
AN020603-1008
Abstract
The Thermostat Demo describes how easy it is to
develop Internet-enabled process control and
monitor applications by embedding Java elements
on Zilog’s eZ80Acclaim!® microcontroller unit
(MCU). A variety of languages are used in the
design and specification of hardware and software
for embedded electronic systems. The integration
of hardware and software components for this
Demo is implemented using different languages.
The Thermostat drivers described in this
application note are written in the C language. A
Graphical User Interface (GUI) for the embedded
system is developed using Java applets. The
Thermostat Demo is thus a Java-enabled process
control application supported by Zilog TCP/IP
(ZTP) stack that functions on the Internet
environment.

With this Java-based demo application, you can
monitor and manipulate the Thermostat-based
control system in real time and can display
dynamic temperature values.

1. The source code file associated
with this application note,
AN0206-SC01.zip, is available
for download on www.zilog.com.

2. The source code files in this doc-
ument are intended for use with
ZTP software suite v2.0.0 and the
Zilog Developer Studio II—IDE
for eZ80Acclaim! v4.10.0 (ZDS
II v4.10.0).

Zilog Product Overview
This section provides brief overview of the Zilog
products used in this application note. It includes
the award-winning eZ80Acclaim! MCU and the
full-featured Zilog TCP/IP (ZTP) software suite.

eZ80 Acclaim! MCU Family
Overview
The eZ80Acclaim! family of microcontrollers
include Flash and non-Flash products. The Flash-
based eZ80Acclaim! MCUs, device numbers
eZ80F91, eZ80F92, and eZ80F93 are an
exceptional value for designing high-performance,
embedded, applications. It is possible to have the
performance necessary to execute complex
applications supporting networking functions
quickly and efficiently with speeds up to 50 MHz
and an on-chip Ethernet MAC (eZ80F91 only).
Combining on-chip Flash and SRAM,
eZ80Acclaim! devices provide the memory
required to implement communication protocol
stacks and achieve flexibility when performing in-
system updates of application firmware.

Zilog also offers two eZ80Acclaim! devices with-
out Flash memory (eZ80L92 and eZ80190
microprocessors).

Notes:
Application Note
Thermostat Demo Using eZ80Acclaim!®

MCU
Copyright ©2008 by Zilog®, Inc. All rights reserved.
www.zilog.com

http://www.ZiLOG.com
http://www.zilog.com

Thermostat Demo Using eZ80Acclaim!® MCU
ZTP Software Suite Overview
ZTP Software Suite integrates a rich-set of
networking services with an efficient real-time
operating system (RTOS). The operating system is
a compact preemptive multitasking, multi-threaded
kernel, with inter-process communications (IPC)
support, and soft real-time attributes. Table 1 lists
the standard network protocols implemented as

part of the embedded TCP/IP protocol stack in
ZTP.

Many TCP/IP application protocols are designed
using the client-server model. The final stack size
is link-time configurable and determined by the
protocols included in the build.

Figure 1 displays the flow of data from the embedded environment to the Java-based GUI.

Table 1. Standard Network Protocols in ZTP

HTTP TFTP SMTP Telnet IP PPP

DHCP DNS TIMEP SNMP TCP UDP

ICMP IGMP ARP RARP FTP PPPoE

SNTP SSL*

* SSL is available only with SSL package.

Figure 1. Overview of Thermostat Demo using eZ80Acclaim!®

PC

 GUI

(Java Applet)

HTTP- Client Application

Browser IE or Netscape

TCP-IP Stack

Data Link Layer

eZ80F91 Development Board

 (eZ80F9100200ZC0)

Thermostat Board

HTTP- Server

 Firmware

TCP-IP Stack (Zilog)

Data Link Layer

LCD Display
Switches

LEDs

INTERNET/LAN/WAN

eZ80F91

Module
AN020603-1008 Page 2 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
Discussion
The Thermostat Demo displays how to develop an
Internet-based application to control or monitor
processes. This is achieved by combining the
advantage offered by Java’s robustness with a real-
time embedded system that talks to physical layer
driver.

The architecture and design of the Thermostat
Demo incorporates a GUI using Java applets to
connect to the embedded environment. The user
interface is a Java applet. The real-time and device-
specific processes are written in C. The Java GUI
obtains the data from the low-level embedded
software code (C) and presents the data in a client
browser. Figure 1 on page 2 displays the flow of
data from the embedded environment to the Java-
based GUI.

The Thermostat Demo described in this application
note isolates the real-time control sections of an
embedded application from its Java-based sections.
Thus allowing information to flow freely between
the two sections.

An embedded system that uses a Java applet for its
GUI requires system software that supports TCP/
IP. It is with an HTTP web server running over it
that serves HTML pages referring to the Java
applet, and the code for the Java applet. The
embedded system does not require a Java Virtual
Machine. You can access the embedded system via
any Java-enabled web browser.

