
AN032001-1211
Abstract

The ability of embedded devices to store data or a volume of data is widespread across
multiple industries. The need for these types of devices was met by the Secure Digital
(SD) card, a storage device that is inexpensive, readily available and a popular storage/file
transfer medium for PCs and embedded devices such as cameras, cell phones, PSPs and
data loggers. With SD cards, files can be written to and retrieved from PCs and embedded
devices.

The implementation of an SD card interface requires both a hardware interface and file
system to handle the FAT16 and FAT32 types of file allocation; the file system manages
how data is organized inside the SD card. This application note discusses how customers
can interface Zilog’s ZNEO Z16F Series microcontroller with an SD card using both the
Secure Digital Standard Card (SDSC) and Secure Digital High Capacity Card (SDHC)
standards and managing file system procedures to create files and directories. To demon-
strate this interface, the SD card will create, write and read directory entries and read,
write and delete files from the contents of ZNEO MCU memory via a console/terminal
emulation application such as HyperTerminal.

The Enhanced Serial Peripheral Interface (ESPI) of the ZNEO CPU provides a transmit
and receive buffer to support high performance throughput and includes a number of
transmit data, receive data and error interrupts. The ESPI function supports SCK clock
rates up to one-half the system frequency, which can result in faster SD card read and
write operations.

The source code file associated with this application note, AN0320-SC01.zip, is available
for download on zilog.com. This source code has been tested with version 5.0.1 of ZDS II
for ZNEO MCUs. Subsequent releases of ZDS II may require you to modify the code sup-
plied with this application note.

Features

The feature set for this application includes a file system interface to the SD card using
SPI signals. Both the FAT16 and FAT32 file systems are used on the SD card to manage
the following functions:

• Reading/writing directory entries

• Creating directory entries

• Reading file contents

• Writing file contents

Note:
AN032001-1211
Application Note
Implementing a Secure Digital
Card with a ZNEO Microcontroller
 Page 1 of 39

http://www.zilog.com/docs/appnotes/an0320-sc01.zip

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
• Deleting files

• Card memory statistics

• Formatting of the SD card

The application described herein supports the following functions and formats:

• FAT16 and FAT32 (FAT12 is not supported)

• SDSC and SDHC

• FAT16 and FAT32 for SDSC to a maximum of 2 GB

• FAT32 for SDHC to a maximum of 32 GB

• Short File Name 8.3 format (long file names are not supported)

• Up to 128 directory levels; i.e., E:\FOLD01\FOLD02\........\FOLD128

Zilog’s ZNEO CPU is a 16-bit MCU that meets the continuing demand for faster and more
code-efficient microcontrollers. This SD card application is implemented using the ZNEO
CPU’s ESPI and UART blocks.

Discussion

A Secure Digital (SD) card is a nonvolatile memory card developed by the SD Card Asso-
ciation. It has become the accepted standard for removable memory storage, and has been
adapted to many different devices and classes. An SD card standard was introduced by
Toshiba, Matsushita Electric and SanDisk in 1999. SD cards are used to store data and to
enable the transfer of data between devices. This document discusses two types of SD
cards: the Standard Card (SDSC) with 2GB of maximum storage capacity, and the High
Capacity Card (SDHC) with 32GB of maximum capacity. See Figure 1.

Figure 1. SanDisk 2GB SD card
AN032001-1211 Page 2 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
The SD card can operate in two modes: SD Mode and SPI Mode. This application
employs SPI Mode as its SD card interface protocol; indeed, the SD card is connected to
the ZNEO MCU through its Enhanced Serial Peripheral Interface (ESPI). To communi-
cate via this kind of mode interface, the SD card’s host machine uses commands to send
an SPI packet to the SD card; these commands are then interpreted by the card.

For more information about the SPI interface, see the SPI Mode section of the document titled
SD Specifications, Part 1: Physical Layer Simplified Specification Version 3.01, published by
the SD Card Association, at https://www.sdcard.org/downloads/pls/simplified_specs/
Part_1_Physical_Layer_Simplified_Specification_Ver_3.01_Final_100518.pdf.

To learn more about SD card commands and responses, refer to the SD Memory Card Func-
tional Description section of the document linked to above.

