is similar, but the transmit command is
slightly different, as shown below.

/*
 * Issue the "off" command to the Shell on ZAURA_RF_Dest
 */
 ZAURA_RF_Transmit(ZAURA_RF_Dest, SDATA | SAP_CMD_INTRPTR, "off", 3);
AN033601-0811 Page 9 of 20

Getting Started with ZAURA RF Control
Application Note
Serializing the ZAURA RF Address

In the previous implementation, the ZDS Flash Loader tool was used to program the con-
troller node and multiple slave nodes with the ZAURA Demo project. Because the RF
configuration file was not modified between downloads, the same set of RF parameters
was assigned to all nodes.

To allow communication between the controller and slave unit(s), it is mandatory that all
units are configured to use the same RF channel and network ID. However, it is undesir-
able that all nodes are configured to use the same nodes address. Ideally, each node should
be assigned a unique 8-bit node address in the range of 1 to 254. Exactly how the node
address (and for that matter, the network ID and RF channel) is assigned is implementa-
tion-dependent. These parameters can all be modified at run time using API calls in the
ZAURA RF Wireless Library or by issuing shell commands via a secondary processor. In
this implementation, the P1 project makes use of the ZDS II Flash Loader’s Serialization
utility to assign a unique address to each node without having to rebuild the project.

Before describing how serialization of the node address can be accomplished in the P1
project, it is first necessary to understand how the ZAURA RF Wireless library obtains its
RF parameters. The RF library has two methods of obtaining its RF parameters; the first
method uses values stored in the last page of Flash memory. The second method uses the
compile-time values assigned to the global variable ZAURA_RF_Params (see the
ZAURA_RF_Conf.c file). During the call to ZAURA_RF_Init, the RF Library reads the
set of parameters stored in Flash starting at address 0x5F00. If all of the RF parameters
are valid (NID, Addr, Channel, Tx Power and Rx Filter), then these values will be
used to override the values assigned to the ZAURA_RF_Params structure at compile time.
If any of the parameters read from Flash are invalid, then the RF library will use the values
assigned to the ZAURA_RF_Params structure at compile time.

The node address RF parameter is stored in Flash memory at address 0x5F05. Therefore,
while downloading the P1 project to Flash, the ZDS Flash Loader’s Serialization tool will
be used to set a different value into this Flash location for up to 254 units programmed
with the same hex file. However, in itself, this operation is not sufficient to assign a unique
address to each node, because only one byte’s worth of the RF parameters stored in Flash
is serialized; the remainder of the parameter values will have the value 0xFF. Conse-
quently at run time, the RF Library will determine that the RF parameters in Flash are
invalid and will use the default values assigned to the ZAURA_RF_Params structure at
compile time.

To solve this problem, the following code block is added to main just after the call to
ZAURA_RF_Init.

#ifdef USE_ADDR_SERIALIZATION
{
 UINT8 Addr;

 Addr = *(const UINT8 *)0x5F05;
 if((Addr != ZAURA_RF_BC_ADDR) && (Addr != ZAURA_RF_Params.Addr))
 {
AN033601-0811 Page 10 of 20

Getting Started with ZAURA RF Control
Application Note
 DEBUGPRINTF("Overriding default node address %02x with
%02x\r\n",

 ZAURA_RF_Params.Addr, Addr);
 ZAURA_RF_SetAddr(Addr);
 ZAURA_RF_SetParams();
 }
}
#endif

The code block above is conditionally compiled into the project if the
USE_ADDR_SERIALIZATION macro has been defined (it is currently set with a default
definition that includes conditionally-compiled code blocks)1. At the top of the project is
the following line of code:

#define USE_ADDR_SERIALIZATION

By default, this code string is included. The user can comment out the macro definition
(i.e., undefines the macro) as follows:

//#define USE_ADDR_SERIALIZATION

As a result, the code within the conditionally-compiled block will not be included in the
project.

Taking the above code block in its entirety, the value at offset 5 in the parameters page
(i.e., the node address value stored in Flash at address 0x5F05) is stored in the local vari-
able Addr and validated. If this value is not 0xFF and does not match the Addr member of
the ZAURA_RF_Params structure, the code block calls the ZAURA_RF_SetAddr API to
make this the new node address of the unit and then calls ZAURA_RF_SetParams to
rewrite all run-time parameters back to Flash. Upon subsequent boots, it is expected that
the value that is read from Flash will match the Addr member of the ZAURA_RF_Params
structure; therefore, it will not be necessary to repeat this process.