A request to read an HTML page loads a GUI
applet into the browser and starts executing it. The
applet opens a socket and connects to the main
application in the embedded system. The main
application, written in C, opens a socket and waits
for a connection by the applet. When a connection
is made, messages can be sent back and forth
between the applet and the main application. This
is in response to a request to see data or change
settings.

The Java Virtual Machine that executes the GUI
applet actually runs on the web browser and not on
the embedded system.

Advantages of Using Java
The advantages of using a Java applet are briefly
described below.

• The applet is stored as a file in the web server
that does not require additional memory from
an embedded device to operate; the restricted
memory on the embedded system is neatly
sidestepped.

• An embedded system vendor can be assured
that you have access to a web browser, in any
computer platform you choose to access the
embedded system from Java applets are
platform independent and provide cross-
platform GUIs.

• The Java GUI technique works well on a slow
network connection, such as a serial line; at a
time many clients are served efficiently.

• A Java-based GUI is a much better solution
than customized client software, because there
is no need to ship any client side media or
client side installation instructions with the
product. There is no additional cost, because
there is no need for OS upgrades or technical
support for the client side software. Only one
version of the Java-based GUI software is
required, and this version is stored in ROM/
Flash in the embedded system.

An Embedded HTTP Web server
HTTP web servers use a standard synchronous
request or response design running over the TCP/
IP, identical to classical client or server
architecture. When a client makes a request to an
HTTP server, it sends an HTTP request message.
The HTTP request message includes the client
request, and information about the client’s
capabilities. The HTTP response is similar to the
request, except that it is composed of two parts—
the response header and the response body. The
AN020603-1008 Page 3 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
response body represents the result of the initial
request. A single blank line in this HTTP response
file separates the response header from the
response body.

The requirements for a web server designed to run
on a workstation differs from that designed to run
in an embedded system. Features such as the
presence of log files, and larger memory footprint
in non-embedded web servers, are a definite
hindrance when it comes to implementing an
embedded web server. Embedded web servers lay
emphasis on reducing memory footprint while
increasing efficiency, reliability, and providing
mechanisms, to generate dynamic data.

Embedded systems do not typically serve a
multitude of static web pages. Internet appliances
and embedded systems, in general, require web
servers that enhance their existing functionality
without impinging on vital device resources or
requiring a redesign. Because many of these
systems are cost-constrained, memory, and CPU
resources are usually at a premium. It is vital that
embedded web servers offer minimal memory
requirements and are efficient.

The requirements for an embedded web server
include:

• Memory Usage

• Dynamic Page Refreshing/Update

• Web Page Storage in Flash or ROM

Memory Usage
One of the most important requirements for an
embedded web server is small memory footprint.
The web server use very little memory (code,
stack, and heap), and it must not fragment memory.
Many embedded devices employ simple memory
allocations that cannot combine fragmented
memory effectively. Because web servers must
often respond to requests to serve pages, simple
memory allocations can cause problems. When the
memory used to serve a page is freed, it can be

useless, as it cannot be merged with adjacent
memory blocks on the heap. To solve this problem,
embedded web servers should use only statically
allocated or pre-allocated memory blocks.

Dynamic Page Refreshing/Update
An embedded device features only a small number
of pages in memory, and often refreshes the page
contents on the fly. The web pages display ever-
changing information about device status, values
read by sensors, and any other data available to the
device.

Web Page Storage in Flash or ROM
Many embedded systems do not feature disk
drives, yet they must be accessed and controlled
via the web. In such cases, a method of storing web
pages in ROM is required. Embedded web servers
should be able to access HTML, Java applets,
image files, and any other web contents stored in
Flash Memory or ROM.

Reading and Writing to the
Embedded Web server
To communicate over a network using Java
programs, the socket or uniform resource locator
(URL) classes provided in the java.net package are
used. The underlying TCP and UDP layers are not
a concern. Socket is one end-point of a two-way
communication link between two programs
running on the network. URL is a pointer to a
resource on the World Wide Web.

The java.net package provides two socket-related
classes:

1. Class Socket–That implements the client side
of a network connection.

2. Class ServerSocket–That implements the
server side of a network connection

Class Socket implements the client side of a two-
way connection between the Java program and
another program on the network, while Class
AN020603-1008 Page 4 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
ServerSocket provides a system-independent
implementation of the server side of a client/server
socket connection. The Thermostat Demo
implements only the Socket class because the
server program is implemented in C, and not in
Java.

Java programs that interact over the Internet can
also use URLs to find Internet resources. Java
programs use Class URL in the java.net package to
represent a URL address. Java applets use a URL
to reference and connect to these network
resources. If the server supports a protocol that a
URL recognizes (for example, http), the URL can
be used to create a URL Connection to the server
(which normally connects via the Port 80 socket) to
manage protocol-specific communication.

Sockets can be used regardless of whether the
server supports a protocol that recognizes a URL or
not, but while using a socket to contact an HTTP
server, some of the details managed by the URL
must be entered manually. To avoid using
established protocols, communication according to
user specifications can be effectively managed via
sockets.

For more information on sockets and URLs, see
References on page 19.