The SPI 4-wire synchronous serial protocol is used to interface peripheral devices with
microcontrollers such as the ZNEO Z16F Series MCU. As described earlier in this docu-
ment, the Enhanced SPI block of the ZNEO Z16F Series MCU is used to interface the
MCU with the SD card. To use an SD card with the SPI protocol, it must be initialized to
SPI Mode by the master thru a simple command. The SD card, acting as the slave,
responds to the CMD0 command, followed by a data token, to indicate either a bulk trans-
fer or an error condition.

Figure 2 illustrates the interface between the SD card and its SPI master.

Through the SPI connection, files and directories can be easily managed, provided that the
SD card has been formatted with either the FAT16 or FAT32 file system.

FAT File Systems
Many file systems are employed in embedded devices across the computer industry, all
intended to operate within their respective operating systems. The Linux OS, for example,
uses the ext family (such as ext2, ext3 and ext4), XFS, JFS, ReiserFS and btrf; the Solaris
OS uses VxFS and QFS. The file system used in this application note is the Microsoft File
System – namely, the FAT16 and FAT32 file systems.

The FAT16 file system offers a total of 65535(2^16) clusters and uses a 16-bit number to
identify its cluster addresses; Figure 3 illustrates the FAT16 file map.

Figure 2. Master to Slave Interface

Note:
AN032001-1211 Page 3 of 39

https://www.sdcard.org/downloads/pls/simplified_specs/Part_1_Physical_Layer_Simplified_Specification_Ver_3.01_Final_100518.pdf
https://www.sdcard.org/downloads/pls/simplified_specs/Part_1_Physical_Layer_Simplified_Specification_Ver_3.01_Final_100518.pdf

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
The FAT32 file system offers a total of 4294967296(2^32) clusters and uses a 32-bit num-
ber to identify its cluster addresses; Figure 4 illustrates the FAT32 file map.

The size of each cluster is defined in the boot sector named Sectors per Cluster.

A FAT file system volume is composed of four basic regions, which are laid out in this
order on the volume:

• Reserved region (includes unused FAT32 sectors)

• FAT region

• Root directory region (does not exist on FAT32 volumes)

• File and directory data region

These four regions are described in the following paragraphs.

Reserved Region

The Reserved Region is the beginning of the FAT map. In FAT16 file systems, Sector 0 is
the boot sector which stores data called the BIOS Parameter Block (BPB). In FAT32 file
systems, Sector 0 contains the Master Boot Record (MBR), which stores the addresses or
sector number of the boot sector. The BPB contains information about the SD card such as
an OEM identifier, the number of file allocation tables, a media descriptor (type of storage
device) and the number of sectors per cluster. Starting at offset 36, FAT16 and FAT32 dif-
fer in their BPB/boot sector structure.

Figure 3. FAT16 File Map

Figure 4. FAT32 File Map
AN032001-1211 Page 4 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
For more information about this difference in boot sector structures, refer to the How FAT
Works page on the Microsoft TechNet website at http://technet.microsoft.com/en-us/
library/cc776720%28WS.10%29.aspx.

The FAT32 file system contains a file system information structure adjacent to the boot
sector. Both this information structure and the boot sector account for redundant file sys-
tem management in the event of a lost boot sector; i.e., a system may inquire via the Sector
6 and 7 addresses in which it resides to restore the boot sector and the file system informa-
tion structure at sectors 0 and 1.

In a partitioned SD card, Sector 0 is termed the Master Boot Record. A Master Boot
Record contains the following parameters:

• A 446 bytes with a value of 0x00

• Partition data composed of 64 bytes that contain the addresses of four partitions within
the boot sector; each of these partitions contains 16 bytes

• A 2-byte trailing end with a value of 0xAA55

The file system information structure contains the next free cluster and the number of
available clusters.

For more information about free clusters within the file system information structure, refer
to the How FAT Works page on the Microsoft TechNet website at http://technet.micro-
soft.com/en-us/library/cc776720%28WS.10%29.aspx

File Allocation Table

Often referred to as FAT, a a file allocation table manages the cluster locations of stored
data. In the FAT16 file system, a cluster entry is in the form of a 16-bit number; address
0xFFFF indicates the last cluster of the file. In the FAT32 file system, a cluster entry is in
the form of a 32-bit number; address 0xFFFFFF0F indicates the last cluster of the file.

