
AN037701-0215
Abstract

This application note discusses how to create a boot loader program for the Z51F6412 
microcontroller, a member of Zilog’s Z8051 Family of Microcontrollers. The boot loader 
is developed using the Keil μVision 4 IDE and provides the functionality to program an 
Intel Hex-format file to the Z51F6412 MCU’s Flash memory through the UART.

The source code file associated with this application note, AN0377-SC01, is available free 
for download from the Zilog website. To use files contained in this .zip file, install Zilog’s 
Z8051 Software and Documentation (Product ID SD00023), which is available free for 
download from the Zilog Store. This source code can be compiled using Keil μVision 4 
and has been tested using Zilog’s Z51F6412 Development Kit. For this source code to 
work properly with our other Z8051 MCUs, you may be required to modify the code sup-
plied with this application note.

Features

The key features of this application include:

• Usable user application code space of up to 64,256 bytes

• Ability to load user application code via the RS232 serial interface

Discussion

A boot loader is typically a program that permanently resides in the nonvolatile memory 
section of a target processor, and is the first set of code to execute at Power-On Reset 
(POR). Atypical boot loader features the following functional characteristics:

• The reset address of the target CPU points to the start address of the boot loader code.

• The boot loader reads the UART port for a certain time, waiting for a specific character 
input to be received. This character triggers the boot loader to enter Flash loading 
mode.

• In the absence of this character input, the boot loader code branches to the existing user 
application program. When the boot loader is in Flash loading mode, it typically re-
ceives data through a COM port to program the user code into Flash memory.

Note:
AN037701-0215
Application Note
Boot Loader for the Z51F6412 MCU
 Page 1 of 16

http://www.zilog.com/docs/appnotes/an0377-sc01.zip
http://store.zilog.com/index.php?option=com_ixxocart&Itemid=1&p=product&id=58&parent=9
http://www.zilog.com/index.php?option=com_product&task=dev_tool_detail&DevToolKit=Z51F6412000ZCOG


Boot Loader for the Z51F6412 MCU
Application Note
• The boot loader performs error checking on the received data, using the checksum 
method.

• The boot loader issues a command to the Flash controller to program the data into Flash 
memory.

• The boot loader checks the destination of the user code to prevent any inadvertent pro-
gramming of the user code into its own memory space.

Z51F6412 MCU Flash Overview

Zilog’s Z51F6412 MCU features 64 KB of Flash memory, which is divided into 1,024 
pages; each page consists of 64 bytes. Flash memory is read or written one byte or page at 
a time. Figure 1 shows the Flash memory map of the Z51F6412 MCU.

Z51F6412 MCU Boot Loader Features

The boot loader program operates in the following sequence:

1. Upon receiving a specific character from the serial port within a specified period of 
time (i.e., two seconds), Flash Loading Mode is invoked. When Flash loading com-
pletes, the boot loader program transfers control to the user application, which then 
begins to execute. The address range of the user application code ranges from 100h to 
FBFFh, as shown in Figure 2.

Figure 1. Z51F6412 Flash Memory Map
AN037701-0215  Page 2 of 16



Boot Loader for the Z51F6412 MCU
Application Note
2. The boot loader program erases the reset vector, interrupt vectors, and the user appli-
cation code area, which is the portion of memory in which the boot loader resides.

3. The user application code is received via the RS232 port of a serial terminal emulation 
program such as HyperTerminal. The boot loader calculates and verifies a checksum 
to detect errors, if any. If the loaded hexadecimal file contains checksum errors, the 
program displays an error message.

4. The boot loader program loads the Intel Hex-formatted data into Flash memory one 
byte at a time, and displays a progress indicator in HyperTerminal.

Software Implementation

Generally, a boot loader’s only function is to download a hexadecimal file to the MCU’s 
Flash memory. This application is designed to program the Z51F6412 MCU via its UART 
block, which is an alternative to using Zilog’s OCD. The advantage of using the UART is 
that users can update the firmware via the RS232 serial interface.

Figure 2. The Z51F6412 MCU’s Flash Memory Address
AN037701-0215  Page 3 of 16



Boot Loader for the Z51F6412 MCU
Application Note
Figure 3 shows the typical flow of the boot loader execution.