Thermostat Implementation
Using eZ80Acclaim!®

To understand the Thermostat implementation, it is
necessary to know how the temperature is
controlled by the eZ80Acclaim! MCU.

Temperature Control
This section discusses how the eZ80Acclaim!
processor controls the temperature. The Java applet
features buttons that allow you to send commands
to the processor to control the temperature around
the temperature sensor. It is for setting the
Thermostat control parameters, such as upper and
lower temperature set points. Figure 3 on page 8

displays a screenshot of the GUI implemented
using a Java applet.

The upper and lower set point values are passed to
the embedded HTTP server using the Java socket
connections that invoke the CGI script. The
processor obtains these values via the firmware
interface that use the CGI script. The processor
continuously (every two seconds) reads the
temperature of the sensor and switches on/off the
bulb or the fan to maintain the temperature within
these set limits. The new temperature values are
sent via the CGI-Firmware interface to the HTTP
web server. Here the temperature values in the Java
applet are updated and finally displayed on the
screen. The processor also updates the temperature
values on the liquid crystal display (LCD) unit
every two seconds.
AN020603-1008 Page 5 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
Hardware Architecture
Figure 2 is a block diagram of the hardware architecture featuring the eZ80® development platform and the
Thermostat Board.

The pins PB4, PB5, and PB6 on the eZ80F91 MCU
are connected to the LEDs on the Thermostat
Board. The LCD Module is used as a memory map
device, with 0x800002 as the memory address. The
programmable array logic (PAL) unit is used for
address decoding. For details of the LCD connec-
tion, see Figure 2. The LCD module displays the
changing temperature of the temperature sensor
dynamically.

The pins PB0, PB1, and PB2 are connected to three
press button switches, S1, S2, and S3 respectively.
These switches can be used to force heating or
cooling or prevent heating or cooling of the
temperature sensor. Pin PB7 connects to the fan
that cools the temperature sensor when turned on,

while pin PB3 connects to a lamp that heats up the
temperature sensor when turned on.

MAX6625 is a 9-bit Temperature Sensor with an
I2C Serial interface that is connected to the SDA
and SCL lines on the eZ80F91 MCU.

Figure 2. Hardware Block Diagram for Thermostat Demo

PB5

PB6

PB3

PB4

SCL

SDA

Thermostat Board

S3

eZ80F91 Development Board

(eZ80F910200ZC0)

D3

Character LCD

Module

MAX6625

eZ80F91 MCU

9-Bit

Temperature

Sensor with

I C Serial

Interface

2
LAMP

FAN

SWITCHES

S2S1

PB0

PB1

PB2

PB7

D2D1

LEDs

DATA Bus

ADDRESS Bus

PAL

+

Buffer

DATA Bus
AN020603-1008 Page 6 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
Software Implementation
The software implementation for the Java-based
Thermostat Demo is divided into the following
sections:

Development of Java Applets—This section
explains the implementation of the GUI in the form
of several Java applets to create a socket
connection, display temperature reading, allow
setting of the upper and lower temperature values,
indicate the status of heating/cooling as controlled
by the hardware switches, and send inputs to
control the LEDs.

Development of the Embedded Firmware—
This section explains the two-sided firmware inter-
face. One side interfaces with the CGI script inputs
from the HTTP web server, while the other side
interfaces with the actual hardware devices like the
temperature sensor and the LCD panel.

Adding and Integrating Thermostat Demo
Files to ZTP—The software implementation for
the Java-based Thermostat Demo involves the use
of the ZTP stack. The eZ80F91 Development Kit
contains the ZTP stack software that supports
socket connections. This section contains the
details for adding and integrating the Thermostat
Demo application with the ZTP stack. For more
details on the ZTP stack refer to www.zilog.com
and contact the Zilog help desk.

Development of Java Applets
Java applets are developed using a GUI builder
(any text-based editor like Notepad can be used).
Sun’s Java Development Kit (JDK) is used for
compiling the applet source files.

The Java applet, TstatHttpClient.class creates the
socket connection to communicate to the host com-
puter from where the applets are loaded. When any
applet requires information from the main applica-
tion, it sends a request message via this socket. The

main application responds by sending a response
message through the same socket.

The rest of the Java applets provide control and
monitoring capabilities to the Thermostat Board on
the eZ80® development platform. The Java applets
provide the following functionality:

• The facility to manipulate the upper and lower
set points for the temperature sensor.

• The facility to display the updated temperature
values on a client web browser in graphical
and numerical formats.

• The facility to display the status of the
hardware switches, which are used to force
heating or cooling or turn off the heating and
cooling, on the temperature sensor.

Development of the Embedded
Firmware
The embedded firmware interfaces at two levels:

1. At one level it interfaces between the HTTP
web server on ZTP and the Java applets.

2. At another level the embedded firmware inter-
faces with the actual hardware devices on the
Thermostat Board and the LCD panel.

The following sub-sections explain the details of
the embedded firmware interfaces.