Root Directory Region

A Root Directory Region stores information about all files and directories in the file sys-
tem; it is only used with FAT16 file systems. In FAT32 systems, the root directory is
located at Cluster 2, which is the starting cluster of the data region. This root directory
stores 32 bytes of file root information, as described in the Microsoft TechNet page, How
FAT Works at http://technet.microsoft.com/en-us/library/cc776720%28WS.10%29.aspx.

Note:

Note:
AN032001-1211 Page 5 of 39

http://technet.microsoft.com/en-us/library/cc776720%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc776720%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc776720%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc776720%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc776720%28WS.10%29.aspx

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
Figure 5 shows a sample Root Directory entry.

Data Region

A Data Region can be thought of as the storage location of all file and directory data; this
Data Region constitutes the bulk of a partition. The sizes of files and subdirectories can be
increased arbitrarily (as long as there are free clusters available) by simply adding more
links to a file’s chain in the FAT. However, files are allocated in units of clusters; there-
fore, if a 1 KB file resides in a 32 KB cluster, the remainder of the 31 KB is wasted.

Addresses, clusters, sectors per cluster and the locations in which data regions start can be
calculated from values stored in the boot sector using the following formulas:

Start of Reserved Sector = 0

FAT Region Start = Number of Reserved Sector + Start of Reserved Sector

Root Directory Start = FAT Region Start + (Number of FATs * Sector per FAT)

Data Region Start = Root Directory Start + ((Root Entries Count * 32) / Bytes Per Sector)

The sizes of regions may vary depending on volume capacity. To calculate these sizes,
refer to the FAT16 File System page at http://www.maverick-os.dk/FileSystemFormats/
FAT16_FileSystem.html.

The following two examples show how to calculate the start of each region, in which the
volume always starts with Sector 0 (because the volume is not partitioned).

Example 1. Calculate for a 2 GB SD card formatted with the FAT16 file system given the
following data for the SD card:

• SectPerFat = 239

• SectPerClus = 64

• ReservedSec = 2

• RootDirEntries = 512

Solve for the four region addresses, as follows:

BeginAddr = 0
FAT1Addr = ReservedSec+BeginAddr

Figure 5. Root Directory Entry Packet

Note:
AN032001-1211 Page 6 of 39

http://www.maverick-os.dk/FileSystemFormats/FAT16_FileSystem.html
http://www.maverick-os.dk/FileSystemFormats/FAT16_FileSystem.html

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
 = 2 + 0
 = 2
FAT2Addr = SectPerFat + FAT1Addr
 = 239 + 2
 = 241
RootDirAddr = (2*SectPerFat) + FAT1Addr
 = (2 * 239) + 2
 = 480
DataAddr = RootDirAddr + ((RootDirEntries*32)/512)
 = 480 + ((512 * 32) / 512)
 = 512

Example 2. Calculate for a 2 GB SD card formatted with the FAT32 file system, given the
following information for the SD card:

• SectPerFat = 239

• SectPerClus = 64

• UnusedSector = 1

• ReservedSec = 2

• RootDirEntries = 512

Solve for the four region addresses, as follows:

BeginAddr = 0(unless if partitioned, it must be locate using MBR)
FAT1Addr = UnusedSector+ReservedSec+BeginAddr
 = 1+2 + 0
 = 3
FAT2Addr = SectPerFat + FAT1Addr
 = 239 + 3
 = 242
RootDirAddr = Cluster #2 ; start of Data Region

DataAddr = Cluster #3

The SD card values used in the above examples were derived from Disk Investigator,
which we used to read the SD card. Disk Investigator can be downloaded from http://
download.cnet.com/Disk-Investigator/3000-2248_4-10255339.html.

Endianness
Zilog’s ZNEO Z16F Series MCUs operate in Big-Endian mode, while other devices oper-
ate in Little-Endian mode. In this application, addresses are converted to Little-Endian
mode prior to reading and writing data to/from the SD card.