UART0 communication parameters are set to the following values in HyperTerminal (or a 
similar terminal emulation program):

• 4800 baud

• No parity

• 8 data bits 

• 1 stop bit

The program enters the boot loader code when the keyboard space bar (i.e., ASCII code 
20h) and the MCU’s reset button are simultaneously pressed. The boot loader code down-
loads the hexadecimal file to the MCU’s Flash memory. The program then jumps to the 
start address of the user application code, which starts executing from Flash memory.

Figure 3. Main Flow Diagram of the Boot Loader
AN037701-0215  Page 4 of 16



Boot Loader for the Z51F6412 MCU
Application Note
Boot Loader Code

The boot loader code is responsible for reading the hexadecimal file coming from the 
UART, and writing it to Flash memory. The hexadecimal file to be programmed into the 
user application code memory space is located in the 100h–FBFFh address range. The 
boot loader program resides in the remaining portion of Flash memory, FC00h–FFFFh. 
When the boot loader code starts, the HyperTerminal window displays a message indicat-
ing boot loader initialization.

The boot loader code operation depends on the following sequence of functions, which is 
also shown in workflow format in Figure 4 on page 6.

1. Flash memory erasure, in which Flash memory is erased within the address range 
0000h–FBFFh. This range contains the user’s application code and the start address 
of the boot loader code. Flash memory is erased so that new data can be written to 
Flash memory.

2. A boot loader address rewrite, in which the boot loader code start address bytes FCh 
and 00h are written to Flash addresses 0000h and 0001h, respectively.

3. HyperTerminal displays a message indicating that the MCU is ready to accept the 
application code.

4. The MCU writes the application code one byte at a time to Flash memory. After the 
data is completely written to Flash memory, HyperTerminal displays a message indi-
cating that the application code hex file is successfully downloaded to the MCU.

5. Finally, the program counter shifts to the user application code starting address 
(FC00h) to implement the downloaded application code.
AN037701-0215  Page 5 of 16



Boot Loader for the Z51F6412 MCU
Application Note
get_hex Function

The get_hex function shown in Figure 5 on page 8 is responsible for reading the hex file 
and storing it in Flash memory pertinent to the following sequence.

1. The received data is checked. If the received character is a colon (:), the starting line 
of the hex file is indicated.

Figure 4. Boot Loader Code Flow
AN037701-0215  Page 6 of 16



Boot Loader for the Z51F6412 MCU
Application Note
2. All ASCII characters are converted to the Intel Hex file format. ASCII characters A– 
F (41h–46h) are converted to the numbers 10–15 (0Ah–0Fh) while ASCII charac-
ters 0–9 (30h–39h) are converted to the numbers 0–9.

3. The first byte indicates the amount of data in a line; this amount is stored as a value in 
R3.

4. The second and third bytes indicate the MSB and LSB of the memory address. These 
bytes are stored in R1 and R2, respectively.

5. The fourth byte indicates the record byte of the data. The record byte is used to deter-
mine whether the data should be stored at a normal address, at an extended address, or 
at an end-of-file address.

– Normal addressing is represented by the value 00h, while extended addressing is 
indicated by the value 04h.

– End-of-file (EOF) addressing is represented by 01h. If end-of-file addressing is 
detected, the function defaults to the return command.

6. The bytes in the fifth to (N–1) range indicate the data to be stored in Flash memory.

7. The final byte indicates a checksum, which is used to check for errors during commu-
nication. The checksum byte must be equal to the two’s complement of the total value 
of the 1st byte to the (N–1) byte. Failure to satisfy this condition will result in program 
termination. The checksum is stored in Register B.
AN037701-0215  Page 7 of 16



Boot Loader for the Z51F6412 MCU
Application Note
Figure 5 depicts the flow of the get_hex function.

Figure 5. Flow Diagram of the get_hex Function
AN037701-0215  Page 8 of 16



Boot Loader for the Z51F6412 MCU
Application Note
Flash Erase and Flash Write Operations

Flash memory is the most important element in this application because the user applica-
tion code and the boot loader code reside in this location. Two Flash operations are used in 
this application: Flash Erase and Flash Write. Prior to executing these two operations, a 
command sequence must be performed to activate Flash Write or Flash Erase Mode. The 
following sequence of events must be performed.