Firmware Interface to Java Applets
The firmware interface establishes communication
links between the Java GUI and the firmware. This
firmware interface is written in C and developed
using the ZDS II.
AN020603-1008 Page 7 of 22

http://www.zilog.com
http://www.zilog.com
http://www.zilog.com
http://www.zilog.com

Thermostat Demo Using eZ80Acclaim!® MCU
Figure 3 is a screen shot of the web page using the
Thermostat applet. It displays the Thermostat.class
applet, receives the temperature data, and displays
it via the applet, on the web browser. The applet

invokes the web server’s CGI scripts contained in
the tstat_control_cgi.c to write to and read from the
HTTP web server.

Figure 3. Control Panel for Temperature Sensor
AN020603-1008 Page 8 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
Figure 4 is a screen shot of the web page using the
Button applet. It displays the Button.class applet,
demonstrates how the LEDs are controlled
remotely, and how the hardware-controlled Ther-
mostat heating and cooling is displayed remotely.

The Button applet uses the CGI script file,
java_control_cgi.c to control the LEDs and check
the hardware switch inputs.

Figure 4. Control Panel for LEDs-I
AN020603-1008 Page 9 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
Figure 5 is a screen shot of the web page generated
by an HTML form. It displays the LEDs controlled
by inputs into this HTML form. The HTML page,
Control panel for LEDs-II demonstrates ON/OFF

and Flash rate control using HTML forms. The
HTML form handler uses the CGI script file
switches_cgi.c.

Embedded web server connections are established
using either the Socket Class or the URL Class
available in the java.net package. The URL code
segment that can be used instead of a direct socket
connection to a server is explained here. To write to
a server, a Port 80 socket connection to the server
is created. The code to obtain this socket connec-
tion is called via the getupdate () method, and the
code to write to the socket is called via a sen-
dRequest () method.

To read dynamic data, a URL to the CGI dynamic
page is built on the server from where the applets
are delivered. After opening the URL connection,
the data is received in this connection. When all of

the data is sent through an output stream (by call-
ing the getupdate ()method), an input stream (in
Stream) for the URL connection reads the server’s
response.

The CGI interface programs make use of the HTTP
functions http_init(), http_get(), http_post(), and
http_request().These programs are common
functions used to build the embedded HTTP web
server. The CGI script file, input_cgi.c, passes the
maximum and minimum set point values from the
Java applet to the main.c program. The functions in
the main.c file, calls the appropriate functions to
read the temperature values from the temperature
sensor on the Thermostat Board.

Figure 5. Control Panel for LEDs-II
AN020603-1008 Page 10 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
It maintains the temperature between the upper and
lower set points, (by turning on the bulb or the fan)
by dynamically upgrading the limits you set using
the buttons on the GUI.

The constantly changing temperature values from
the temperature sensor are read by the Java applet
by invoking the CGI script, and displayed in a
graphical and numerical format on the web
browser. Reading and writing to the server occur
every two seconds. A thread running in the applet
controls this process.

Firmware Interface to Hardware
The firmware interface to the hardware performs
the following tasks:

• Initializes the eZ80Acclaim!® I/O ports to
configure them for reading and writing to the
devices on the Thermostat Board and the LCD
panel.

• The firmware interface calls the function
http_init () with appropriate parameters to
build the web server. The web server creates
several threads so that multiple web servers
run on multiple ports. The structure, web
pages, defines the kinds of pages that are
embedded in the website. All necessary static
and dynamic web pages that are built in this
structure are defined. The index.html and
tstat_control.html are created as dynamic web
pages and the Thermostat.class is created as a
static web page.

• The firmware interface initializes the I2C
temperature sensor.

• Reads the temperature from the MAX6625
Temperature Sensor using the readtemp ()
function.

• The Firmware interface is used to exchange
data between the temperature sensor and a
LCD panel, to display temperature variation
dynamically. The LCD panel is plugged to the
port A of the eZ80F91 MCU. The LCD
program initially displays the IP address of the
server. When you request a URL via the
browser, the program displays the set upper/
lower temperature values, and the current
temperature on the LCD panel. The
temperature reading is updated every two
seconds.
AN020603-1008 Page 11 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
Adding and Integrating Thermostat Demo Files to ZTP
The Thermostat Demo described in this application note requires the eZ80Acclaim!® development board,
ZTP stack, and the Thermostat Board. For the Thermostat Demo execution, the files specific to the Demo
must be added and integrated to the ZTP stack before it is downloaded onto the eZ80Acclaim! develop-
ment board. This section contains the details of adding the Thermostat Demo files to the ZTP stack.

The Thermostat Demo files that must be added to the ZTP project are located in AN0206-SC01.zip file
available for download on www.zilog.com. The Demo files are of the following types:

• C (*.c) files

• Header (*.h) files

• HTML (*.htm) files

• Java (*.class) files

The ZTP stack is available on www.zilog.com and can be downloaded to a PC, with a user registration key.
ZTP can be installed in any location; its default location is C:\Program Files\Zilog.

For ZDS II and ZTP version used in this application, see Requirements on page 17.