The following passage from a white paper titled Endianness, published by INTEL at http://
www.intel.com/design/intarch/papers/endian.pdf, states Intel’s definition of endianness:

Note:
AN032001-1211 Page 7 of 39

http://www.intel.com/design/intarch/papers/endian.pdf
http://www.intel.com/design/intarch/papers/endian.pdf
http://download.cnet.com/Disk-Investigator/3000-2248_4-10255339.html
http://download.cnet.com/Disk-Investigator/3000-2248_4-10255339.html

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
Endianness is the format to how multi-byte data is stored in computer memory. It
describes the location of the most significant byte (MSB) and least significant byte (LSB)
of an address in memory. Endianness is dictated by the CPU architecture implementation
of the system. The operating system does not dictate the endian model implemented, but
rather the endian model of the CPU architecture dictates how the operating system is
implemented.

Representing these two storage formats are two types of Endianness-architecture, Big-
Endian and Little-Endian. There are benefits to both of these endian architectures. Big-
Endian stores the MSB at the lowest memory address. Little-Endian stores the LSB at the
lowest memory address. The lowest memory address of multi-byte data is considered the
starting address of the data.

In Big-Endian mode, the Most Significant Byte (MSB) is stored at the lowest address;
conversely, in Little-Endian mode, the Least Significant Byte (LSB) is stored at the lowest
address.

Hardware Implementation

The tools used to develop this application are:

• ZDS II – ZNEO version 5.0.1

• ZNEO Z16F Series Development Kit (Z16F2800100ZCOG)

• ZNEO SD Card Daughter Board

• SD Cards:

– 2 GB SDSC

– 4 GB SDHC

• A host PC

The ZNEO Z16F Series Development Board is shown in Figure 6, and the SD Card
Daughter Board is shown in Figure 7.
AN032001-1211 Page 8 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
Figure 6. ZNEO Z16F Series Development Board

Figure 7. SD Card Daughter Board
AN032001-1211 Page 9 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
Figure 8 shows the SD card, serial and power connections to the ZNEO Z16F Series
Development Board.

Enhanced Serial Peripheral Interface

All variants of the ZNEO family offer at least one Enhanced Serial Peripheral Interface
(ESPI) port. Any of these ESPI ports can be used for SD card communication because
each can be configured as a master. By manipulating the CPOL and CPHA bits, the rela-
tionship between the data and the clock phase is altered.

The ESPI allows the data exchange between the ZNEO Z16F Series MCU and other
peripheral devices, such as an SD card. The ESPI is a full-duplex, synchronous, character-
oriented channel which supports a four-wire interface. For a master, the valid options are
transmit only or transmit/receive. For a slave, all options are valid. When a slave is operat-
ing in Receive Only mode, it will transmit characters as all 1s.

Figure 8. ZNEO Z16F Series Development Board with Hardware Connected
AN032001-1211 Page 10 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
Universal Asynchronous Receiver/Transmitter

The ZNEO CPU contains two fully-featured UARTs with LIN protocol support. UART
communication is full-duplex and capable of handling asynchronous data transfers. These
UARTs support 8-bit and 9-bit data modes, selectable parity and an efficient bus trans-
ceiver driver enable signal for controlling a multitransceiver bus. UART0 is used to enable
communication between the ZNEO CPU and the PC running HyperTerminal.

Software Implementation

The software required to run the SD card application includes the functions and routines
that comprise the ESPI and UART blocks, the file system, and a number of SD com-
mands.

ESPI Functions
To configure the ESPI interface on the ZNEO Z16F Series MCU, the design must con-
sider the settings of the following four functions:

• ESPI enable/disable

• GPIO setting

• ESPI clock rate

• ESPI data size

Each of these functions is described in the following paragraphs.

ESPI Enable/Disable

To ensure a successful start, the ESPI should be disabled via the ESPICTL Register before
configuring the GPIO pin settings and the clock rate settings, and must be reenabled after
all configurations are performed.

GPIO Setting

The ESPI signals CLK, CS, MOSI, MISO must be configured via pin selection and the
GPIO Register (PCAF) before configuring the SPI interface, as shown in the following
code segment:

 PCAF = (SPI_SS | SPI_SCK | SPI_MOSI | SPI_MISO); //GPIO Settings

ESPI Clock Rate

The ESPI clock rate can be set via the ESPIBR Baud Rate Generator, as shown in the fol-
lowing code segment:

 void spi_set_baud(unsigned int divisor)
 {
 ESPICTL &= 0xBE;
 // Temporarily disable the SPI module
AN032001-1211 Page 11 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
 ESPIBRH = divisor >> 8;
 ESPIBRL = divisor;
 ESPICTL |= 0x41;
 // Reenable SPI
 }

ESPI Data Size

The Enhanced SPI data size is set to 8 bits for data transmission.