If this unit’s node address is ever modified, or if the Flash Parameters block is ever erased,
the value written by the ZDS II Serialization Tool will be lost. If the Flash parameters are

1. For a conditionally-compiled code block such as:
#ifdef XXX
code
#endif

the code within the block will be included in the project if the XXX macro is defined; the code within the block will not be
included in the project when the XXX macro is undefined.

Note:

Note:
AN033601-0811 Page 11 of 20

Getting Started with ZAURA RF Control
Application Note
erased, then the node will default to the value of the Addr member of the
ZAURA_RF_Params structure.

Running the Project

Source code for the Custom Shell Command implementation is contained in the AN0336-
SC01.zip file. To run the code, observe the following procedure:

1. Place the AN0336-SC01.zip file into the root of your ZAURA RF Wireless installa-
tion and extract the contents of this zip file into the AN0336 subfolder. The AN0336
subfolder should be a peer to the Demo folder.

2. Launch ZDS II and navigate to the ..\ZAURA_RF_Wireless_vX.YZa\AN0336
folder (in which X.YZa is the version of the ZAURA RF Wireless software installed;
for example: v1.10a) and open the p1.zdsproj file.

3. Select the build configuration appropriate for the RF modules being used. This config-
uration will be either the 866p5_MHz or 915_MHz build option.

4. Next, select the Build → Rebuild All menu option.

5. Download the project using the Tools → Flash Loader option.

6. Repeat Step 5 for each RF Module that must be reprogrammed. Note the 1-byte serial
number programmed into the first slave unit using the Flash Loader.

7. Select one of the ZAURA RF Wireless modules to act as the control unit and remove
the two AA batteries from this unit. Connect a USB Mini-B to A cable between the
control unit and a PC running a terminal program such as HyperTerminal.

When the USB cable is first connected to the PC, the PC may need to download software
from the Internet to enable the USB to serial interface of the ZAURA Validation Board.

8. Configure the terminal program for 57600bps, 8 data bits, no parity, one stop bit and
optionally enable hardware flow control.

By default, the ZAURA RF Shell does not echo typed characters onto the console. Conse-
quently, to see typed characters, it will be necessary to either configure the PC terminal pro-
gram to enable local echo or issue the uecho on console command (or set the ZAURA
configuration variable, ZAURA_RF_UartEcho, to TRUE in ..\Conf\ZAURA_RF_Conf.c).

9. On the control unit’s console, enter the command remote on. This command should
cause LED D1 (PE5) to illuminate on all slave nodes within radio range of the control
unit.

Note:

Note:
AN033601-0811 Page 12 of 20

Getting Started with ZAURA RF Control
Application Note
10. On the control unit’s console, enter the command remote off. This command
should cause LED D1 (PE5) to extinguish on all slave nodes within radio range of the
control unit.

11. On the control unit’s console, enter the command remote query. This command
should cause all slave units to report the status of LED D1 to the control unit’s con-
sole.

12. On the control unit, press SW1 (PD2). This command should cause LED D1 to illumi-
nate on all slave units. Similarly, pressing SW2 (PD1) will cause all slave units to
extinguish LED D1.

13. On the control unit’s console, enter the command dst xx, in which xx is the serial
number recorded in Step 7.

14. On the control unit, press SW1 again. This time, LED D1 should only illuminate on
the slave unit in which the RF address matches the value used in the previous step.
Similarly, pressing SW2 will only extinguish LED2 on the targeted slave unit.

How it Works

This implementation uses the custom shell commands on, off and query to illuminate,
extinguish and query the state of LED D1 locally on the control unit. By prefixing these
custom shell commands with the remote keyword, LED D1 can be manipulated on slave
unit(s) targeted by the ZAURA_RF_Dest global variable. The value of ZAURA_RF_Dest
can be changed programmatically or modified using the dst console command.

Instead of issuing a console command to control LED D1, this implementation also allows
the user to press SW1 and SW2 to turn on/off LED D1 on the slave unit(s) targeted by the
ZAURA_RF_Dest global variable.