Follow the steps below to add and integrate the Demo files to the ZTP stack:

1. Download ZTP. Browse to the location where ZTP is downloaded, and open the
..\ZTP_2.0.0\ZTP\SamplePrograms\ZTPDemo folder.

2. Install eZ80F91—ZTP Projects Library available under Application Sample Libraries from
www.zilog.com. Copy all the *.htm (or *.html) and *.class files under Thermostat Demo application
library located in the
...\Applications_Library\eZ80F91_ZTP_Projects_Library 1.0.0\Thermostat Demo Applica-
tion\include\TD_Website.Acclaim, folder to the ...\ZTP_2.0.0\ZTP\SamplePrograms\Web-
site.Acclaim folder.

3. Copy all the *.c, *.s files located in
...\Applications_Library\eZ80F91_ZTP_Projects_Library 1.0.0\Thermostat Demo Application\
source and *.h files located in
...\Applications_Library\eZ80F91_ZTP_Projects_Library 1.0.0\Thermostat Demo Applica-
tion\include folder to the ...\ZTP_2.0.0\ZTP\SamplePrograms\ZTPDemo folder.

4. Launch ZDS II for eZ80Acclaim! v4.10.0 and open the website.zdsproj project located in the path:
...\ZTP_2.0.0\ZTP\SamplePrograms\website.Acclaim.

5. Add all the *.htm (or *.html) and *.class files located in the ..\website.Acclaim folder to the web-
site.zdsproj project. To do so, click Project and then click Add Files. The *.htm files to be added are
listed below:

control_page.htm
jcontrol_page.htm
ThermostatDemo.html
thermostatf.htm

Note:
AN020603-1008 Page 12 of 22

http://www.zilog.com
www.zilog.com
http://www.zilog.com
www.zilog.com

Thermostat Demo Using eZ80Acclaim!® MCU
tstat_control_page.htm

The *.class files to be added are listed below:

ButtonApplet.class
CustomParser.class
LEDBulb.class
messagerA.class
MiniHttpClient.class
ParamParser.class
Thermometer.class
Thermostat.class
TstatHttpClient.class

6. Open the website file from within ZDS II, and add the following prototype declarations to it:
// Thermostat pages
extern struct staticpage control_page_htm;
extern struct staticpage jcontrol_page_htm;
extern struct staticpage thermostatf_htm;
extern struct staticpage thermostat_htm;
extern struct staticpage ThermostatDemo_html;
extern struct staticpage tstat_control_page_htm;
extern int input_cgi (struct http_request *request);
extern int java_control_cgi (struct http_request *request);
extern int switches_cgi (struct http_request *request);
extern int Thermostat_cgi (struct http_request *request);
// Java Applets
extern struct staticpage Thermometer_class;
extern struct staticpage Thermostat_class;
extern struct staticpage LEDBulb_class;
extern struct staticpage ButtonApplet_class;
extern struct staticpage CustomParser_class;
extern struct staticpage messagerA_class;
extern struct staticpage MiniHttpClient_class;
extern struct staticpage ParamParser_class;
extern struct staticpage TstatHttpClient_class;

7. The website file contains an array, web page website[], that provides information about the HTML
pages. Replace the last line of the array, {0, NULL, NULL, NULL} with the following lines of code:

{HTTP_PAGE_STATIC,"/Thermometer.class", "application/octect-stream",
&Thermometer_class},
{HTTP_PAGE_STATIC,"/Thermostat.class", "application/octect-stream",
&Thermostat_class},
{HTTP_PAGE_STATIC,"/LEDBulb.class", "application/octect-stream",
&LEDBulb_class},
{HTTP_PAGE_STATIC,"/ButtonApplet.class", "application/octect-stream",
&ButtonApplet_class},
{HTTP_PAGE_STATIC,"/CustomParser.class", "application/octect-stream",
&CustomParser_class },
{HTTP_PAGE_STATIC,"/messagerA.class", "application/octect-stream",
&messagerA_class},
AN020603-1008 Page 13 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
{HTTP_PAGE_STATIC,"/MiniHttpClient.class", "application/octect-stream",
&MiniHttpClient_class},
{HTTP_PAGE_STATIC,"/ParamParser.class", "application/octect-stream",
&ParamParser_class},
{HTTP_PAGE_STATIC,"/TstatHttpClient.class", "application/ octect-
stream", &TstatHttpClient_class},
{HTTP_PAGE_STATIC,"/control_page.htm", "text/html", &control_page_htm},
{HTTP_PAGE_DYNAMIC,"/cgi-bin/switches", "text/html", (struct
staticpage*) &switches_cgi},
{HTTP_PAGE_DYNAMIC,"/cgi-bin/java_control","text/html",(struct
staticpage*)&java_control_cgi},
{HTTP_PAGE_DYNAMIC,"/Thermostat.html", "text/html", (structstatic
page*)&Thermostat_cgi},
{HTTP_PAGE_STATIC,"/jcontrol_page.htm", "text/html",
&jcontrol_page_htm},
{HTTP_PAGE_STATIC,"/thermostatf.htm", "text/html", &thermostatf_htm},
{HTTP_PAGE_STATIC,"/tstat_control_page.htm", "text/html",
&tstat_control_page_htm},
{HTTP_PAGE_DYNAMIC, "/Data.html", "text/html", (struct staticpage*)
&input_cgi},
{0, NULL, NULL, NULL}

8. From within ZDS II v4.10.0, open the left.htm file located in the \Web Files folder. Search for the
Demos
 statement and add the following piece of HTML code above the Demos
 statement to
create a link from the default eZ80Acclaim!® web page to the Thermostat Demo web page.