ESPI Routines
The ESPI-related routines used in this application include:

void spi_init(void); Initializes the ESPI interface by configuring the ESPIMODE, ESPI-
BRH and ESPICTL registers.

void spi_send_byte(unsigned char cspi_input); Sends 8-bit data to the SD card inter-
face.

unsigned char spi_rcv_byte(void); Receives 8-bit data from the SD card interface.

For the user to enter names for files and directories and to view card statistics and other
items listed in the menu, HyperTerminal must be configured to communicate with the
LIN-UART block via the communication port (RS-232). The LIN-UART must also be
configured to interface with HyperTerminal, as shown in the following code segment:

init_uart(_UART0, _DEFFREQ, _DEFBAUD); - this line set the UART
Frequency and Baud Rate

select_port(_UART0); - select UART 0

SD Commands
This application uses a number of SD commands, each of which is briefly described
below.

CMD0. Reset the card to an idle state.

CMD8. When in an idle state, request the card to send the contents of its current opera-
tional condition as a response on the MISO line. Any negative response indicates that the
SD card cannot be initialized correctly.

CMD55/ACMD41. Ask the card to start initialization, response is zero if initialization com-
plete otherwise 0.

CMD58. Ask the SD card to send OCR, if CMD8 and CMD55/ACMD41 is successful,
CMD58 response include HCS which indicate if the SD card is High Capacity or not.

CMD16

Set the block length (in bytes) for all the following block commands, both read and write.
In the sample program, the data length is set to 512 bytes.
AN032001-1211 Page 12 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
CMD17. Read a block of data that its size is determined by the CMD16 command.

CMD24. Write a block of data that its size is determined by the CMD16 command.

CMD32. Set the Start of the Block to be erase

CMD33. Set the Last Block to be erase

CMD38. Ask the card to start Block Erase specified by Start Block and Last Block.

The ZNEO Z16F Series MCU sends a series of commands to initialize the SD card,
checks the status of the command response, then sends a series of commands to write/read
data to and from the SD card.

SD Routines
This application uses a number of SD routines, each of which is briefly described below.

void sd_initialize_media(void); This routine is used to initialize the SD card by sending
the CMD0, CMD8, CMD55/ ACMD41 and CMD58 commands in sequence using the fol-
lowing string:

void spi_send_byte(unsigned char cspi_input);

If the response to each command is successful, a nonzero value will result; a zero indicates
failure.

int sd_write_media(unsigned long BlockAddress, unsigned char *buffer); This rou-
tine is used to send a block of data, based on the number identifying the block, to the SD
card. To send the CMD24 command followed by the data and a checksum, use the follow-
ing string:

int sd_read_block(sd_status *flag, unsigned long addr, unsigned
char *data)

If the response to the command is successful, a nonzero value will result; a zero indicates
failure.

int sd_read_media(unsigned long BlockAddress, unsigned char *buffer); This rou-
tine is used to receive a block of data, based on the number identifying the block, from the
SD card.

To send the CMD17 command to the SD card first, use the following string:

int sd_read_block(sd_status *flag, unsigned long addr, unsigned
char *data)

If the response to the command is successful, repeat the following command to read the
data back from the SD card:

unsigned char spi_rcv_byte(void)
AN032001-1211 Page 13 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
The return value indicates the status of the command and data response. A nonzero value
indicates success; a zero indicates failure.

File System Routines
The file system manages how data is written to the SD card, following the DOS format.
Managing the file system involves the following routines:

struct dir_Structure* FILE (unsigned char flag, unsigned char *fileName); This rou-
tine is called all below routines and functions, it is the center of the file system.

unsigned char read_File (unsigned char flag, unsigned char *fileName); This rou-
tine reads and views data from the file.

unsigned char read_Directory (unsigned char flag, unsigned char *fileName); This
routine reads and views directory files.

void write_File (unsigned char *fileName); This routine creates a file with a given file
name.

void create_Directory (unsigned char *fileName); This routine creates a directory with
a given directory name.

void delete_File (unsigned char *fileName); This routine deletes a file with a given file
name.

void delete_Directory (unsigned char *dirName); This routine deletes a directory with
a given directory name.

void memory_Statistics (void); This routine displays card statistics, including its total
capacity and amount of free memory via HyperTerminal.

unsigned char format_SD_Card (void); This routine formats the SD card to its default
file system; only the volume name can be modified.