When ZAURA_RF_Dest is the broadcast address 0xFF, data is transmitted unreliably.
When ZAURA_RF_Dest targets a specific slave (addresses in the range 1 to 254), only that
slave unit will react to the command if it is within RF range of the control unit. Slave units
are assigned a unique RF address via the ZDS II serialization control function within the
Flash Loader utility.

The on and off commands implemented in the P1 project do not generate any console
output; therefore, the control unit’s console is not filled with unnecessary status informa-
tion. This situation is beneficial when a secondary processor within the control unit must
process output from UART 0.

Limitations

As with the first implementation that used the ZAURA RF Shell Library’s port console
command, it is still necessary for the application to include the ZAURA RF Shell Library
in the project. However, when the application is intended to run natively on the Z8F2480
processor without using a secondary processor, including the Shell Library increases the
size of the overall project, thereby reducing the amount of Flash available to the applica-

Note:
AN033601-0811 Page 13 of 20

Getting Started with ZAURA RF Control
Application Note
tion. In addition, if the embedded device does not support an external UART interface, the
Shell Library is of little utility.

Implementation #3: Application Packet Handling
The final implementation described in this application note requires the use of custom
packet handling routines. These custom routines eliminate the requirement for the
ZAURA RF Shell Library, which can save more code space than is necessary to imple-
ment custom packet-handling routines.

Before running the project, the significant code blocks from the source file
..\AN0336\p2_main.c are analyzed.

Packet Transmission

In this project, SW1 and SW2 on the control unit are used to manipulate the state of LED
D1 on slave unit(s) targeted by the ZAURA_RF_Dest global variable. When SW1 is
pressed, the on command is sent to ZAURA_RF_Dest from within the SW1 interrupt ser-
vice routine.

void interrupt
OnButtonIsr
(

void
)
{

if(SW1_DOWN)
{
 /*
 * Disable subsequent button interrupts until this
 * interrupt has been fully processed.
 */
 IRQ1ENL &= ~(SW1_PIN | SW2_PIN);

 /*
 * Since this implementation transmits from within the ISR
 * it is necessary to reenable interrupts to allow proper
 * operation of the ZAURA_RF_Transmit API.
 */
 asm("EI");

 /*
 * Issue the "on" command to the AppPktHandler on ZAURA_RF_Dest
 */
 ZAURA_RF_Transmit(ZAURA_RF_Dest, SDATA | SAP_APP_0, "on", 2);
 while(ZAURA_RF_GetState() == ZAURA_RF_TRANSMIT);

 OnCmd();

 /*
 * Reenable pushbutton interrupts
AN033601-0811 Page 14 of 20

Getting Started with ZAURA RF Control
Application Note
 */
 asm("DI");
 IRQ1ENL |= (SW1_PIN | SW2_PIN);
}

}

The only difference between this ISR and the one used in the P1 project is that the target
SAP address has been changed from SAP_CMD_INTRPTR to SAP_APP_0. This new
address is necessary because the Shell Library and its command interpreter have been
removed from the P2 project. If the P2 project was to send a command to
SAP_CMD_INTRPTR, it would simply be ignored by any remote node(s) that received it.
Because the data packet now targets an application-specific SAP, it is necessary for the
application to include code to process this packet.

Packet Reception

The P2 project requires additional code to be added to the AppPktHandler. Previous
implementations simply displayed the contents of received packets; however, because the
ZAURA RF Shell Library is not included in the P2 project, it is not possible to display
information about the console. Instead, the AppPktHandler must explicitly parse and act
upon valid packets, as shown in the following routine.

void
AppPktHandler
(

void
)
{

ZAURA_RF_PKT_BUF* pPkt;

/*
 * This routine is called when the application is able to check
 * for and process received packets. This routine should not be
 * called from within an interrupt handler.
 */
pPkt = ZAURA_RF_Receive();
if(pPkt)
{
 /*
 * Verify packet destined for SAP_APP_0
 */
 if((pPkt->Ctrl & ZAURA_RF_CTRL_SAP_MASK) == SAP_APP_0)
 {
 /*
 * Process commands received from the control unit,
 */
 if(memcmp("on", pPkt->Data, 2) == 0)
 {
 OnCmd();
 }
AN033601-0811 Page 15 of 20