Thermostat Demo

Temp.Sensor

LED Ctrl Panel-I

LED Ctrl Panel-II

9. Build the website.zdsproj project to obtain the new library file Acclaim_website.lib. Copy this
Acclaim_website.lib to the
...\ZTP_2.0.0\ZTP\Lib folder where it will replace the existing one.

10. Close the website.zdsproj project.

11. From within ZDS II, open the ZTPDemo_F91.zdsproj file available in the path
...\ZTP_2.0.0\ZTP\SamplePrograms\ZTPDemo.

12. Add all the *.c files located in the ...\ZTP_2.0.0\ZTP\SamplePrograms\ZTPDemo folder to the
ZTPDemo_F91.zdsproj project. To do so, click Project and then click Add Files.

The *.c files to be added are listed below:

initialization.c
input_cgi.c
java_control_cgi.c
LCD_API_port.c
switches_cgi.c
AN020603-1008 Page 14 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
temp_read.c
Thermostat_cgi.c
tstat_control_cgi.c

The *.s files to be added are listed below:

Timer1ISRProlog.s
Timer2ISRProlog.s

13. For this application, dynamic host configuration protocol (DHCP) is disabled; therefore, ensure that in
the ZTPConfig.c file

UINT8 b_use_dhcp = FALSE

14. Look for the ifTbl structure definition in the ZTPConfig.c file.
struct commonServers csTbl=
{
"172.16.6.28", // Default Timer Server
"", // Default rfs server
"", // Default File Server Not currently Used
"172.16.6.194" // Default Name Server
};

struct If ifTbl [MAX_NO_IF] =
{
// interface 0 -> EthernetConfiguration
{
&usrDevBlk [0], //Control block for this device
ETH, // interface type
ETH_MTU, // MTU
ETH_100, // Speed can be ETH_10 or AUTOSENCE
"172.16.6.198", // Default IP address
"172.16.6.1", // Default Gateway
0xffff0000UL // Default SubnetMask
}
}

The ifTbl structure contains network parameters and settings (in the four-octet dotted deci-
mal format) specific to the local area network at Zilog, by default. Modify the above struc-
ture definition with appropriate IP addresses within your local area network (For details on
modifying the structure definition, refer to the ZTP v2.0.0 documents).

15. Open the emac_conf.c file and change the default MAC address (provided by ZTP) such that each
eZ80® development platform on the LAN contains a unique MAC address. For example,

const CHAR f91_mac_addr [ETHPKT_ALEN] = {0x00, 0x90, 0x23, 0x00, 0xDF,
0x91};

In the six byte MAC address shown above, the first three bytes must not be modified; the last three
bytes can be used to assign a unique MAC address to the eZ80Acclaim!® development platform.

16. Open the main.c file of the ZTPDemo_F91.zdsproj project, and add the following include file.
#include "LCD_API.h"

Note:
AN020603-1008 Page 15 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
#include <netif.h>
#include "emulator.h"

Add two more lines mentioned below.

RZK_THREADHANDLE_t RZKGetCurrentThread ();
RZK_STATUS_t status;

17. Add the following function prototypes and global variables to the main.c file.
//prototype functions
extern void reg_init_function(void);
extern void tstat_function();
//global declarations
unsigned char flash_mask,jflash_mask;
unsigned char flash_rate,
flash_speed_entry,jflash_rate,jflash_speed_entry;
Unsigned char LED1_status, LED2_status, LED3_status, jout_hold;
int ambient_temp,upper_setpoint,lower_setpoint,j;
char temp_rising,bypass_counter;
unsigned char io_hold,io_work;
long delay_count=0; int temp;
int temp_low_byte,temp_high_byte,temp_degrees_f, temp_degrees_c;
int i2c_shiftreg,i2c_count,i2c_error, ok;

18. Add the following lines of code above the return (OK) statement located at the end of the ZTPAppEn-
try function in main.c file.

reg_init_function ();
LCD_init ();
LCD_prints ("Zilog Acclaim!");// Print a string
LCD_setposition (1, 0);
LCD_prints ("IP");
LCD_setposition (1, 3);
LCD_prints (ifTbl [0].myip); // Print a string
while(1)
{
tstat_function ();
status = RZKSuspendThread(RZKGetCurrentThread(), 100);
}

19. Comment out the following line in the main.c file.
Initialize_FileSystem ();

Also comment the Intialize_Filesystem ()function description in the main.c file.