1. Write AAh to F555h.

2. Write 55h to FAAAh

3. Write A5h to F555h

After the command sequence is executed successfully, Flash memory is ready to perform 
an Erase/Write operation. Flow diagrams of Flash page erase and Flash write operations 
are shown in Figures 6 and 7, respectively.
AN037701-0215  Page 9 of 16



Boot Loader for the Z51F6412 MCU
Application Note
Figure 6. Flash Page Erase Operation
AN037701-0215  Page 10 of 16



Boot Loader for the Z51F6412 MCU
Application Note
Equipment Used

This section provides a complete list of the hardware and software requirements for this 
application.

Hardware

The only hardware used to develop this application is the Z51F6412 Development Kit.

Figure 7. Flash Write Operation
AN037701-0215  Page 11 of 16



Boot Loader for the Z51F6412 MCU
Application Note
Software

The software tools used to develop this application include:

• Zilog Z8051 OCD 1.147

• Keil μVision 4 IDE

• AN0377-SC01.zip, which contains the project files and source code files.

• HyperTerminal or any equivalent communications and terminal emulation program.

References

The documents associated with the Z51F6412 MCU are listed in Table 1. Each of these 
documents can be obtained from the Zilog website by clicking the link associated with its 
Document Number.

Testing the Application

This section discusses a methodology for demonstrating this application and testing the 
software.

Hardware Setup

Connect one end of the USB-to-USB mini cable to the Z51F6412 Development Board, 
and connect the other end to the PC’s USB port. The LED indicator near the USB mini 
port of the Development Board will illuminate to indicate that power is supplied to the 
Board.

Software Setup

To install, configure, and test the software for this application, observe the following pro-
cedure.

1. Download and install the Z8051 Software and Documentation files if you have not 
previously done so. These files are available free for download from the Download-
able Software category of the Zilog Store.

2. After the Z8051 software is installed, download the AN0377-SC01.zip file from the 
Zilog website and unzip it to the following path, which was created during the installa-
tion process in Step 1.

Table 1. Z51F6412 MCU Documentation

Document ID Description

PS0303 Z51F6412 Product Specification

UM0259 Z51F6412 Development Kit User Manual
AN037701-0215  Page 12 of 16

http://www.zilog.com/docs/devtools/UM0259.pdf
http://www.zilog.com/docs/devtools/PS0303.pdf
message URL http://www.zilog.com/docs/appnotes/an0377-sc01.zip
http://www.zilog.com/docs/appnotes/an0377-sc01.zip
http://store.zilog.com/index.php?option=com_ixxocart&Itemid=1&p=product&id=58&parent=9


Boot Loader for the Z51F6412 MCU
Application Note
<Z8051 software installation folder>\samples

3. Open the project file Z51F6412_Bootloader.uvproj located in the following file-
path, then build the application software by pressing F7 or selecting Project → Build 
from the menu bar.

<Z8051 software installation folder>\samples\
AN0377-SC01\keil\proj

4. A hex file is created at the conclusion of the build. Load this hex file to the MCU via 
Zilog’s Z8051 OCD 1.147 software tool. The hex file can also be loaded using Keil by 
clicking the Load icon or selecting Flash → Download from the menu bar.

Testing the Application

To test the operation of this application, observe the following procedure.

1. Load the Z51F6412_Bootloader.hex file by using either Keil μVision4 or the 
Z8051 OCD 1.147 software tool. 

2. After loading the software to the MCU, disconnect the USB-to-USB mini connector 
from the Development Board, then disconnect the 10-pin connector of the OCD from 
the Development Board. 

3. Apply power to the Development Board by reconnecting the USB-to-USB mini cable 
to the Development Board.

4. Configure HyperTerminal. In the application software, the MCU’s UART is config-
ured to communicate with 4800 baud, 8 bit data frame, no parity bits, and 1 stop bit. 
Essentially, configure the terminal emulation program to match the MCU’s require-
ments.

5. To enter the boot loader code, reset the MCU and immediately press the space bar on 
the keyboard. HyperTerminal displays a message indicating that the MCU has entered 
the boot loader code, as shown in Figure 8.