Test Procedure

Observe the following instructions to assemble, configure and test the SD card application.

Switch and Jumper Settings
This first section of the procedure addresses the settings for each switch and jumper on the
ZNEO Z16F Series Development Board.

1. Remove the SD card, if any, from its slot in the SD Card Daughter Board.

2. Remove the shunts, if any, from jumpers J1, J2 and J7.

3. Use shunts to short (i.e, close the connections on) jumpers J3 and J6.

4. If LED D1 on the SD Card Daughter Board is illuminated (ON), slide Switch S3 to its
opposite position to turn this LED off, as indicated in Figure 9.
AN032001-1211 Page 14 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
When viewing the ZNEO Z16F Series Development Board with the UART (P2) and
debug (P3) connectors on your right, the position of the S3 switch will be to the right (see
Figure 9 to determine the correct setting). To verify that Switch S3 is set correctly, and
without an SD card inserted, LED D1 on the SD Card Daughter Board should not illumi-
nate.

To avoid potential confusion, bear in mind that the LED D1 power indicator on the ZNEO
Z16F Series Development Board will be illuminated when power has been applied. Con-
versely, LED D1 on the SD Card Daughter Board will be illuminated either when an SD
card is active in its slot or when the position of the Switch S3 is set to the left.

5. Ensure that Switch S2 is set to the same position as S3.

Install ZDS II for ZNEO
This section of the procedure guides you through the process of installing ZDS II – ZNEO
on your host PC.

1. Download ZDS II – ZNEO v5.0.1 and install it on your host PC.

2. Download the zipped AN0320-SC01 file from its location on the Zilog website at
http://www.zilog.com/docs/appnotes/AN0320-SC01.zip. Save this file and unzip it to
an appropriate location on your host PC.

3. Launch ZDS II. In the ZDS II menu bar, navigate via the File menu to Open Project;
the Open dialog box will display. Browse to the AN0320-SC01 folder that you just
downloaded, look inside this folder for the .zdsproj file, and click Open.

Figure 9. Correctly Positioned S2 and S3 Switches

Notes:
AN032001-1211 Page 15 of 39

http://www.zilog.com/docs/appnotes/AN0320-SC01.zip

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
4. After the project is open, select Settings from the Project menu. In the Code Gener-
ation panel, ensure that the Limit Optimization checkbox is selected and that Mem-
ory Model is set to Small, as shown in Figure 10.

5. In the Debugger panel of the Settings window, select the Z16F2811AL checkbox.
Next, above the Debug Tool pane, click Setup to launch the Configure Target dialog
box. In this dialog, ensure that the Clock Source is set as External and that the Fre-
quency is set to 20.00000 MHz. In the External Bus Interface pane, select 8-Bit, as
shown in Figure 11.

Figure 10. Code Generation Panel Settings
AN032001-1211 Page 16 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
6. Click Configure Flash to open the Target Flash Settings dialog box. In this dialog,
select the Internal Flash checkbox and the Automatically Detect Device checkbox,
as shown in Figure 12.

Figure 11. External Bus Interface

Figure 12. Target Flash Settings
AN032001-1211 Page 17 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
7. In the Object and Libraries panel of the Project Settings window, in the C Startup
Module pane, select Standard. In the Use Default Libraries pane, select the C Run-
time Library checkbox. From the Floating Point Library: drop-down menu, select
Real. See Figure 13.

8. In the ZDS II workspace area, click External Dependencies, then double-click the
SIO.h file. Ensure that _DEFBAUD is set to 57600.

9. From the Build menu, choose Rebuild All to build the code and load it into the ZNEO
Z16F Series MCU.

Observe the following instructions to configure HyperTerminal.1

1. To launch HyperTerminal, navigate via the PC’s Start menu to All Programs →

Accessories → Communications → HyperTerminal. Configure HyperTerminal to
reflect the settings shown in Figure 14.

Figure 13. Objects and Libraries Settings

1. This SD card application was tested using HyperTerminal running on a Windows XP SP3 system.
AN032001-1211 Page 18 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
2. Use a serial cable to connect the ZNEO Z16F Series Development Board to the serial
port of the host PC.