20. In the ZTPInit_Conf.c file, comment the following line:
Init_DataPersistence ();

21. In kernel.h file comment the following line:
#define OK 1

22. In ZTPConfig.c file make g_ShellLoginReqd = FALSE

23. Save the files and close the ZTPDemo_F91.zdsproj project.
AN020603-1008 Page 16 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
Demonstration
This section provides the requirements and instruc-
tions to set up the Thermostat Demo and run it.

Requirements
The requirements are classified under hardware
and software.

Hardware
• eZ80F91 Development Kit

(eZ80F910200ZCO)

• Thermostat Board (eZ801900100ZAC) along
with a 9 V power supply

• PC with an Internet browser

Software
• Zilog Developer Studio II—IDE for

eZ80Acclaim!® v4.10.0 (ZDS II-IDE v4.10.0).

• Zilog TCP/IP Software Suite v2.0.0 (ZTP
v2.0.0).

• Project file for the Thermostat Demo for
eZ80Acclaim! located at the installed path of
Application library under the folder
...\Applications_Library\eZ80F91_ZTP_Pro
jects_Library 1.0.0\Thermostat Demo
Application\.

Setup
This particular setup uses ZPAK II. For demonstra-
tion setup with other debug tools, for example,
USB Smart Cable, Ethernet Smart Cable etc, refer
to their respective user manual.

Settings
This section lists the HyperTerminal settings and
Jumper settings for the Thermostat Demo
application described in this document.

HyperTerminal Settings
Set HyperTerminal to 57.6 kbps baud, 8-N-2, with
no flow control

Jumper Settings
For the eZ80® development platform
• J11, J7, J2 are ON

• J3, J20, J21, J22 are OFF

• For J14, connect 2 and 3

• For J19, MEM_CEN1 is ON, and CS_EX_IN,
MEM_CEN2, and MEM_CEN3 are OFF

Figure 6. Setup for Thermostat Demo

PC

4 Port HUB

J3

P1
ETHERNET

ETHERNET

RS-232 ZPAK-II

ETHERNET

INTERNET/LAN/WAN

J4 ZDI

eZ80F91 Development Kit

with

Thermostat Board

P2 ETHERNET
AN020603-1008 Page 17 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
For the eZ80F91 Module mounted on the
eZ80® development platform
JP3 is ON

For the Application Board
For J10, connect the center pin to VCC

Procedure
Follow the procedure below to build and run the
Thermostat Demo.

1. Ensure that the required Thermostat Demo
files are added and integrated to ZTP before
proceeding. For details, see Adding and Inte-
grating Thermostat Demo Files to ZTP on
page 12.

2. Make the connections as displayed in Figure 6
on page 17. Follow the jumper settings pro-
vided in Jumper Settings on page 17.

3. Connect the 9 V power supply to the eZ80F91
Development Kit and the Thermostat Board
separately.

4. Connect the 5 V power supply to ZPAK II and
the 7.5 V power supply to the Ethernet hub.

5. Launch the HyperTerminal and follow the set-
tings provided in the HyperTerminal Settings
on page 17.

6. From within the HyperTerminal, press z
repeatedly, and then press the Reset button on
ZPAK II to view the menu to set the ZPAK II
IP address.

7. Enter H to display help menu, and follow the
menu instructions to obtain the IP address for
ZPAK II in order to download the Demo file.
This ZPAK II IP address must be entered in the
ZDS II.

8. Launch ZDS II for eZ80Acclaim!® and open
the Thermostat Demo project file
(ZTPDemo_F91.zdsproj) located in the path:
...\ZTP_2.0.0\ZTP\SamplePrograms\
ZTPDemo

9. Open the ZTPConfig.c file. Ensure that the
ifTbl structure contains information that is rel-
evant to your network configuration.

10. Build the project and download the resulting
file to the eZ80F91 Module on the eZ80 devel-
opment platform using ZDS II.

11. Run the Thermostat Demo.

Running the Thermostat Demo
1. Launch the Internet Browser on the PC. Enter

the IP address specified in the ZTPConfig.c
file. The Index.html page is displayed.

2. Click on the Temp. Sensor link in the left
pane. The Control Panel for Temperature
Sensor page is displayed. Observe the temper-
ature displayed in graphical and numerical
form. Observe the upper and lower limits set
for the temperature.

3. Click on the DECREASE UPPER/
DECREASE LOWER/INCREASE UPPER/
INCREASE LOWER, buttons to change the
upper/lower limits of the temperature.
Observe the temperature reading.

4. On the Demo Thermostat Board, hold down
switch S1. The bulb glows, and heats the tem-
perature sensor. Observe that the temperature
reading rises above the set upper limit as long
as the S1 switch is held down.

5. Hold down switch S2. The fan rotates, and
cools the temperature sensor. Notice that the
temperature reading falls below the set lower
limit as long as the S2 switch is held down.

6. Hold down switch S3. Neither the light bulb
nor the fan works. Notice that the temperature
reading reaches the ambient temperature irre-
spective of the set upper and lower limits and
remains steady as long as the S3 switch is held
down.