The text appears on the console screen 2–3 seconds after the space bar is pressed.

Figure 8. HyperTerminal Display After Boot Loader Initialization

Note:
AN037701-0215  Page 13 of 16

http://store.zilog.com/index.php?option=com_ixxocart&Itemid=1&p=product&id=58&parent=9


Boot Loader for the Z51F6412 MCU
Application Note
6. Send the hex file of the user application software to the MCU using Hyperterminal. 
On the menu bar, click Transfer → Send Text File..., then select the appropriate hex 
file to send to the MCU and click Open to begin writing of the hex codes to the 
MCU’s Flash memory. A sample hex file can be found at the following location:

\AN0377-SC01\sample hex\led_blink.hex

Ensure that the user application’s memory layout is set correctly within the code range 
0100h–FBFFh.

7. Wait for the MCU to finish writing to Flash memory, after which HyperTerminal dis-
plays the message shown in Figure 10.

Figure 9. Sending the Hex File via HyperTerminal

Note:
AN037701-0215  Page 14 of 16



Boot Loader for the Z51F6412 MCU
Application Note
8. Press the space bar to run the application code.

Results

Upon testing this application, the boot loader for the Z51F6412 MCU performs exactly as 
expected. When downloading the user application hex file, a baud rate of 4800 bps was 
found to be the optimum speed. Baud rates faster than 4800 can cause an unstable opera-
tion or malfunction.

Summary

This boot loader program for the Z51F6412 MCU is designed to be used as a serial com-
munication firmware download application, an alternative to Zilog’s On-Chip Debug tool 
which communicates via a USB port. In this application, the hex file of the user code is 
sent to the MCU via HyperTerminal with a baud rate of 4800. Upon receiving the hex file, 
the MCU writes the received data to its own Flash memory. Testing of the application 
showed that the hex codes in the hex file were correctly written to the MCU's Flash mem-
ory and worked as expected. 

Figure 10. Message Displayed in HyperTerminal Indicating Flash Write Operation Completed
AN037701-0215  Page 15 of 16



Boot Loader for the Z51F6412 MCU
Application Note
Customer Support

To share comments, get your technical questions answered, or report issues you may be 
experiencing with our products, please visit Zilog’s Technical Support page at 
http://support.zilog.com.

To learn more about this product, find additional documentation, or to discover other fac-
ets about Zilog product offerings, please visit the Zilog Knowledge Base at http://
zilog.com/kb or consider participating in the Zilog Forum at http://zilog.com/forum.

This publication is subject to replacement by a later edition. To determine whether a later 
edition exists, please visit the Zilog website at http://www.zilog.com.

DO NOT USE THIS PRODUCT IN LIFE SUPPORT SYSTEMS.

LIFE SUPPORT POLICY

ZILOG’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE 
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF 
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION. 

As used herein

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) 
support or sustain life and whose failure to perform when properly used in accordance with instructions for 
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A 
critical component is any component in a life support device or system whose failure to perform can be 
reasonably expected to cause the failure of the life support device or system or to affect its safety or 
effectiveness.

Document Disclaimer

©2015 Zilog, Inc. All rights reserved. Information in this publication concerning the devices, applications, 
or technology described is intended to suggest possible uses and may be superseded. ZILOG, INC. DOES 
NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE 
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO 
DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED 
IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED 
HEREIN OR OTHERWISE. The information contained within this document has been verified according 
to the general principles of electrical and mechanical engineering. 

Z8051 is a trademark or registered trademark of Zilog, Inc. All other product or service names are the 
property of their respective owners.

Warning:
AN037701-0215  Page 16 of 16

http://support.zilog.com
http://zilog.com/kb
http://zilog.com/kb
http://zilog.com/forum

	Application Note: Boot Loader for the Z51F6412 MCU
	Abstract
	Features
	Discussion
	Z51F6412 MCU Flash Overview
	Z51F6412 MCU Boot Loader Features

	Software Implementation
	Boot Loader Code
	get_hex Function
	Flash Erase and Flash Write Operations

	Equipment Used
	Hardware
	Software

	References
	Testing the Application
	Hardware Setup
	Software Setup
	Testing the Application

	Results
	Summary
	Customer Support