3. Insert an SD card into its slot on the ZNEO SD Card Daughter Board and connect this
Daughter Board to the Development Board.

Figure 14. HyperTerminal Properties
AN032001-1211 Page 19 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
4. Power up the ZNEO Z16F Series Development Board and wait a moment for the ini-
tialization screen to appear in the HyperTerminal window, as shown in Figure 15.

Figure 15. SD Card Initialization Screen in HyperTerminal
AN032001-1211 Page 20 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
5. To view the list of files contained in the root directory (or any folder), press the 1 key
on your PC’s keyboard. A list of files and directories will appear in the HyperTerminal
window; see Figure 16.

Figure 16. Getting a File and Directory List
AN032001-1211 Page 21 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
6. To read a specific file, enter a 2 on the keyboard. At the Enter File or Directory Name
prompt that appears, enter the name of the file you want to read. The name and exten-
sion of the file must be separated by a period (.); e.g., sample.txt. See Figure 17.

Figure 17. Reading a File
AN032001-1211 Page 22 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
7. To create or append a file, enter a 3 on the keyboard. At the Enter File or Directory
Name prompt, enter the name of the file (including its extension and following the
format described in Step 6) and press the Enter key. A screen similar to Figure 18 will
appear.

Figure 18. Creating or Appending a File
AN032001-1211 Page 23 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
8. Enter a text string to create or append to a file, and end this string with the tilde char-
acter (~). Press the Enter key to view a result similar to the screen shown in Figure 19.

Figure 19. Appending a Text String
AN032001-1211 Page 24 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
9. To delete a file, enter a 4 on your keyboard. At the Enter File or Directory Name
prompt, enter the name of the file you want to delete and press Enter key. Press the
Enter key to view a result similar to the screen shown in Figure 20. Be sure to wait for
the confirmation that your file was deleted, as shown in Figure 21.

Figure 20. Deleting a File, #1 of 2
AN032001-1211 Page 25 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
Figure 21. Deleting a File, #2 of 2
AN032001-1211 Page 26 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
10. To view card statistics, enter an 8 on your keyboard. Total Capacity and Free Memory
data will appear in the HyperTerminal window, as shown in Figure 22.

Figure 22. Viewing Card Statistics
AN032001-1211 Page 27 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
11. To format an SD card, enter 9 on your keyboard. At the Format SD Card? prompt,
enter a 1. When the open prompt appears, enter the volume name and press the Enter
key.

12. At the Enter Volume Name: prompt, enter the name of the newly-formatted volume,
and press Enter. When formatting is complete, the system responds as shown in Figure
23.

Figure 23. Formatting an SD Card
AN032001-1211 Page 28 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
13. To create a directory, enter a 6 on the keyboard. At the Enter File or Directory Name
prompt, enter the name of the directory, end this name with a period (see the FOLDER01
example shown in Figure 24), and press the Enter key. The result is shown in Figure 25.

Figure 24. Creating a Directory, #1 of 2
AN032001-1211 Page 29 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
Figure 25. Creating a Directory, #2 of 2
AN032001-1211 Page 30 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
14. To delete a directory, enter a 7 on your keyboard. At the Enter File or Directory
Name prompt, enter the name of the directory, end this name with a period, and press
the Enter key to view a result similar to the FOLDER01 example shown in Figure 26.
Be sure to wait for the confirmation that your file was deleted.

Figure 26. Deleting a Directory, #1 of 2
AN032001-1211 Page 31 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
15. To change directories, enter a 5 on your keyboard. At the Enter File or Directory
Name prompt, enter the name of the directory and press the Enter key to view a result
similar to the example shown in Figure 27.

Figure 27. Changing a Directory
AN032001-1211 Page 32 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
16. To return to the previous directory, enter a 5 on your keyboard. At the Enter File or
Directory Name prompt, enter the name of the directory and press the Enter key to
view a result similar to the screen shown in Figure 28.