Getting Started with ZAURA RF Control
Application Note
 if(memcmp("off", pPkt->Data, 3) == 0)
 {
 OffCmd();
 }
 }

 ZAURA_RF_FreeBuf(pPkt);
}

}

Because the P2 project is not required to perform any other processing functions, the main
routine calls AppPktHandler from within a tight loop. When AppPktHandler calls
ZAURA_RF_Receive, the ZAURA RF Wireless Library will process packets destined for
the ZAURA Shell (the target SAP is either SAP_CMD_INTRPTR or SAP_UART_0). Any
packets targeting a different service access point (or when the transfer format is XFER_DA
or XFER_DA_SA) will be furnished to the application for processing upon return from the
ZAURA_RF_Receive API call.

In the code segment above, the AppPktHandler routine first checks that the received
packet is targeting SAP_APP_0, because the control unit directs its commands to
SAP_APP_0 when either SW1 or SW2 is pressed. Next, the packet handler checks to
determine whether the received command is either on or off, and calls the appropriate
routine to manipulate the state of LED D1.

Running the Project

Source code for the Application Packet Handling implementation is contained in the
AN0336.zip file. To run the code, observe the following procedure:

1. Place the AN0336.zip files into the root of the ZAURA RF Wireless installation and
extract the contents of this zip file into the AN0336 subfolder. This AN0336 subfolder
should be a peer to the Demo folder.

2. Launch ZDS II and navigate to the ..\ZAURA_RF_Wireless_vX.YZa\AN0336
folder (in which X.YZa is the version of the ZAURA RF Wireless software installed;
for example: v1.10a) and open the p2.zdsproj file.

3. Select the build configuration appropriate for the RF modules being used. This config-
uration will be either the 866p5_MHz or 915_MHz build option.

4. Next, select the Build → Rebuild All menu option.

5. Download the project using the Tools → Flash Loader option.

6. Repeat Step 5 for each RF Module that must be reprogrammed. Note the 1-byte serial
number that is programmed into the first slave unit using the Flash Loader.

7. On the control unit, press SW1 (PD2) to cause LED D1 to illuminate on all slave
units. Similarly, pressing SW2 (PD1) will cause all slave units to extinguish LED D1.
AN033601-0811 Page 16 of 20

Getting Started with ZAURA RF Control
Application Note
How it Works

When SW1 is pressed, the on command is broadcast to all ZAURA RF nodes within radio
range of the transmitter. Similarly, when SW2 is pressed, the off command is broadcast
to all remote nodes. An application-supplied packet handler retrieves the received packet
from the ZAURA RF Wireless Library and determines whether it should illuminate LED
D1, extinguish LED D1 or take no action.

Limitations

In the P2 project, the query operation is not implemented because the control unit only
has two buttons and has no simple means to implement a third command. Additionally,
without the Shell Library, the only way a specific slave unit can be controlled is by pro-
grammatically modifying the value of ZAURA_RF_Dest on the control unit.

Additional Enhancements

Because both the control and slave units use identical hardware, both units were pro-
grammed with the same firmware image. In an actual implementation, it is more common
that different hardware platforms would be used for each type of unit. Typically, this sce-
nario will require that separate project files be used for each different hardware platform;
each project will likely require a unique GPIO configuration file (GpioConfig.c).

The projects described in this application note may not be suitable for battery-powered
operation over an extended length of time, because after a unit is powered up, the radio
remains in receive mode and the Z8F2480 processor runs continually. To reduce power
consumption, the units could be placed into low-power modes when RF communication is
not required (see the description of the ZAURA_RF_SetState and ZAURA_RF_StopMode
APIs).

The projects described in this application note also use a common configuration file to set
the default RF parameters (including channel number and network ID); however, this con-
figuration may not be practical when deploying a product. For example, if the embedded
device is configured to use Channel 1and is placed in an environment in which other
devices are already using Channel 1 for some other purpose, then the ZAURA RF devices
could interfere with the non-ZAURA RF devices, resulting in lost data. It this instance, it
would be more useful if the ZAURA RF device automatically selected a quiet channel or
periodically changed channels to reduce the likelihood of interference.

Hardware Configuration

All projects described in this application note use the ZAURA RF Wireless Module
mounted on the ZAURA Validation Board.