7. Click on the LED Ctrl Panel-I link in the left
pane of the Browser window. The Control
Panel for LEDs-I page is displayed.

8. Switch on the LEDs using the ON button.
Click on the Flash Rate buttons to specify the
AN020603-1008 Page 18 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
rate for blinking, and click the Flash button to
activate blinking. On the Board, notice that all
the LEDs are on and are blinking at the rate
specified.

9. Switch off the LEDs using the OFF button.
Notice that the LEDs on the Board are
switched off.

10. On the Demo Thermostat Board, hold down
switch S1. The bulb glows. The Switch indica-
tor for HEAT ON turns green, indicating that
the S1 switch on the Thermostat Board is ON.
Repeat this for the remaining switches and
observe the effects.

11. Click on the LED Ctrl Panel-II link in the left
pane of the Browser window. The Control
Panel for LEDs-II page is displayed.

12. Enter 1 in all the fields, to turn the LEDs ON.

13. In the Flash text box, enter 1 to make the
LEDs blink. Turning the blinking on is possi-
ble only for those LEDs that are ON.

14. In the Flash rate text box, enter a number
between 1–100 to set the blinking at a speci-
fied rate. Entering 1 sets the blinking to the
fastest rate while entering 100 sets it to the
slowest rate.

15. Click the Send LED Settings and Get Status
Info button to effect the changes and obtain an
LED status report.

Summary
This application note highlights the
eZ80Acclaim!® MCU’s capability to perform as
efficient embedded web servers by demonstrating
an Internet-enabled process control. It monitors
application in the form of a Thermostat Demo that
embeds Java elements on the eZ80Acclaim! micro-
controller.

The Thermostat Demo is a Java-enabled process
control application that uses the Internet. With this
Java-based demo application, it is possible to

monitor and manipulate a control system in real
time and display values dynamically.

The advantage of using eZ80Acclaim! with Java is
that there is platform independence with a Java
GUI as a client application. The real-time
processes are controlled and monitored by the
eZ80Acclaim! MCU interacting with the hardware
devices.

References
The documents associated with eZ80F91 MCU,
ZDS II, ZPAK II, and the Thermostat Board avail-
able on www.zilog.com are provided below:

• eZ80® CPU User Manual (UM0077)

• eZ80F91 Flash MCU Product Specification
(PS0192)

• Thermostat Application Module Product User
Guide (PUG0014)

• Zilog Developer Studio II—eZ80Acclaim!®
User Manual (UM0144)

• ZPAK II Debug Interface Tool Product User
Guide (PUG0015)

• Zilog TCP/IP Stack API Reference Manual
(RM0040)

• Zilog TCP/IP Software Suite Programmers
Guide (RM0041)

• Zilog TCP/IP Software Suite Quick Start
Guide (QS0049)

• Information about sockets and URLs
http://java.sun.com/j2se
AN020603-1008 Page 19 of 22

http://java.sun.com/j2se/1.4.1/docs/api/java/net/Socket.html
www.zilog.com

Thermostat Demo Using eZ80Acclaim!® MCU
Appendix A—Flowcharts
This appendix provides the flowcharts for the Thermostat Demo implementation on the eZ80F91 MCU.

Figure 7 displays the flowchart for the main routine.

Figure 7. Flowchart for the Main Routine

START

Initialize Telnet Server;

Initialize HTTP Server;

Initialize SNMP Server.

Initialize Character LCD Module;

Update LCD with IP Address.

Read and update the temperature

to control the Cooling and Heating

(Fan and Bulb) of the temperature

Sensor.

Wait for two seconds
AN020603-1008 Page 20 of 22

Thermostat Demo Using eZ80Acclaim!® MCU
Figure 8 displays the flowchart for the Thermostat Applet and LCD update.

Figure 8. Flowchart for the Thermostat Applet and LCD Update

START

1. Update Upper and Lower Set Points from the Applet

2. Read the current temperature

3. Update Applet with current temperature

4. Update the LCD with current temperature value and

 current Upper and Lower Set Points

Wait for two seconds
AN020603-1008 Page 21 of 22

AN020603-1008 Page 22 of 22
22

Thermostat Demo Using eZ80Acclaim!® MCU

DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.

eZ80 and eZ80Acclaim! are registered trademarks of Zilog, Inc. All other product or service names are the
property of their respective owners.

Warning:

	Thermostat Demo Using eZ80Acclaim!® MCU
	Abstract
	Zilog Product Overview
	eZ80 Acclaim! MCU Family Overview
	ZTP Software Suite Overview

	Discussion
	Advantages of Using Java
	An Embedded HTTP Web server
	Reading and Writing to the Embedded Web server

	Thermostat Implementation Using eZ80Acclaim!®
	Temperature Control

	Hardware Architecture
	Software Implementation
	Development of Java Applets
	Development of the Embedded Firmware
	Adding and Integrating Thermostat Demo Files to ZTP

	Demonstration
	Requirements
	Setup
	Settings
	Procedure

	Summary
	References
	Appendix A-Flowcharts

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