Results
This application was tested using a 2 GB Sandisk/KingCom SDSC card and a 4 GB PQI/
Transcend/TEAM SDHC card on both Windows XP SP3 and Windows 7 systems. Upon
testing, the results are:

• The card could be removed while running without problems

• The card could be read by a standard PC as a removable disk regardless of whether it
was formatted to FAT16 or to FAT32

• The card could be reinserted into the PC’s SD card reader slot with no problems; the
file system resumed operations

• A new SD card could be inserted without errors

• Newly created files and directories could be read by the PC without errors

• Directories were created up to 5 levels (128 levels is the maximum)

Figure 28. Returning to the Previous Directory
AN032001-1211 Page 33 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
Summary

The application developed for this Application Note document takes advantage of ZNEO
Z16F Series MCU’s advanced ESPI features to provide a fast, low-overhead solution for
interfacing its SPI block with an SD card quickly and inexpensively. Using SPI protocols
allows for a flexible interface between SD card storage media and the ZNEO CPU. The
software is modular and easy to customize for any application that requires a secondary
storage solution. In effect, this application demonstrates the ability to provide cost-effec-
tive removable storage using the ZNEO Z16F Series MCU.

Technical Information

FAT File System (Microsoft TechNet website)

How FAT Works (Microsoft TechNet website)

SD Specifications, Part 1: Physical Layer Simplified Specification Version 3.01 (published
by the SD Card Association)

Microsoft Extensible Firmware Initiative FAT32 File System Specification (published by
the University of Washington)

FAT16 File System Specifications (website)

FAT16 File System Disk - FAT16 Subdirectory Management (website)

References

The following documents describe the functional specifications of Zilog’s Z16F ZNEO
Series of MCUs.

• ZNEO CPU Core User Manual (UM0188)

• ZNEO Z16F Series Product Specification (PS0220)

• ZNEO Z16F Series Development Kit User Manual (UM0202)
AN032001-1211 Page 34 of 39

http://www.zilog.com/docs/zneo/UM0188.pdf
http://www.zilog.com/docs/zneo/ps0220.pdf
http://www.zilog.com/docs/zneo/devtools/UM0202.pdf
http://technet.microsoft.com/en-us/library/cc938438.aspx
http://technet.microsoft.com/en-us/library/cc776720%28WS.10%29.aspx
https://www.sdcard.org/downloads/pls/simplified_specs/Part_1_Physical_Layer_Simplified_Specification_Ver_3.01_Final_100518.pdf
http://staff.washington.edu/dittrich/misc/fatgen103.pdf
http://www.maverick-os.dk/FileSystemFormats/FAT16_FileSystem.html
http://www.easeus.com/data-recovery-ebook/fat16-sub-directory-management.htm

AN0320 Page 35 of 39

ard with a ZNEO Microcontroller
Application Note

Appe
01-1211

Implementing a Secure Digital C

ndix A. Schematic Diagram

Figure 29 is a schematic diagram showing how the SD card is connected with the ZNEO MCU.

Figure 29. SD card to ZNEO MCU Interface

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
Appendix B. Flow Charts

The schematic diagram in Figure 30 shows the main function for implementing an SD
card using ZNEO Z16F Series MCUs.

Figure 30. Flow of the Main Function
AN032001-1211 Page 36 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
The schematic diagram in Figure 31 shows the flow of the initialization sequence.

Figure 31. Flow of the Initialization Sequence
AN032001-1211 Page 37 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
The schematic diagram in Figure 32 shows the flow of the SD card’s input/output opera-
tions.

Figure 32. Flow of the SD Card I/O Operation
AN032001-1211 Page 38 of 39

Implementing a Secure Digital Card with a ZNEO Microcontroller
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be
experiencing with our products, please visit Zilog’s Technical Support page at
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer

©2011 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications,
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED
HEREIN OR OTHERWISE. The information contained within this document has been verified according
to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP and ZMOTION are trademarks or registered trademarks of Zilog, Inc. All
other product or service names are the property of their respective owners.

Warning:
AN032001-1211 Page 39 of 39

http://support.zilog.com
http://www.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

	Application Note:Implementing a Secure Digital Card with a ZNEO Microcontroller
	Abstract
	Features
	Discussion
	FAT File Systems
	Endianness

	Hardware Implementation
	Software Implementation
	ESPI Functions
	ESPI Routines
	SD Commands
	SD Routines
	File System Routines

	Test Procedure
	Switch and Jumper Settings
	Install ZDS II for ZNEO
	Results

	Summary
	Technical Information
	References
	Appendix A. Schematic Diagram
	Appendix B. Flow Charts
	Customer Support