Summary

This document describes three methods that can be used to implement the most basic RF
control application in which a control unit must manipulate multiple remote slave units.
AN033601-0811 Page 17 of 20

Getting Started with ZAURA RF Control
Application Note
The first method used the ZAURA RF Wireless Demo project and the Shell Library’s
port command to manipulate a GPIO port pin that turns on/off an LED on the ZAURA
Validation Board.

The second method used a project file from the source code that accompanies this applica-
tion note to perform a similar operation using a custom Shell command. A query com-
mand was also added to allow the control unit to poll slave units for the state of their
LEDs. This project also used the SW1 and SW2 pushbuttons on the ZAURA Validation
Board as a means of turning on/off LED D1 on slave validation boards.

Instead of using the ZAURA RF Shell Library, the third implementation used a custom
packet handling routine to parse commands received as a result of pressing SW1 and SW2
on the control unit.

Abbreviations, Acronyms and Definitions

Term Description

ACK Acknowledgement; an RF control frame sent in response to an SDATA frame indicating
receipt of the SDATA frame. Acceptance of the frame is determined by the value of the
sequence number field in the ACK frame.

Broadcast Any frame transmitted to the 0xFF address; a broadcast frame will be received by all
ZAURA RF nodes within radio range of the transmitter that are in the same cell.
Broadcast frames are always sent unreliably.

Cell A collection of ZAURA RF nodes with the same network ID and frame format that operate
on the same RF channel.

FSK Frequency Shift Keying; a modulation scheme that transmits information through discrete
changes of a carrier signal. The ZAURA RF Wireless Module uses binary FSK, in which a
binary 0 is transmitted at a frequency of carrier – delta and a binary 1 is transmitted at a
frequency of carrier + delta.

Pause Delay ACK packets can optionally request a transmitter to delay transmission of the next
directed data frame to the sender of the ACK by up to 400ms, in increments of 25ms.

RDTFC Reliable Data Transfer & Flow Control; the ZAURA RF Shell Library can detect lost
packets and automatically perform retransmission. Receivers are able to detect and
discard duplicate packets. Slow receivers can throttle fast transmitters through the use of
pause delays.

RF Radio Frequency; the ZAURA RF Shell Library operates within the 863-870 MHZ or 902-
928 MHz ISM band. There are two versions of the ZAURA RF Shell Library – one for
each frequency band.

SDATA Sequenced data; the ZAURA RF Shell Library implements a simple reliable data transfer
and flow control protocol based on the exchange of sequenced data frames and ACK
frames. All SDATA and ACK packets include a sequence number.

Unicast Any frame transmitted to an individual ZAURA RF Shell Library address in the range of
0x01 to 0xFE.
AN033601-0811 Page 18 of 20

Getting Started with ZAURA RF Control
Application Note
References

The following documents describe functional specifications and/or otherwise support this
application note. With the exception of the Semtech Transceiver data sheet, each is avail-
able for download from the Zilog website.

ZAURA RF Wireless Modules Reference Design Document (PUG0030)

ZAURA RF Wireless Library Reference Manual (RM0060)

ZAURA RF Module Shell User Manual (UM0235)

Semtech SX1211 Transceiver Datasheet
AN033601-0811 Page 19 of 20

http://www.semtech.com
http://www.zilog.com/docs/um0235.pdf
http://www.zilog.com/docs/pug0030.pdf
http://www.zilog.com/docs/rm0060.pdf

Getting Started with ZAURA RF Control
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at 
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP and eZ80Acclaim! are trademarks or registered trademarks of Zilog, Inc.
All other product or service names are the property of their respective owners.

Warning:
AN033601-0811 Page 20 of 20

http://support.zilog.com
http://www.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

	Application Note:
Getting Started with ZAURA RF Control
	Abstract
	Hardware Overview: ZAURA RF Wireless Module and Validation Board
	Software Overview: ZAURA RF Libraries
	Theory of Operation
	Software Implementation
	Implementation #1: Using the Remote Port Shell Commands
	Implementation #2: Custom Shell Command
	Implementation #3: Application Packet Handling

	Additional Enhancements
	Hardware Configuration
	Summary
	Abbreviations, Acronyms and Definitions
	References
	Customer Support

